General Information about this Document

What's in this document:
The California Department of Transportation (Caltrans), as assigned by the Federal Highway Administration, has prepared this Environmental Impact Report/Environmental Assessment, which examines the potential environmental impacts of the alternatives being considered for the proposed project in the City of Modesto and Stanislaus County, California. Caltrans is the lead agency under the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The document tells you why the project is being proposed, what alternatives we have considered for the project, how the existing environment could be affected by the project, the potential impacts of each of the alternatives, and the proposed avoidance, minimization, and/or mitigation measures. The California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board are responsible agencies under CEQA for agency oversight of the Caltrans Modesto Soil Stockpiles and would approve the Final Remedial Action Plan as part of the proposed project. The Draft Final Remedial Action Plan is included as Appendix H of this document.

What you should do:
• Please read the document.
• Additional copies of the document and the related technical studies are available for review at the Caltrans District 10 Office at 1976 East Dr. Martin Luther King Jr. Boulevard, Stockton, California 95206; Stanislaus Council of Governments at 1111 I Street, Modesto, California 95354; the Stanislaus County Library at 1500 I Street, Modesto, California 95354. This document can be downloaded at the following website: http://www.dot.ca.gov/dist10/.
• Attend the public hearing.
• We’d like to hear what you think. If you have comments regarding the proposed project, attend the public hearing, and/or send your written comments to Caltrans by the deadline.
• Submit comments on the State Route 132 West Freeway/Expressway Project and this environmental document via U.S. mail to: Philip Vallejo, Acting Chief, Central Sierra Environmental Analysis Branch, California Department of Transportation, 855 M Street, Suite 200, Fresno, California 93721.
• Submit comments on the State Route 132 West Freeway/Expressway Project and this environmental document via email to: philip.vallejo@dot.ca.gov.
• Submit comments by the deadline: February 24, 2017.

What happens next:
After comments are received from the public and reviewing agencies, Caltrans, assigned by the Federal Highway Administration, may 1) give environmental approval to the proposed project, 2) do additional environmental studies, or 3) abandon the project. If the proposed project is given environmental approval and funding is appropriated, Caltrans could design and construct all or part of the project.

For individuals with sensory disabilities, this document can be made available in Braille, in large print, on audiocassette, or on computer disk. To obtain a copy in one of these alternate formats, please call or write to Caltrans, Attn: Philip Vallejo, Acting Chief, Central Sierra Environmental Analysis Branch, 855 M Street, Suite 200, Fresno, California 93721; 559-445-6172 (Voice), or use the California Relay Service 1-800-735-2929 (TTY), 1-800-735-2929 (Voice), or 711.
Construct a four-lane freeway/expressway along the adopted route for State Route (SR) 132 from near Dakota Avenue to SR 99 (post mile [PM] 11.0 to PM 15.0) in the City of Modesto in Stanislaus County. The proposed project includes remediation of three soil stockpiles (the Caltrans Modesto Soil Stockpiles) within Caltrans right-of-way.

DRAFT ENVIRONMENTAL IMPACT REPORT/
ENVIRONMENTAL ASSESSMENT and
Draft Final Remedial Action Plan for the Caltrans Modesto Soil Stockpiles

Submitted Pursuant to: (State) Division 13, California Public Resources Code
and (Federal) 42 USC 4332(2)(C)

THE STATE OF CALIFORNIA
Department of Transportation

and

Responsible Agencies: California Department of Toxic Substances Control and
Central Valley Regional Water Quality Control Board
Cooperating Agencies: Stanislaus Council of Governments, City of Modesto, and Stanislaus County

12/29/16

Date of Approval

Dennis T. Agar
District 10 Director
California Department of Transportation
NEPA and CEQA Lead Agency –
SR 132 West Freeway/Expressway Project

The following persons may be contacted for additional information concerning this document:

Philip Vallejo
Acting Chief, Central Sierra Environmental Analysis
Branch
California Department of Transportation
855 M Street, Suite 200
Fresno, California 93721
559-445-6172 (Voice)
Summary

The California Department of Transportation (Caltrans), working in cooperation with the Stanislaus Council of Governments (StanCOG), the City of Modesto and Stanislaus County, proposes to construct a four-lane freeway/expressway along the adopted route south of Kansas Avenue from Dakota Avenue (post mile [PM] 11.0) to east of State Route (SR) 99 at the Needham Street Bridge Overcrossing (PM 15.0). The total length of the State Route 132 West Freeway/Expressway Project (project) would be approximately 4 miles and would include connections on SR 99 from PM 15.7 to PM 17.5. Selection of either of the build alternatives would result in the containment of the Caltrans Modesto Soil Stockpiles behind retaining walls and bridge abutments and beneath highway pavements.

The purpose and need of the proposed project are to improve regional and interregional circulation within Modesto and Stanislaus County because the deficiencies of the existing highway and increases in regional and interregional traffic are anticipated to result in continued traffic congestion. Secondly, the proposed project would also relieve traffic congestion along existing SR 132 (Maze Boulevard) because the existing SR 132 (Maze Boulevard) currently experiences, and would continue to be burdened by increased traffic. Lastly, the proposed project would improve operations for the existing and proposed transportation network because the operational efficiency is reduced by the proximity and direct access to schools, churches, businesses, and residences by way of existing driveways along existing SR 132 (Maze Boulevard).

The proposed project involves the phased construction of one of the two build alternatives (Alternative 1 or Alternative 2) or the decision to implement a No-Build Alternative. Both build alternatives would include two phases (Phase 1: Expressway and Phase 2: Freeway) to construct a four-lane freeway/expressway on a new alignment. The proposed project would begin at the intersection of existing SR 132 (Maze Boulevard) and Dakota Avenue and would extend north along North Dakota Avenue for roughly half a mile. At the proposed intersection with North Dakota Avenue, the new alignment would extend east to SR 99 at the Needham Street Overcrossing Bridge. The proposed project would also involve improvements to the 5th and 6th street connections to SR 99. The major differences between Alternative 1 and Alternative 2 involve the construction of a southbound SR 99 Needham Street off-ramp (Alternative 1) compared to reconstruction of a southbound SR 99 Kansas Avenue off-ramp (Alternative 2). Section 1.3, Project Description, provides a detailed
description of the work and project phasing under both build alternatives. Under the No-Build Alternative, existing SR 132 (Maze Boulevard) would remain a two-lane, conventional highway.

Project funding comes from a combination of local, state, and federal sources. Currently, only Phase 1 has programmed funding, which was identified in fiscal years 2018/2019. Phase 1 funding sources include the Regional Improvement Program (RIP), Transportation Congestion Relief Program (TCRP), Federal Demonstration Program (DEMO), Stanislaus County’s share of the Regional Surface Transportation Program (RSTP) and other local funds from the City of Modesto and Stanislaus County. As shown in the following table, Phase 1 is estimated to cost approximately $82 million. Phase 2 is estimated to cost up to $132 million. The project cost is estimated up to $214 million.

### Summary Comparison of Project Phasing and Funding

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of construction</td>
<td>2018</td>
<td>2026</td>
</tr>
<tr>
<td>Completion of construction</td>
<td>2020</td>
<td>2028</td>
</tr>
<tr>
<td>Project cost by phase</td>
<td>$82 million</td>
<td>$128 million to $132 million</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$211 million to $214 million&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> The range represents the estimated cost of Alternative 1 ($211 million) and the cost of Alternative 2 ($214 million) for comparison purposes. The total project cost includes $1.57 million for remediation (containment) of the soil stockpiles. Phase 1 value is escalated (2018 dollar value); Phase 2 values are based on 2016 dollar values.

### Route Adoption and Right-of-Way Acquisition

In 1956, the proposed freeway corridor for SR 132 was adopted by the state with resolutions of support from Stanislaus County and the City of Modesto. In 1958, the state proceeded with property acquisition. To date, 79 acres of the project area are right-of-way owned by Caltrans. Both Alternative 1 and Alternative 2 would use the adopted route to realign the segment of existing SR 132 (Maze Boulevard) between Dakota Avenue and SR 99 (see Appendix F).

### Caltrans Modesto Soil Stockpiles

The soil that comprises the Caltrans Modesto Soil Stockpiles was generated in the 1960s during excavation of industrial property acquired by Caltrans from Food Machinery and Chemical Corporation (FMC). The property was acquired for the new
alignment of the Modesto Bypass project (i.e., the construction of SR 99). Soil excavated during construction of the Modesto Bypass project, including soil from the former FMC parcel, was stockpiled within Caltrans right-of-way at three locations south of Kansas Avenue between Carpenter Avenue and SR 99, and immediately east of northbound SR 99. The three stockpiles total approximately 160,000 cubic yards and are contaminated mostly with varying concentrations of barium, strontium, and lead. The stockpiles were intended for use in the construction of the future SR 132 West Project. In either of the build alternatives, stockpile soil would be contained behind retaining walls, bridge abutments, and beneath highway pavements. The California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board are responsible agencies under the California Environmental Quality Act (CEQA) for agency oversight and administration of regulatory requirements pertaining to contaminants in the stockpiles. The California Department of Toxic Substances Control is responsible for approving the Final Remedial Action Plan for the stockpiles as described in Section 2.2.5.1, Hazardous Waste/Materials and included as Appendix H of this document. In either of the build alternatives, stockpile soil would be contained behind retaining walls, bridge abutments and beneath highway pavements. Under the No-Build Alternative the three soil stockpiles would not be contained within a highway structure; however, Caltrans would be required to develop a separate remedial action plan for the stockpiles under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board.

**Existing Highway Description and Constraints**

Existing SR 132 (Maze Boulevard) is a two-lane, undivided conventional highway, which passes through residential, commercial, and agricultural areas west of SR 99. The existing right-of-way varies from 60 to 100 feet wide and is constrained by urban development as the highway approaches the City of Modesto and SR 99 from the west.

Existing SR 132 (Maze Boulevard) is part of the regional expressway system and is the main east-west corridor in Stanislaus County. The existing highway provides interregional connection between Interstate 5 near the City of Tracy and SR 99 in Modesto. The segment of SR 132 and the existing SR 132/SR 99 connection within the project area are of particular importance to regional and interregional circulation because of the extensive farm-to-market, recreational, and other commerce-related travel that uses the highway daily.
Public Scoping/Areas of Controversy
A Notice of Preparation was sent to numerous state and local agencies and recorded at the State Clearinghouse on January 7, 2010. The Notice of Preparation informed the recipients of Caltrans’ and the StanCOG’s intent to prepare an Environmental Impact Report and provided the project description, alternatives under consideration, and the environmental resources the project has the potential to affect. Recipients were also alerted to the state law requiring submittal of their comments to Caltrans no later than 30 days after receipt of the Notice of Preparation. A Scoping meeting was held on January 25, 2010. Meeting attendees were encouraged to provide written and oral comments. Comments provided at the Scoping meeting related to property values, construction impacts and cost, air quality, noise and agricultural impacts. Several attendees voiced support or need for the project and recommended that the proposed project include improvements for bicyclists and pedestrians and access to businesses near Carpenter Road (see Section 4.2, Public Participation).

Joint CEQA/NEPA Document
The proposed project is subject to federal and state environmental review requirements because StanCOG proposes the use of federal funds from the Federal Highway Administration (FHWA). Project documentation, therefore, has been prepared in compliance with both CEQA and the National Environmental Policy Act (NEPA). Caltrans is the lead agency under CEQA and NEPA. FHWA’s responsibility for environmental review, consultation, and any other action required in accordance with applicable federal laws is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to Section 6005 of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) codified at 23 U.S. Code 327(a)(2)(A). With NEPA Assignment, FHWA assigned and Caltrans assumed all of the U.S. Department of Transportation Secretary’s responsibilities under NEPA. This assignment includes projects on the State Highway System and Local Assistance Projects off of the State Highway System within the State of California, except for certain categorical exclusions that FHWA assigned to Caltrans under the 23 U.S. Code 326 Categorical Exclusion Assignment Memorandum of Understanding, projects excluded by definition, and specific project exclusions.

Some impacts determined to be significant under CEQA may not lead to a determination of significance under NEPA. Because NEPA is concerned with the significance of the project as a whole, quite often a “lower level” document is prepared for NEPA. One of the most common joint document types is an
Environmental Impact Report/Environmental Assessment (EIR/EA), which is what this document is.

After receiving comments from the public and reviewing agencies on the Draft EIR/EA, a Final EIR/EA would be prepared. Caltrans may prepare additional environmental and/or engineering studies to address comments. The Final EIR/EA would include responses to comments received on the Draft EIR/EA and would identify the preferred alternative for the project. If the decision is made to approve the project, a Notice of Determination would be published for compliance with CEQA, and Caltrans would decide whether to issue a Finding of No Significant Impact (FONSI) or require an Environmental Impact Statement (EIS) for compliance with NEPA. A Notice of Availability of the FONSI would be sent to the affected units of federal, state, and local government, and to the State Clearinghouse in compliance with Executive Order 12372.

Similarly, as a CEQA responsible agency for implementation of the Final Remedial Action Plan, the California Department of Toxic Substances Control would make a final determination of the effect on the environment outlined in the Draft Final Remedial Action Plan. The California Department of Toxic Substances Control would certify that the project complies with CEQA and would prepare a Notice of Determination. If the final approved document does not provide a sufficient description and environmental analysis of the remedial activities, then the California Department of Toxic Substances Control would prepare an additional CEQA document, or an addendum to this CEQA document.

**Project Impacts**

The following table summarizes the potential impacts that would result from construction and operation of the two proposed build alternatives. For comparison purposes, the impacts of the No-Build Alternative are also included. This table summarizes the potential impacts of the proposed project, as described throughout Chapter 2 in the Environmental Consequences sections within each resource subchapter. For a summary of significant impacts and mitigation measures in compliance with CEQA see Chapter 3.2, Discussion of Significant Impacts and Chapter 3.3, Mitigation Measures for Significant Impacts under the California Environmental Quality Act.
## Summary of Potential Impacts from Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets Purpose and Need</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Consistency with the Modesto General Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistent. The proposed project is in the General Plan and would be consistent with applicable General Plan goals and policies, except for Circulation and Transportation Policy V-B.6[c] related to Traffic Demand Management measures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistency with the Stanislaus County General Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistent. The proposed project is in the General Plan and is consistent with applicable General Plan goals and policies, except for the Agricultural Element Policy 2.3 and Land Use Element Policy 2 related to conversion of agricultural land.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistency with StanCOG Regional Transportation Plan/Sustainable Communities Strategy</td>
<td>Consistent. The proposed project is in the 2016 Regional Transportation Plan/Sustainable Communities Strategy and is consistent with applicable Plan goals and policies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconsistent. The No-Build Alternative would not result in a transportation project. Therefore, no Transportation Demand Management measures would be applied.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconsistent. Increased traffic congestion and lower average traffic speeds associated with the No-Build Alternative would degrade mobility within the study area and larger region. This would have a negative impact on economic and community prosperity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconsistent. Increased traffic congestion and lower average traffic speeds associated with the No-Build Alternative would have the potential to degrade air quality and mobility within the study area and larger region. This would have a negative impact on economic and community vitality, environmental quality, mobility, and social equity.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Summary of Potential Impacts from Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parks and Recreational Facilities</strong></td>
<td>Temporary increases in construction noise and equipment emissions would be minor. There would be no Section 4(f) use of any park or recreational resources.</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Growth</strong></td>
<td>Both build alternatives are unlikely to have a measurable effect on growth and would result in minimal growth-related impacts beyond what has already been planned.</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Farmlands/Timberlands</strong></td>
<td>Conversion of 64.8 acres of prime and unique farmland and 3.51 acres of Williamson Act contract lands would occur. Farmland access would be maintained throughout the project.</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Community Character and Cohesion</strong></td>
<td>No impact</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Relocations/Property Acquisitions</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Displacements</td>
<td>11</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Business Partial Acquisitions</td>
<td>24</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Residential Displacements</td>
<td>32</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Residential Partial Acquisitions</td>
<td>30</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td><strong>Environmental Justice</strong></td>
<td>Noise, visual, relocation, and construction impacts would predominately occur within environmental justice populations and are considered a disproportionate adverse impact.</td>
<td>Noise, relocation, and construction impacts would predominately occur within environmental justice populations and are considered a disproportionate adverse impact. However, a smaller degree of visual impacts would occur compared to Alternative 1.</td>
<td>Benefits not realized under the No-Build Alternative, including traffic congestion relief and improved access to businesses, would disproportionately adversely affect environmental justice populations.</td>
</tr>
<tr>
<td><strong>Utilities/Emergency Services</strong></td>
<td>Utility service could be temporarily disrupted during construction, but no long-term or permanent impacts would occur. Local road lane closures and detours would occur during construction, but emergency service providers would benefit after completion of Phase 1 by increased mobility, reduced congestion, and improved access.</td>
<td></td>
<td>No utility relocations or abandonments would occur. Emergency service response times may increase because of increased traffic congestion.</td>
</tr>
</tbody>
</table>
### Summary of Potential Impacts from Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Traffic and Transportation/ Pedestrian and Bicycle Facilities</strong></td>
<td>Decreased travel times, increased traffic speeds, and improved levels of service along existing SR 132 (Maze Boulevard) and for most of the major intersections would be realized. The proposed new alignment would provide another east-west travel option for motorists.</td>
<td>Neither build alternative would directly or indirectly impact existing or planned pedestrian/bicycle facilities, except at the proposed single-point urban interchange of the new alignment with North Carpenter Road. Both build alternatives propose a 12-foot-wide pedestrian/bicycle path along the east side of North Carpenter Road within the limits of the project.</td>
<td>Travel times would increase and level of service and vehicle speeds would degrade to unacceptable levels. Limited pedestrian and bicycle facilities exist within the study area, and no facilities are located west of SR 99 within Modesto’s city limits.</td>
</tr>
<tr>
<td><strong>Visual/Aesthetics</strong></td>
<td>High visual impact—Certain structures would degrade the visual quality of some residential areas, as well as new highway lighting, signs, tree removal (591 trees), and business and residential relocations.</td>
<td>Moderately high visual impact—While fewer structures and two fewer trees would be removed, Alternative 2 would still degrade visual quality of some residential areas from highway lighting, signs, tree removal (589 trees), and business and residential relocations.</td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Cultural Resources</strong></td>
<td>The State Route 132 Historic Property Survey Report was completed in December 2011. Following changes in the project’s area of potential effects, additional areas were evaluated, and a supplemental Historic Property Survey Report was completed in October 2014. A Finding of Effects (FOE) would be prepared after the preferred alternative is selected. The FOE would address the two eligible historic resources (416/418 I Street and 3530 Maze Boulevard) within the project area. The proposed freeway/expressway would not have a direct or indirect impact on the resources at 416/418 I Street. Both build alternatives would require the acquisition of 0.13 acre of the northwest corner of 3530 Maze Boulevard. The potential acquisition is located outside the historic property boundary. The FOE would require concurrence from the State Historic Preservation Officer (SHPO) and would include avoidance, minimization, and mitigation measures. These would be included in the Final EIR/EA. There are no known direct impacts on or Section 4(f) uses of any known resources.</td>
<td>No impact</td>
<td></td>
</tr>
</tbody>
</table>
## Summary of Potential Impacts from Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hydrology and Floodplain</strong></td>
<td>Impervious surfaces would increase by 55.8 acres, which could affect the area’s watershed by increasing the flow and volume of stormwater runoff entering the watershed.</td>
<td>Impervious surfaces would increase by 57.5 acres, which could affect the area’s watershed by increasing the flow and volume of stormwater runoff entering the watershed.</td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Water Quality and Storm Water Runoff</strong></td>
<td>If left untreated, the increase in stormwater flow and runoff volumes, resulting from the increased impervious surface area due to construction of the proposed freeway/expressway, could negatively affect water quality. Direct impacts may involve water contamination and excessive sedimentation, nutrients, and construction debris entering receiving water bodies. Containment of the Caltrans Modesto Soil Stockpiles would mitigate potential water quality impacts.</td>
<td>The soil stockpiles would not be contained within a highway structure; however, Caltrans would be required to develop a separate remedial action plan for the stockpiles under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board. Caltrans would maintain the perimeter fence, restrict access to authorized personnel, continue water quality monitoring, and maintain vegetative cover of the soil stockpiles until remediation of the stockpiles is completed.</td>
<td></td>
</tr>
<tr>
<td><strong>Geology/Soils/Seismic/Topography</strong></td>
<td>Both build alternatives would result in minimal geologic, soil, seismic, or topographic impacts relative to geotechnical hazards associated with liquefaction, seismic settlement, and slope stability.</td>
<td></td>
<td>No impact</td>
</tr>
</tbody>
</table>
### Summary of Potential Impacts from Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Paleontology</strong></td>
<td>The Modesto Formation occurs throughout the study area and is identified as high sensitivity for paleontological resources. Project excavation has the potential to impact paleontological resources.</td>
<td>The Modesto Formation occurs throughout the study area and is identified as high sensitivity for paleontological resources. Project excavation for Alternative 2 has a greater potential to impact paleontological resources than Alternative 1.</td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Agriculture</strong></td>
<td>Conversion of 64.8 acres of prime and unique farmland and 3.51 acres of Williamson Act contract lands would occur.</td>
<td>No Impact</td>
<td></td>
</tr>
<tr>
<td><strong>Hazardous Waste/Materials</strong></td>
<td>For these alternatives, 19 parcels that would be partially or fully acquired are known to have recognized environmental conditions.</td>
<td>Potential impacts from the acquisition of parcels with recognized environmental conditions, presence of agricultural chemicals, aerially deposited lead, and groundwater contamination would be less than substantial with the implementation of the appropriate avoidance, minimization, and mitigation measures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>While there may be potential impacts from the presence of barium contaminants in three soil stockpiles, ongoing monitoring has indicated that no significant impacts have or would occur from airborne dispersion or migration to groundwater. Containment of the three soil stockpiles as construction fill material would mitigate these impacts.</td>
<td>While there may be potential impacts from the presence of barium contaminants in three soil stockpiles, ongoing monitoring has indicated that no significant impacts have or would occur from airborne dispersion or migration to groundwater. Containment of the three soil stockpiles as construction fill material would mitigate these impacts.</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Potential Impacts from Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Caltrans Modesto Soil Stockpiles</strong></td>
<td>Stockpile soil would be contained behind retaining walls, bridge abutments and beneath highway pavements. Monitoring of the stockpiles and stormwater runoff constituents of potential concern would continue until the project and full containment of all three soil stockpiles are complete.</td>
<td>A remedial action plan would be developed, as soil stockpile containment via a highway structure would not be implemented. Caltrans would maintain the perimeter fence, restrict access to authorized personnel, continue water quality monitoring, and maintain vegetative cover of the soil stockpiles until remediation of the stockpiles is completed.</td>
<td></td>
</tr>
<tr>
<td><strong>Air Quality</strong></td>
<td>The proposed project would not lead to new or worsened violations of national and state air quality standards for particulate matter or carbon monoxide. Operational improvements would reduce precursor and criteria pollutant emissions relative to the No-Build Alternative. A temporary increase in precursor and criteria pollutants would occur during construction. Dust generated during stockpile excavation would be monitored by an air monitoring plan approved by the Department of Toxic Substances Control. Higher traffic congestion and lower average traffic speeds may increase precursor and criteria pollutant emissions. No air quality impacts from non-contained stockpiles would occur under the No-Build Alternative.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Noise</strong></td>
<td>Predicted future (2048) noise levels would permanently impact 260 receivers.</td>
<td>Predicted future (2048) noise levels would permanently impact 276 receivers.</td>
<td>Noise levels for 162 receivers would approach or exceed the noise abatement criteria in 2048.</td>
</tr>
<tr>
<td><strong>Energy</strong></td>
<td>The build alternatives would reduce overall fuel consumption when compared to existing conditions. Energy would be consumed during construction, but both build alternatives would not have substantial energy impacts. The No-Build Alternative would cause adverse impacts related to energy consumption.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Wetlands and Other Waters</strong></td>
<td>Potential direct and permanent impacts to 0.65 acre of non-jurisdictional wetlands (waters of the State).</td>
<td></td>
<td>No impact</td>
</tr>
</tbody>
</table>
### Summary of Potential Impacts from Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Animal Species</strong></td>
<td>For this alternative, 21 acres of potential burrowing owl habitat would be impacted, and removal of 591 trees could impact migratory birds.</td>
<td>For this alternative, 21 acres of potential burrowing owl habitat would be impacted, and removal of 589 trees could impact migratory birds.</td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Threatened and Endangered Species</strong></td>
<td>Potential impacts to the Swainson’s hawk would include removal of up to 70 acres of possible foraging habitat and up to 414 trees (with low potential to support Swainson’s hawk nesting and roosting).</td>
<td>No impact</td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Invasive Species</strong></td>
<td>The area may benefit from covering existing invasive species with impervious surfaces (paving) and preventing further dispersal.</td>
<td>The area would remain predominantly covered by invasive species.</td>
<td></td>
</tr>
<tr>
<td><strong>Cumulative Impacts</strong></td>
<td>A cumulative impact to agriculture could occur. Cumulative visual/aesthetics and noise impacts could occur if avoidance, minimization, or mitigation measures are not incorporated.</td>
<td>No impact</td>
<td></td>
</tr>
</tbody>
</table>

### Coordination with Public and Other Agencies

The following permits, reviews, and approvals would be required for project construction.

### Permits, Reviews, and Approvals Needed

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit/Approval</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Transportation Commission</td>
<td>Approval of New Public Road Connection at Needham Street</td>
<td>Submittal and approval after Final EIR certification</td>
</tr>
<tr>
<td>Central Valley Regional Water</td>
<td>Section 401 Water Quality Certification</td>
<td>Submittal and approval prior to construction</td>
</tr>
<tr>
<td>Quality Control Board</td>
<td>Section 402 National Pollutant Discharge Elimination System/Caltrans National Pollutant Discharge Elimination System Permit CAS000003 and CAS000002 (General Construction Permit)</td>
<td>Construction General Permit effective July 1, 2010; Caltrans National Pollutant Discharge Elimination System Permit effective July 1, 2013</td>
</tr>
<tr>
<td></td>
<td>Approval of the stockpile Final Remedial Action Plan, Remedial Design Implementation Plan, and other approvals deemed necessary</td>
<td>The Final Remedial Action Plan would be approved with certification of the Final EIR</td>
</tr>
</tbody>
</table>
### Permits, Reviews, and Approvals Needed

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit/Approval</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Historic Preservation Officer</td>
<td>Determinations of eligibility and effects upon cultural resources</td>
<td>Concurrence letters received May 16, 2012 and March 16, 2015 (National Register of Historic Places eligibility for architectural properties); a supplemental archaeological survey, geo-archaeological investigation report and the finding of effect would be submitted after selection of the preferred alternative but before approval of the Final EIR/EA</td>
</tr>
<tr>
<td>Various Utilities</td>
<td>Utility modification/relocation agreements</td>
<td>Agreements would be executed prior to construction</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>Street tree removal permit</td>
<td>Submittal and approval prior to construction</td>
</tr>
<tr>
<td>City of Modesto and Caltrans</td>
<td>Cooperative Agreement for final design of Phase 1</td>
<td>To be developed during the final design phase of the project</td>
</tr>
<tr>
<td>California Department of Toxic Substances Control</td>
<td>Approval of the stockpile Final Remedial Action Plan and Remedial Design Implementation Plan</td>
<td>Approval would occur with certification of the Final EIR (after circulation of this Draft EIR/EA, which includes the Draft Final Remedial Action Plan (see Appendix H of this document))</td>
</tr>
<tr>
<td>San Joaquin Valley Air Pollution Control District</td>
<td>Air Quality Dust Control Plans</td>
<td>Contractor responsible to submit and obtain approval prior to construction</td>
</tr>
<tr>
<td></td>
<td>Air Impact Assessment Indirect Source Review as required (Rule 9510)</td>
<td>Contractor to comply with the requirements prior to construction</td>
</tr>
<tr>
<td>San Joaquin Valley Air Pollution Control District</td>
<td>Asbestos National Emission Standards for Hazardous Air Pollutants Notification</td>
<td>Notification to be postmarked or delivered to the San Joaquin Valley Air Pollution Control District no later than 10 working days prior to beginning asbestos removal activities and/or demolition</td>
</tr>
<tr>
<td>Stanislaus County Department of Public Works</td>
<td>Encroachment Permit</td>
<td>Submittal and approval prior to construction</td>
</tr>
</tbody>
</table>
# Table of Contents

Summary ............................................................................................................... iii  
Table of Contents ................................................................................................ xvii  
List of Figures ...................................................................................................... xx  
List of Tables ....................................................................................................... xxii

## Chapter 1  
Proposed Project ......................................................................................... 1  
1.1 Introduction ........................................................................................... 1  
1.2 Purpose and Need .................................................................................. 6  
1.2.1 Purpose .............................................................................................. 6  
1.2.2 Need .................................................................................................. 7  
1.2.3 Independent Utility and Logical Termini ....................................... 13  
1.3 Project Description ............................................................................ 15  
1.4 Project Alternatives ........................................................................... 28  
1.4.1 Build Alternatives ........................................................................... 28  
1.4.2 No-Build Alternative ...................................................................... 35  
1.5 Comparison of Alternatives ............................................................. 35  
1.6 Alternatives Considered but Eliminated from Further Discussion 43  
1.7 Permits, Reviews, and Approvals Needed ..................................... 52

## Chapter 2  
Affected Environment, Environmental Consequences, and  
Avoidance, Minimization, and/or Mitigation Measures .................. 55  
2.1 Human Environment ........................................................................ 56  
2.1.1 Land Use .......................................................................................... 56  
2.1.1.1 Existing and Future Land Use ..................................................... 56  
2.1.1.2 Consistency with State, Regional and Local Plans and Programs. 63  
2.1.1.3 Parks and Recreational Facilities .............................................. 71  
2.1.2 Growth ............................................................................................. 73  
2.1.3 Farmlands ........................................................................................ 78  
2.1.4 Community Impacts ........................................................................ 84  
2.1.4.1 Community Character and Cohesion ....................................... 84  
2.1.4.2 Relocations and Real Property Acquisition ......................... 94  
2.1.4.3 Environmental Justice ................................................................. 100  
2.1.5 Utilities/Emergency Services ......................................................... 108  
2.1.6 Traffic and Transportation/Pedestrian and Bicycle Facilities .... 112  
2.1.7 Visual/Aesthetics ............................................................................ 126  
2.1.8 Cultural Resources ........................................................................ 155  
2.2 Physical Environment ........................................................................ 162  
2.2.1 Hydrology and Floodplain............................................................... 162  
2.2.2 Water Quality and Storm Water Runoff ..................................... 167  
2.2.3 Geology/Soils/Seismic/Topography ............................................. 179  
2.2.4 Paleontology .................................................................................. 182  
2.2.5 Hazardous Waste/Materials ......................................................... 188  
2.2.5.1 Caltrans Modesto Soil Stockpiles Site ................................... 209  
2.2.6 Air Quality ...................................................................................... 220
2.2.7 Noise ................................................................. 251
2.2.8 Energy ............................................................... 270
2.3 Biological Environment .............................................. 275
2.3.1 Wetlands and Other Waters ........................................... 275
2.3.2 Animal Species ...................................................... 280
2.3.3 Threatened and Endangered Species .......................... 290
2.3.4 Invasive Species ..................................................... 295
2.4 Cumulative Impacts .................................................... 297

Chapter 3 California Environmental Quality Act Evaluation .......................... 309
  3.1 Determining Significance under the California Environmental Quality Act ......................................................... 309
  3.2 Discussion of Significant Impacts ...................................... 310
    3.2.1 No Effects from the Proposed Project ...................................... 310
    3.2.2 Less-than-Significant Effects of the Proposed Project ............ 310
    3.2.3 Significant Environmental Effects of the Proposed Project .... 313
    3.2.4 Mandatory Findings of Significance .................................... 316
    3.2.5 Unavoidable Significant Environmental Effects .................. 317
    3.2.6 Climate Change ......................................................... 320
  3.3 Mitigation Measures for Significant Impacts under the California Environmental Quality Act ........................................ 336
    3.4 Environmentally Superior Alternative ................................ 336

Chapter 4 Comments and Coordination .......................................... 337
  4.1 Public Agencies Consultation and Coordination ...................... 337
    4.1.1 U.S. Environmental Protection Agency/Federal Highway Administration ............................................................ 337
    4.1.2 Native American Heritage Commission ............................ 337
    4.1.3 California Department of Fish and Wildlife ......................... 338
    4.1.4 U.S. Fish and Wildlife Service ........................................... 339
    4.1.5 U.S. Army Corps of Engineers ........................................... 339
    4.1.6 California Department of Toxic Substances Control ............ 339
    4.1.7 Central Valley Regional Water Quality Control Board .......... 340
    4.1.8 California State Historic Preservation Officer .................... 341
  4.2 Public Participation ..................................................... 341
    4.2.1 Notice of Preparation .................................................... 341
    4.2.2 Scoping Meeting ......................................................... 341
    4.2.3 Plan Implementation Project Meetings ............................... 342
    4.2.4 Public Information Meetings, Neighborhood Meetings, Open Houses ................................................................. 342

Chapter 5 List of Preparers ........................................................ 345

Chapter 6 Distribution List .......................................................... 351

Appendix A California Environmental Quality Act Checklist
<table>
<thead>
<tr>
<th><strong>Appendix B</strong></th>
<th>Resources Evaluated Relative to the Requirements of Section 4(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Appendix C</strong></td>
<td>Title VI Policy Statement</td>
</tr>
<tr>
<td><strong>Appendix D</strong></td>
<td>Summary of Relocation Benefits</td>
</tr>
<tr>
<td><strong>Appendix E</strong></td>
<td>Minimization and/or Mitigation Summary</td>
</tr>
<tr>
<td><strong>Appendix F</strong></td>
<td>Cross-Sections and Engineering Drawings</td>
</tr>
<tr>
<td><strong>Appendix G</strong></td>
<td>Final Feasibility Study, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Modesto, Stanislaus County, California</td>
</tr>
<tr>
<td><strong>Appendix H</strong></td>
<td>Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Modesto, Stanislaus County, California</td>
</tr>
<tr>
<td><strong>Appendix I</strong></td>
<td>Agency Coordination</td>
</tr>
<tr>
<td><strong>Appendix J</strong></td>
<td>List of Technical Studies</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1-1: Project Vicinity Map ................................................................. 4
Figure 1-2: Project Location Map ................................................................. 5
Figure 1-3: Levels of Service for Two-lane Highways, Intersections with Traffic Signals, and Two-way Stop Intersections .................................. 11
Figure 1-4: Project Overview Map ............................................................... 16
Figure 1-5: Phase 1 ..................................................................................... 19
Figure 1-6: Phase 2 (Alternative 1) ................................................................ 25
Figure 1-7: Phase 2 (Alternative 2) ............................................................... 26
Figure 1-8: Unique Features of the Build Alternatives ................................. 29
Figure 1-9: Alternative 5 Potential Relocations ........................................... 41
Figure 2-1: Stanislaus County and Modesto Land Use Designations .............. 59
Figure 2-2: California Important Farmlands and Williamson Act Land in the Study Area ................................................................. 81
Figure 2-3: Community Services and Facilities in the Study Area ................. 89
Figure 2-4: Minority and Low-income Populations within the Study Area ...... 103
Figure 2-5: Existing Landscape Units ......................................................... 131
Figure 2-6: Key Views in the Study Area .................................................... 135
Figure 2-7: Viewshed #1: Rosemore Avenue ............................................. 138
Figure 2-8: Viewshed #2: Carpenter Road ................................................ 140
Figure 2-9: Viewshed #3: Emerald Avenue .............................................. 142
Figure 2-10: Viewshed #4: SR 99 ............................................................... 143
Figure 2-11: Viewshed #5: Needham Street ............................................. 146
Figure 2-12: Viewshed #6: Elm Avenue ................................................... 148
Figure 2-13: Federal Emergency Management Agency’s Flood Insurance Rate Map Index 06099C0325E ................................................................. 165
Figure 2-14: Geologic Map of the Study Area ............................................ 184
Figure 2-15: Recognized Environmental Conditions in the Study Area ......... 203
Figure 2-16: Caltrans Modesto Soil Stockpiles Locations ............................. 211
Figure 2-17: Phase 1 - Typical Stockpile Cross-Section ............................... 216
Figure 2-18: Phase 2 - Typical Stockpile Cross-Section ............................... 216
Figure 2-19: Carbon Monoxide Hot-Spot Analysis Intersection and Receptor Locations ........................................................................... 233
Figure 2-20: Noise Levels of Common Activities ........................................ 254
Figure 2-21: Noise Analysis Areas .............................................................. 257
Figure 2-22a: Receiver and Modeled Noise Barrier Locations (Western Portion of the Study Area) ................................................................. 261
Figure 2-22b: Receiver and Modeled Noise Barrier Locations (Central Portion of the Study Area) ...................................................................... 262
Figure 2-22c: Receiver and Modeled Noise Barrier Locations (Eastern Portion of the Study Area) ...................................................................... 263
Figure 2-23: Location of Wetland Features and “Other” Waters in the Study Area ................................................................. 278
Figure 2-24: Threatened, Endangered, and Other Special-status Species’ Occurrences Reported within a 5-mile Radius of the Study Area ............. 285
Figure 2-25: Agriculture (Farmlands) Resource Study Area circa 1970 ........... 300
List of Figures

Figure 2-26: Agriculture (Farmlands) Resource Study Area circa 2014 .................. 301
Figure 2-27: Visual/Aesthetics and Noise Resource Study Area circa 1969 ............ 302
Figure 3-1: California Greenhouse Gas Forecast.................................................. 325
Figure 3-2: Possible Effect of Traffic Operation Strategies in Reducing On-Road Carbon Dioxide Emission .............................................................. 326
Figure 3-3: Mobility Pyramid .............................................................................. 328
List of Tables

Summary of Potential Impacts from Alternatives ........................................ viii
Permits, Reviews, and Approvals Needed .................................................... xiv
Table 1-1: Current and Projected Average Daily Traffic along Existing SR 132 and Other Local Roadways/Highways ......................................... 7
Table 1-2: Existing and Future No-Build Level of Service SR 132 (Maze Boulevard) Segments .................................................. 9
Table 1-3: Existing and Future No-Build Level of Service Intersections with SR 132 (Maze Boulevard) .................................................. 9
Table 1-4: Summary Comparison of Project Phasing and Funding .................... 28
Table 1-5: Summary Comparison of Alternatives ........................................... 36
Table 1.6: Permits, Reviews, and Approvals Needed ....................................... 52
Table 2-1: Land Use within the Project Study Area ........................................... 57
Table 2-2: Land Use Conversion by Build Alternative ...................................... 62
Table 2-3: Consistency with State, Regional, and Local Plans and Programs ...... 66
Table 2-4: Parks and Recreational Resources within the Study Area ................ 71
Table 2-5: Growth-related Screening Factors and Evaluation ......................... 75
Table 2-6: Farmland Conversion by Build Alternative ....................................... 80
Table 2-7: Area Population, Race, and Ethnicity Characteristics ....................... 86
Table 2-8: 2012 Area Housing Characteristics ................................................ 86
Table 2-9: 2012 Area Economic Characteristics ............................................... 87
Table 2-10: Area Household Income and Population Below the Poverty Level .... 87
Table 2-11: Residential Relocations by Build Alternative .................................. 96
Table 2-12: Residential Partial Acquisitions by Build Alternative ....................... 96
Table 2-13: Business Relocations by Build Alternative ..................................... 97
Table 2-14: Business Partial Acquisitions by Build Alternative ......................... 97
Table 2-15: Area Minority and Poverty Status ................................................ 101
Table 2-16: Area Population, Race, and Ethnicity Characteristics ..................... 101
Table 2-17: Household Income and Population Below the Poverty Level for the Study Area, City of Modesto and Stanislaus County ................... 101
Table 2-18: Major Utilities within the Study Area ............................................. 109
Table 2-19: Existing and Future No-Build Traffic Volumes along Existing SR 132 (Maze Boulevard) ...................................................... 114
Table 2-20: Existing and Future No-Build Travel Times and Speeds along Existing SR 132 (Maze Boulevard) ...................................................... 114
Table 2-21: Existing and Future No-Build Level of Service along Existing SR 132 (Maze Boulevard) and at Intersections in the Study Area .......... 116
Table 2-22: Existing and Future No-Build Peak Hour Level of Service and Peak Period Vehicle Hours of Delay along SR 99 in the Study Area .... 117
Table 2-23: No-Build and Build Travel Times and Speeds along Existing SR 132 (Maze Boulevard) ...................................................... 119
Table 2-24: No-Build and Build Level of Service along Existing SR 132 (Maze Boulevard) ...................................................... 120
Table 2-25: Level of Service along the Proposed New Alignment of SR 132 .... 122
Table 2-26: Peak Hour Level of Service and Peak Period Vehicle Hours of Delay on SR 99 for both Future Build and No-Build Scenarios............... 125
Table 2-27: Landscape Units within the Study Area .......................................................... 129
Table 2-28: Existing Visual Quality Rating for Key Views in the Study Area........ 133
Table 2-29: Changes in Visual Quality Ratings for the Build Alternatives .......... 149
Table 2-30: Visual Impacts for the Build Alternatives .................................................. 150
Table 2-31: Tree Impacts by Build Alternative ................................................................ 153
Table 2-32: Total Cut and Fill Requirements by Build Alternative ....................... 185
Table 2-33: Recognized Environmental Conditions within Parcels that Require Partial or Full Acquisitiona .......................................................... 193
Table 2-34: Recognized Environmental Conditions within the Existing SR 99 or SR 132 Right-of-Waya .................................................................. 198
Table 2-35: State and Federal Criteria Air Pollutant Standards, Effects, and Sources .............................................................................................................. 224
Table 2-36: Ambient Air Quality Monitoring Data Measured at the Modesto 14th Street Monitoring Station ................................................................. 229
Table 2-37: Modeled Carbon Monoxide Levels at Receptors for the No-Build Alternative and Two Build Alternatives (Phase 1 - 2020) ........... 235
Table 2-38: Modeled Carbon Monoxide Levels at Receptors for the No-Build and Build Alternatives (Phase 2 - 2028) .................................................................. 236
Table 2-39: Modeled Carbon Monoxide Levels at Receptors for the No-Build and Build Alternatives (Design Year 2048).......................................................... 237
Table 2-40: Annual Vehicle Miles Traveled Projections for 2020, 2028, and 2048 242
Table 2-41: Operational Criteria Pollutant Emissions (tons per year) ....................... 243
Table 2-42: Criteria Pollutant Emissions from Phase 1 (tons per year) ...................... 245
Table 2-43: Criteria Pollutant Emissions from Phase 2 (tons per year) ...................... 246
Table 2-44: Estimated NOx and PM10 Reductions Associated with Rule 9510 (tons per year).................................................................................................................. 246
Table 2-45: Noise Abatement Criteria........................................................................... 253
Table 2-46: Noise Analysis Areas .................................................................................. 259
Table 2-47: Predicted Future (2048) Noise Impacts of Alternative 1 ...................... 264
Table 2-48: Predicted Future (2048) Noise Impacts of Alternative 2 ...................... 265
Table 2-49: Summary of Noise Barrier Analysis ............................................................. 266
Table 2-50: Construction Equipment Noise Levels ..................................................... 269
Table 2-51: Vehicle Hours of Travel and Delay by Alternative for the Central Modesto Areaa .......................................................... 272
Table 2-52: Vehicle Miles of Travel by Alternative for the Central Modesto Areaa 273
Table 2-53: Impacts to Wetlands and “Other” Waters by Alternative ..................... 279
Table 2-54: Special-Status Animal Species with Potential to Occur in the Study Area .......................................................................................................................... 282
Table 2-55: Threatened or Endangered Animal Species with Potential to Occur in the Study Area ............................................................................................................. 292
Table 2-56: Resource Study Areas Considered for the Cumulative Impact Analysis .............................................................................................................................. 299
Table 2-57: Project Impact Summary ............................................................................ 303
Table 3-1: Alternative 1 Noise Levels and Impacts .................................................. 318
List of Tables

Table 3-2: Alternative 2 Noise Levels and Impacts.................................................. 318
Table 3-3: Summary of Operational Greenhouse Gas Emissions (metric tons carbon dioxide per year)................................................................. 327
Table 3-4: Climate Change/Carbon Dioxide Reduction Strategies ......................... 331
Chapter 1   Proposed Project

1.1 Introduction

The California Department of Transportation (Caltrans) is the lead agency under the California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA). Caltrans, working in cooperation with the Stanislaus Council of Governments (StanCOG), proposes to construct a four-lane freeway/expressway in two phases along the adopted route south of Kansas Avenue from Dakota Avenue (post mile [PM] 11.0) to east of State Route (SR) 99 at the Needham Street Bridge Overcrossing (PM 15.0). The total length of the State Route 132 West Freeway/Expressway Project (project) would be approximately 4 miles and would include connections on SR 99 from PM 15.7 to PM 17.5. Figures 1-1 and 1-2 show the project vicinity and location.

As part of the project, the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board are responsible agencies under CEQA for agency oversight of the Caltrans Modesto Soil Stockpiles located within Caltrans right-of-way south of Kansas Avenue and within the proposed location for the project. The California Department of Toxic Substances Control and the Regional Water Quality Control Board are responsible for approving the Final Remedial Action Plan, which is discussed in the summary on page ii and further detailed in Section 2.2.5.1. The Draft Final Remedial Action Plan is included as Appendix H of this document. Implementation of the Final Remedial Action Plan is detailed in Section 1.4.1, Build Alternatives.

The proposed project involves the phased construction of one of the two build alternatives (Alternative 1 or Alternative 2) or the decision to implement the No-Build Alternative. Both build alternatives would include two phases (i.e., Phase 1: Expressway and Phase 2: Freeway) to construct a four-lane freeway/expressway on a new alignment. The proposed project would begin at the intersection of existing SR 132 (Maze Boulevard) and Dakota Avenue and extend north along North Dakota Avenue for roughly half a mile. At the proposed intersection with North Dakota Avenue, the new alignment would extend east to SR 99 at the Needham Street Overcrossing Bridge. The proposed project would also involve improvements to the 5th and 6th street connections to SR 99. Phase 1 is anticipated to begin in 2018, be completed within 12 to 15 months, and be open to traffic by 2020. Both build alternatives (Alternative 1 and Alternative 2) would be the same under Phase 1. Phase 2 is expected to begin in 2026, be completed by 2028, and would
involve the construction of either Alternative 1 or Alternative 2 (Figures 1-4, 1-5, and 1-6).

Phase 1 includes the construction of a new two-lane expressway on the southern half of proposed alignment from Dakota Avenue on the west end of the project to the Needham Street Overcrossing Bridge on the east end of the project. At the completion of Phase 1, the expressway would have full access control (no street connections) and grade separations at intersections from SR 99 to North Dakota Avenue and access from private driveways along North Dakota Avenue to Maze Boulevard. The expressway would not have a center median separating each direction of travel. At the completion of Phase 2, the proposed project would be a four-lane freeway from SR 99 to North Dakota Avenue with a center median separating the east and west direction of travel and a single-point urban interchange at North Carpenter Road. The proposed project segment under both Alternative 1 and Alternative 2 along North Dakota Avenue to Maze Boulevard would remain an expressway. Under Phase 2, the major differences between Alternative 1 and Alternative 2 would involve the construction of a southbound SR 99 Needham Street off-ramp (Alternative 1) compared to the reconstruction of a southbound SR 99 Kansas Avenue off-ramp (Alternative 2). Under the No-Build Alternative, existing SR 132 (Maze Boulevard) would remain a two-lane, conventional highway.

The proposed project is included in the 2015 Federal Transportation Improvement Program (project identification number 98STA0221), the fiscally constrained 2016 Regional Transportation Plan/Sustainable Communities Strategy (project identification numbers M01 for Phase 1 and RE01 for Phase 2), and the 2014 Regional Transportation Improvement Program (project identification numbers 3027 and 0944M). Project funding is based on a combination of local, state, and federal sources. Currently, funding has been identified only for Phase 1.

Phase 1 is estimated to cost approximately $82 million for both Alternative 1 and 2 (of which $1.57 million is for remediation of the soil stockpiles. This estimate is escalated (2018 dollar value). Phase 2 is estimated to cost $128 million (Alternative 1) to $132 million (Alternative 2), depending on the build alternative selected. Phase 2 values are based on 2016 dollar values. Construction of Phase 2 is anticipated to begin in 2026 and be completed in 2028. The total project cost is estimated at $211 million (Alternative 1) to $214 million (Alternative 2).

The proposed project would improve two vital transportation corridors within Stanislaus County, existing SR 132 (Maze Boulevard) and SR 99. Existing SR 132 (Maze
Boulevard) is part of the regional expressway system and is the main east-west corridor in Stanislaus County. The two-lane, conventional highway provides interregional connection between Interstate 5 near the City of Tracy to the west and SR 99 in Modesto to the east. The existing highway is the only east-west highway with access across the Tuolumne, San Joaquin, and Stanislaus rivers from Modesto. As such, SR 132 has increasingly served the San Joaquin Valley and has become a major truck route between Interstate 5 and SR 99.
Figure 1-1: Project Vicinity Map
Chapter 1 • Proposed Project

Figure 1-2: Project Location Map
In 1956, the proposed freeway corridor for SR 132 was adopted by the State of California with resolutions of support from Stanislaus County and Modesto. In 1958, the State of California proceeded with property acquisition. To date, 79 acres in the project area are right-of-way owned by Caltrans. The two build alternatives under consideration in this Environmental Impact Report/Environmental Assessment are consistent with the adopted freeway corridor. Caltrans prepared three Project Study Reports (in 1991, 1993, and 1997) to determine alternatives for consideration. From 1998 to 2003, efforts were made to achieve consensus on a buildable segment, but later in 2003, the project was placed on hold to resolve SR 132 connectivity concerns. In 2008, StanCOG identified a number of improvements for east-west connectivity through Modesto in its *Feasibility Study for SR 132 East/West Connectivity Project* (SR 132 Feasibility Study). In 2009, StanCOG completed a local Project Initiation Document for use in planning the next formal studies for the Project Approval and Environmental Document Phase.

Based on the screening criteria and comparative evaluation process, containment of the contaminated soil within the right-of-way of the proposed project was selected as the Recommended Stockpile Alternative (Containment). The alternative would be implemented by using the three stockpiles for project construction. The Containment Alternative was selected because of the effectiveness in providing long-term and overall protection of human health and the environment; technical feasibility; cost-effectiveness; and the ability to minimize the potential for contaminants to migrate to groundwater or to be eroded by stormwater runoff.

The proposed use of the soil required Caltrans to prepare two documents under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board titled 1) the *Final Feasibility Study, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Modesto, Stanislaus County, California* (Soil Stockpiles Feasibility Study) - Appendix G and 2) the *Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Modesto, Stanislaus County, California* - Appendix H. A detailed discussion of the stockpiles and their contaminants is located in Section 2.2.5.1, Caltrans Modesto Soil Stockpiles Site.

### 1.2 Purpose and Need

#### 1.2.1 Purpose

The purpose and objectives of the proposed project are as follows:
• Improve regional and interregional circulation within Modesto and Stanislaus County
• Relieve traffic congestion along existing SR 132 (Maze Boulevard)
• Improve operations for the existing and proposed transportation network

1.2.2 Need

Improve Regional and Interregional Circulation

The existing highway passes through residential (including school zones), commercial, and agricultural areas west of SR 99. The existing right-of-way varies from 60 to 100 feet wide and is constrained by urban development as the highway approaches Modesto and SR 99 from the west. The segment of SR 132 and the existing SR 132/SR 99 connection within the project area are of particular importance to regional and interregional circulation because of the extensive farm-to-market, recreational, and other commerce-related travel that uses the highway daily.

Within the project area, existing SR 132 (Maze Boulevard) is a two-lane, undivided, conventional highway with shoulders and isolated left- and right-turn lanes at some intersections (see Figure 1-4). The current average daily traffic volumes within the project area range between 10,230 and 12,400 vehicles. Between Carpenter Road and Meadow Lane, trucks make up 21 percent of the total traffic. Traffic analysis of this existing segment of SR 132 (including Maze Boulevard and the SR 132/SR 99 connection) anticipates an increase in congestion because of the deficiencies of the existing highway and increases in regional traffic and interregional commuter and truck traffic. Table 1-1 lists the current and projected average daily traffic for the segments along the existing highway and other local roadways/highways in the area.

<table>
<thead>
<tr>
<th>Area</th>
<th>2009 a (vehicles)</th>
<th>2018 b (vehicles)</th>
<th>2028 b (vehicles)</th>
<th>2048 b (vehicles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing SR 132 (Maze Boulevard) between Grimes Avenue and Carpenter Road</td>
<td>11,500</td>
<td>15,200</td>
<td>17,700</td>
<td>19,700</td>
</tr>
<tr>
<td>Existing SR 132 (Maze Boulevard) between Carpenter Road and Emerald Avenue</td>
<td>10,230</td>
<td>14,500</td>
<td>17,000</td>
<td>18,800</td>
</tr>
<tr>
<td>Existing SR 132 (Maze Boulevard) between Emerald Avenue and Martin Luther King Drive</td>
<td>12,400</td>
<td>15,400</td>
<td>17,700</td>
<td>18,400</td>
</tr>
<tr>
<td>Carpenter Road between Elm Avenue and Hillview Drive</td>
<td>21,130</td>
<td>23,700</td>
<td>27,600</td>
<td>32,700</td>
</tr>
<tr>
<td>Kansas Avenue between Carpenter Road and Reno Avenue</td>
<td>12,430</td>
<td>16,400</td>
<td>18,100</td>
<td>19,300</td>
</tr>
<tr>
<td>5th Street between J Street and K Street</td>
<td>9,360</td>
<td>10,600</td>
<td>11,100</td>
<td>12,400</td>
</tr>
</tbody>
</table>
Table 1-1: Current and Projected Average Daily Traffic along Existing SR 132 and Other Local Roadways/Highways

<table>
<thead>
<tr>
<th>Area</th>
<th>2009</th>
<th>2018</th>
<th>2028</th>
<th>2048</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(vehicles)</td>
<td>(vehicles)</td>
<td>(vehicles)</td>
<td>(vehicles)</td>
</tr>
<tr>
<td>6th Street between J Street and K Street</td>
<td>5,740</td>
<td>7,000</td>
<td>7,400</td>
<td>9,800</td>
</tr>
<tr>
<td>SR 99 between Kansas Avenue and existing SR 132 (Maze Boulevard)</td>
<td>123,000</td>
<td>148,600</td>
<td>190,000</td>
<td>213,800</td>
</tr>
<tr>
<td>SR 99 between existing SR 132 Maze Boulevard and K Street</td>
<td>117,000</td>
<td>140,400</td>
<td>181,500</td>
<td>205,000</td>
</tr>
</tbody>
</table>

* 2009 represents the existing condition for traffic, noise, and air quality analyses.

b The other three years represented in the table are the average daily traffic under no-build conditions for 2018, 2028, and 2048.

Source: Final Traffic Operations Analysis Report (July 2012)

According to the 2010 American Community Survey, 43.3 percent of workers commute to cities outside of Stanislaus County. This high percentage of interregional commuting trips coupled with forecasted population increases throughout Stanislaus County would lead to increasingly congested interregional and regional circulation if conditions on existing SR 132 (Maze Boulevard) are not improved. Furthermore, as traffic on existing SR 132 (Maze Boulevard), identified in Table 1-1 as three segments, is expected to increase by an average of 67 percent by 2048, highway conditions throughout SR 99 in the project area are expected to worsen.

**Relieve Traffic Congestion along Existing SR 132 (Maze Boulevard)**

Congestion is often measured in terms of level of service, which is an indicator of driving conditions on a roadway segment or at an intersection. As shown in Figure 1-3, levels are defined in categories ranging from “A” to “F” for two-lane highways, intersections with traffic signals, and two-way stop intersections. A level “A” indicates free-flowing traffic with no hindrance to driving speed caused by traffic conditions. A level “F” indicates substantial congestion with slow-moving, stop-and-go traffic.

According to Modesto’s General Plan, in addition to Caltrans and Federal Highway Administration standards, the level of service rating goal for a highway/local roadway similar to existing SR 132 (Maze Boulevard) is “D”. Existing SR 132 (Maze Boulevard) currently operates at an acceptable level of service “D” or better between Dakota Avenue and SR 99, but is anticipated to deteriorate to unacceptable levels in the future (Table 1-2). Traffic operations would degrade over time such that by 2028 the intersection of the existing highway and Carpenter Road would operate at level “F”, an unacceptable service level (Table 1-3). By 2048, the intersections of the existing highway with Rosemore Avenue, Carpenter Road, and Emerald Avenue would operate at unacceptable service level “F” (Table 1-3).
Table 1-2: Existing and Future No-Build Level of Service
SR 132 (Maze Boulevard) Segments

<table>
<thead>
<tr>
<th>Location</th>
<th>2009</th>
<th>2020</th>
<th>2028</th>
<th>2048</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>SR 99 to Emerald Avenue (Eastbound)</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>SR 99 to Emerald Avenue (Westbound)</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Emerald Avenue to Carpenter Road (Eastbound)</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Emerald Avenue to Carpenter Road (Westbound)</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>Carpenter Road to Dakota Avenue</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>West of Dakota Avenue</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 1-3: Existing and Future No-Build Level of Service
Intersections with SR 132 (Maze Boulevard)

<table>
<thead>
<tr>
<th>Location</th>
<th>2009</th>
<th>2020</th>
<th>2028</th>
<th>2048</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>SR 132 at Dakota Avenue</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>SR 132 at Rosemore Avenue</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>SR 132 at Carpenter Road</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>SR 132 at Emerald Avenue</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>SR 132 at Martin Luther King Jr. Drive</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>SR 132 at southbound SR 99 off-ramp</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

a Existing SR 132 (Maze Boulevard) was analyzed using both the Highway Capacity Manual’s urban street level of service methodology and two-lane highway level of service methodology because the highway is considered an urban roadway on its eastern end and a two-lane highway on its western end. Also see Figure 1-3 for a graphic representation of level of service.

Notes: Results in bold indicate unacceptable operations. The years represented in the table match the years for Phase 1 (2020), Phase 2 (2028), and the design year (2048). LOS = level of service. The traffic analysis for Future No-Build and Phase 1 assumed an opening year of 2018, but that is now projected to be 2020.

Source: Final Traffic Operations Analysis Report (July 2012)

As Modesto continues to grow, both locally from new area development and regionally from adjacent communities, existing SR 132 (Maze Boulevard) would continue to be burdened by increased traffic. Additional local and regional traffic, in combination with higher truck volumes, would only increase congestion and further deteriorate roadway and intersection level of service.
Chapter 1 • Proposed Project

Page Intentionally Left Blank
**Figure 1-3: Levels of Service for Two-lane Highways, Intersections with Traffic Signals, and Two-way Stop Intersections**

**Levels of Service for Two-Lane Highways**

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Flow Conditions</th>
<th>Operating Speed (mph)</th>
<th>Technical Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>55+</td>
<td>Highest quality of service. Free traffic flow with few restrictions on maneuverability or speed. No delays</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>50</td>
<td>Stable traffic flow. Speed becoming slightly restricted. Low restriction on maneuverability. No delays</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>45</td>
<td>Stable traffic flow, but less freedom to select speed, change lanes or pass. Minimal delays</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>40</td>
<td>Traffic flow becoming unstable. Speeds subject to sudden change. Passing is difficult. Minimal delays</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>35</td>
<td>Unstable traffic flow. Speeds change quickly and maneuverability is low. Significant delays</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td>Heavily congested traffic. Demand exceeds capacity and speeds vary greatly. Considerable delays</td>
</tr>
</tbody>
</table>

Source: 2000 HCM, Exhibit 20-2, LOS Criteria for Two-Lane Highways in Class I

**Levels of Service for Intersections with Traffic Signals**

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Delay per Vehicle (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤10</td>
</tr>
<tr>
<td>B</td>
<td>11-20</td>
</tr>
<tr>
<td>C</td>
<td>21-35</td>
</tr>
<tr>
<td>D</td>
<td>36-55</td>
</tr>
<tr>
<td>E</td>
<td>56-80</td>
</tr>
<tr>
<td>F</td>
<td>&gt;80</td>
</tr>
</tbody>
</table>

**Factors Affecting LOS of Signalized Intersections**

- Traffic Signal Conditions:
  - Signal Coordination
  - Cycle Length
  - Phase Sequence
  - Timing
  - Pre-timed or traffic activated signal
  - Etc.

- Geometric Conditions:
  - Left and right turn lanes
  - Number of lanes
  - Etc.

- Traffic Conditions:
  - Percent of truck traffic
  - Number of pedestrians
  - Etc.

Source: 2000 HCM, Exhibit 16-2, Level of Service Criteria for Signalized Intersections

**Levels of Service for Two-Way Stop Intersections**

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Flow Conditions</th>
<th>Delay per Vehicle (seconds)</th>
<th>Technical Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>≤10</td>
<td>Very short delays</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>11-15</td>
<td>Short delays</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>16-25</td>
<td>Minimal delays</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>26-35</td>
<td>Minimal delays</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>36-50</td>
<td>Significant delays</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>&gt;50</td>
<td>Considerable delays</td>
</tr>
</tbody>
</table>

Source: 2000 HCM, Exhibit 17-2, Level of Service Criteria for TWSC Intersections
Page Intentionally Left Blank
Improve Operations

No fatalities have occurred on the existing SR 132 (Maze Boulevard) in the most recent three-year period studied (2012 – 2014). The statewide average rate of accident fatalities for similar facilities is 0.016 accidents per million vehicle miles traveled. Along existing SR 132 (Maze Boulevard) most accidents (34 percent) were broadside accidents, followed by rear-end (32 percent), hit-object (15 percent), head-on (9 percent), sideswipe (6 percent), and auto/pedestrian (4 percent) accidents. The high percentage of broadside and rear-end accidents on the existing highway is associated, in part, with characteristics such as relatively high traffic volumes and speeds, a large number of conflict points, and lack of turning lanes. The data also shows a higher percentage of head-on collisions compared to the previous three-year reporting period, which reported one head-on accident (1.9 percent).

Based on the *Highway Safety Manual* published by the American Association of State Highway and Transportation Officials, there is a direct correlation between crash frequency and average daily traffic volumes. Lower traffic volumes would result in greater spacing between vehicles, allowing drivers more time to react to sudden changes in traffic flow, such as a stopped vehicle. Fewer vehicles would also result in fewer conflicts at intersections and driveways.

Operational efficiency is reduced by the proximity and direct access to schools, churches, businesses, and residences by way of existing driveways along existing SR 132 (Maze Boulevard), all of which increase the potential for conflicts between bicyclists, pedestrians, and vehicles. The existing highway averages more than nine intersections per mile in the area of the project; most of the intersections have stop signs for side streets, while the existing highway does not have stop signs or stop lights at most of the intersections between Dakota Avenue and SR 99. Along the existing SR 132 (Maze Boulevard and “L” Street) from Dakota Avenue to east of SR 99 at the SR 132/“L” Street/6th Street intersection there are twelve unsignalized, two-way stop controlled intersections, five signalized intersections, and over sixty private driveways. The signalized intersections include the following: Carpenter Road, Emerald Avenue, Martin Luther King Drive, 5th Street, and 6th Street. SR 132 also has several direct access driveways to schools, churches, businesses, and residences along this section of the roadway.

1.2.3 Independent Utility and Logical Termini

Federal Highway Administration regulations (23 Code of Federal Regulations 771.111 [f]) require that a proposed project:
Chapter 1 • Proposed Project

- Have a rational beginning and ending point (i.e., logical termini) and be of sufficient length to address environmental matters on a broad scope.
- Be a functional and reasonable expenditure even if no additional transportation improvements are made in the area (i.e., independent utility).
- Not restrict consideration of alternatives for other reasonably foreseeable transportation improvements.

The proposed project’s eastern end ties directly into SR 99, a major thoroughfare that serves the main population centers and rural agricultural areas in Stanislaus County and the larger San Joaquin Valley. The proposed project’s western end at Dakota Avenue is where the need for improvements ends because Dakota Avenue is the last major north-south roadway from the existing SR 132 (Maze Boulevard) to the Modesto city limits and SR 99 north of the project until North Hart Road, more than 3 miles west of Dakota Avenue.

Also, future-year traffic volumes for the no-build and build scenarios west of Dakota Avenue are identical. Forecasted traffic volumes for the no-build and build scenarios are 19,900 and 27,500 in 2028 and 2048, respectively. As such, the proposed project would not have an impact on traffic volumes west of the existing SR 132 (Maze Boulevard)/Dakota Avenue intersection. This demonstrates that the need for transportation improvements does not extend further west along the existing SR 132 corridor. Therefore, ending roadway improvements near the Maze Boulevard/Dakota Avenue intersection is not anticipated to result in indirect effects west of the proposed project area. The entire 4-mile stretch of the proposed new alignment and the areas crossed by the new alignment would provide both a complete picture of the affected area and a broad discussion of environmental issues.

Project implementation would result in improvements to circulation and congestion from both a local and regional perspective along existing SR 132 (Maze Boulevard), even if no additional transportation improvements are made. This would satisfy the need for independent utility. Lastly, the proposed project would not restrict consideration of alternatives for other reasonably foreseeable transportation improvements, as the project has been designed to integrate into and improve access for the other projects noted in the 2014 Regional Transportation Plan/Sustainable Communities Strategy.

While Phase 1 and Phase 2 each show independent utility, currently only Phase 1 has identified funding, and construction of Phase 2 is anticipated to begin in 2026 and be
completed in 2028. Elements of project work and each phase are described in Section 1.3, Project Description.

1.3 Project Description

This section describes the proposed action, project phasing, and the build alternatives developed to meet the proposed project’s purpose and need and to avoid or minimize environmental impacts. The alternatives under evaluation are Alternative 1, Alternative 2, and the No-Build Alternative.

The proposed project lies on SR 132 in the City of Modesto in Stanislaus County and involves the ultimate construction of a four-lane freeway south of Kansas Avenue from Dakota Avenue (post mile [PM] 11.0) to east of SR 99 at Needham Street (PM 15.0). The total length of the proposed project would be approximately 4 miles with 10-foot-wide outside shoulders, 5-foot-wide inside shoulders, 12-foot-wide general-purpose lanes, and a 36-foot-wide median. In addition to constructing a new alignment for SR 132 between Dakota Avenue and Needham Street, the proposed project would include improvements on SR 99 from PM 15.7 to PM 17.5. These elements would improve system connectivity between SR 132 and SR 99 and are described later in this section under the Phase 1 and Phase 2 sections.

As shown in Figure 1-4, the freeway would cross under North Rosemore Avenue and North Carpenter Road and cross over North Emerald Avenue.

The proposed project would also include connection improvements along SR 99, as well as a direct-connector flyover ramp from northbound SR 99 to westbound SR 132. The purpose of the proposed project is to improve regional and interregional circulation, relieve traffic congestion along existing SR 132 (Maze Boulevard), and enhance operations for the existing and proposed transportation network.
Figure 1-4: Project Overview Map
Chapter 1 • Proposed Project

**Project Phasing**
The proposed project would consist of two construction phases, Phase 1 and Phase 2, described below.

**Phase 1**
Phase 1 is anticipated to begin construction in 2018, be completed within 12 to 15 months, and open to traffic by 2020. Phase 1 is planned to be fully funded with approximately $82 million to be programmed in 2018 for right-of-way acquisition and construction. Figure 1-5 shows the improvements for Phase 1 for both build alternatives.

Both build alternatives (Alternative 1 and Alternative 2) would be the same under Phase 1 and would include construction of a two-lane expressway on the southern half of the proposed alignment from Dakota Avenue on the west end of the project to the Needham Street Overcrossing Bridge on the east end of the project. At the completion of Phase 1, the expressway would have full access control (no street connections) and grade separations at intersections from SR 99 to North Dakota Avenue and access from private driveways along North Dakota Avenue to Maze Boulevard. The expressway would not have a center median separating each direction of travel. Full standard lane and shoulder widths are proposed (i.e., 10-foot-wide shoulders and 12-foot-wide general-purpose lanes) for most of the expressway. Although each of the expressway’s overcrossings and undercrossings would be built large enough to accommodate four lanes of travel for Phase 2, only two lanes of travel would be paved and striped as part of Phase 1. Appendix F shows typical cross sections and provides preliminary engineering drawings for Phase 1.

The following describes the design features for both build alternatives, which would be the same under Phase 1.
Page Intentionally Left Blank
Figure 1-5: Phase 1
Profiles of the Grades along the New Alignment
Traveling west to east, the profiles for Phase 1 would begin at-grade from North Dakota Avenue until just east of Morse Road. The profile would then transition below grade (be depressed) west of the North Rosemore Avenue overcrossing and continue below grade past the North Carpenter Road overcrossing. East of this overcrossing, the profile would rise above grade (be elevated) to cross over the North Emerald Avenue undercrossing and would continue this way over the proposed SR 132/SR 99 interchange. Along SR 99, the profile would match the current profile of SR 99 (see Appendix F).

SR 99 and Other Roadway Improvements
In addition to constructing a new alignment for SR 132, Phase 1 would improve SR 132 and SR 99 system connectivity and other local street intersections at both ends of the project by adding the following:

- A northbound auxiliary lane along SR 99 from the 6th Street off-ramp to the Kansas Avenue off-ramp
- A northbound SR 99 on-ramp from 6th Street

Other area roadway improvements would include the following:

- A Needham Street overcrossing at SR 99
- A traffic signal at Dakota Avenue and existing SR 132 (Maze Boulevard)
- Realignment of the Kansas Avenue intersection with Dakota Avenue north of its existing location
- A Kansas Avenue extension to replace North Franklin Street

Proposed Retaining Walls
Retaining walls are proposed at the following locations to limit permanent and temporary right-of-way impacts to residences and commercial properties. (see Appendix F):

- Southerly side of the project, just east of North Carpenter Road
- Southerly side of the project, just west of North Emerald Avenue
- Between the eastbound SR 132 to southbound SR 99 direct-connector ramp and 5th Street
Drainage
Along the proposed new alignment, Phase 1 would introduce new paved surfaces and would increase the amount of stormwater runoff in the area. To the greatest extent possible, Phase 1 would minimize stormwater runoff from Caltrans right-of-way by implementing roadside bioswales, infiltration basins, and retention/detention basins. Because a portion of the proposed project would be depressed, a pumping plant to remove runoff from the depressed section and to discharge the runoff into a retention/detention basin would be constructed west of North Rosemore Avenue, just south of the proposed new alignment.

Soil Stockpiles Remediation
Three soil stockpiles are within the Caltrans right-of-way limits of the proposed project. The soil stockpiles, which have been in their present location since the 1960s, contain soil with varying, but elevated concentrations of barium and lead. Under the oversight of the California Department of Toxic Substances Control and Central Valley Regional Water Quality Control Board, the Soil Stockpiles Feasibility Study (see Appendix G) was prepared to identify remedial action objectives, general response actions, and process options for the stockpiles. In accordance with Comprehensive Environmental Response, Compensation and Liability Act guidance, including criteria that screened and comparatively analyzed the remedial technologies, the study identified four remedial alternatives: Stockpile Alternative 1 – No Action; Stockpile Alternative 2 – Institutional Controls; Stockpile Alternative 3 – Removal (excavation and offsite disposal); and Stockpile Alternative 4 – Containment. The alternatives were then evaluated based on nine additional criteria to support a decision on the most appropriate remedial option.

Following the California Department of Toxic Substances Control acceptance of the Soil Stockpiles Feasibility Study, a Draft Final Remedial Action Plan was prepared. The purpose of the Draft Final Remedial Action Plan is to 1) summarize all contaminant-impact studies at the stockpile site, 2) provide an assessment of potential risks to human health and the environment, 3) develop a remedial action alternative to reduce those risks, and 4) provide the information to the public for review and comment. The Draft Final Remedial Action Plan is provided in Appendix H of this document.

In the Containment Alternative, stockpile soil would be contained behind retaining walls and bridge abutments and beneath highway pavements. Phase 1 would construct pavement over the southern portions of soil stockpiles 1 and 2 and place cover...
material over the northern portions. The entirety of soil from stockpile 3 would be contained during Phase 1 where it would be consolidated within the eastern abutment of the proposed SR 132/SR 99 interchange (see Figures 2-17 and 2-18).

**Phase 2**

Phase 2 is expected to begin construction in 2026 and be completed by 2028. Phase 2 would be constructed when funding becomes available. Figures 1-6 and 1-7 show the elements of work for Phase 2 for Alternatives 1 and 2, respectively.

Phase 2 would involve the construction of the two northernmost lanes within the new alignment from North Dakota Avenue on the west end of the project to the Needham Street Overcrossing Bridge on the east end of the project. The two existing southern lanes constructed in Phase 1 would be restriped to serve as the eastbound lanes, while the two new northern lanes would serve westbound traffic. At the completion of Phase 2, the freeway would have full access control, grade separations at intersections, and a center median separating each direction of travel from SR 99 to North Dakota Avenue. The segment along North Dakota Avenue to Maze Boulevard would remain an expressway. The freeway would have 10-foot-wide outside shoulders, 5-foot-wide inside shoulders, 12-foot-wide general-purpose lanes, and a 36-foot-wide median. Appendix F provides cross sections and preliminary engineering drawings for Phase 2.

The following describes the similar design features of both build alternatives under Phase 2. Section 1.4.1, Build Alternatives, describes the unique features of Alternative 1 and Alternative 2.

**SR 99 and Other Roadway Improvements**

Phase 2 would improve SR 132 and SR 99 system connectivity by adding the following:

- A southbound auxiliary lane with ends at different locations for each alternative. The lane would be from approximately a half-mile north of Kansas Avenue to the SR 132/Needham Street off-ramp (Alternative 1) or the Central Modesto/5th Street off-ramp (Alternative 2).
- A direct-connector ramp from eastbound SR 132 to southbound SR 99.
- A southbound auxiliary lane from the eastbound SR 132 to southbound SR 99 direct connector ramp to the L Street overcrossing.
Other area roadway improvements would include the following:

- Removal of the northbound SR 99 on- and off-ramps at Kansas Avenue and southbound ramps at L and I streets

- Construction of the northbound SR 99 on- and off-ramps at Needham Street and a direct-connector flyover ramp between northbound SR 99 and westbound SR 132

- Construction of the eastbound SR 132 off-ramp and westbound SR 132 on-ramp at North Carpenter Road via a single-point urban interchange

- Reconfiguration of the on-ramp from 6th Street, so that the ramp would access SR 99 about 2,000 feet north of its current location, and an auxiliary lane would be provided for the on-ramp

Also, both build alternatives propose a 12-foot-wide pedestrian/bicycle path along the east side of North Carpenter Road within the limits of the project.
Figure 1-6: Phase 2 (Alternative 1)
Chapter 1 • Proposed Project

Figure 1-7: Phase 2 (Alternative 2)
Proposed Retaining Walls
When Phase 2 is built, additional retaining walls are proposed at the following locations (See Appendix F):

- Northerly side of the project from west of North Rosemore Avenue to North Carpenter Road
- Northerly side of the project, just west of North Emerald Avenue
- Northerly side of the project near the proposed touchdown of the northbound SR 99 to westbound SR 132 direct-connector ramp
- Between SR 99 and the proposed northbound SR 99 to westbound SR 132 direct-connector ramp
- Between the proposed northbound SR 99 to westbound SR 132 direct-connector ramp and the northbound SR 99 on-ramp from M Street
- Between the northbound SR 99 on-ramp from M Street and the SR 99 northbound SR 99 off-ramp to Needham Street

Drainage
Along the SR 99 alignment, Phase 2 would introduce slightly more paved surface, but the added stormwater runoff would be minimal. Similar to Phase 1, Phase 2 would incorporate bioswales and retention/detention basins to infiltrate the groundwater table with stormwater runoff. The proposed northbound SR 99 on-ramp from Needham Street would require the relocation of the existing pumping station at SR 99 and Kansas Avenue. The proposed pumping plant would be relocated approximately 150 feet east of the existing plant. The relocated plant would be constructed within the same parcel as the existing plant.

Soil Stockpile Remediation
Initiated in Phase 1, the stockpile Containment Alternative would pave the northern half of stockpiles 1 and 2 during Phase 2 of the proposed project. At the completion of Phase 2, all of the soil would be contained within the proposed new alignment per the Recommended Stockpile Alternative (Containment).

Table 1-4 lists construction start, duration, and completion dates and estimates the cost considerations under Phase 1 compared to Phase 2. The table also includes a cost comparison for each build alternative under Phase 2 only.
Table 1-4: Summary Comparison of Project Phasing and Funding

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of construction</td>
<td>2018</td>
<td>2026</td>
</tr>
<tr>
<td>Completion of construction</td>
<td>2020</td>
<td>2028</td>
</tr>
<tr>
<td>Project cost by phase</td>
<td>$82 million</td>
<td>$128 million to $132 million</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$211 million to $214 million</td>
<td></td>
</tr>
</tbody>
</table>

* The range represents the estimated cost of Alternative 1 ($211 million) and the cost of Alternative 2 ($214 million) for comparison purposes. The total project cost includes $1.57 million for remediation (containment) of the soil stockpiles. Values reflect escalation (Phase 1 value is based on 2018 dollars; Phase 2 values are based on 2026 dollars).

1.4 Project Alternatives

This section describes the alternatives under consideration and compares differences between the alternatives. This section also explains why some initial alternatives were dropped from further consideration. The two build alternatives that were developed by the Project Development Team (which consists of Caltrans, StanCOG, Stanislaus County, and City of Modesto representatives) are evaluated by how well each meets the project’s purpose and need and avoids and/or minimizes environmental impacts. Criteria used to evaluate each of the alternatives were potential impacts to human and natural resources, project feasibility, ability to meet the project’s purpose and need, and overall project cost.

1.4.1 Build Alternatives

*Unique Features of the Build Alternatives*

**Alternative 1**

Alternative 1 would realign, lengthen, and raise the Kansas Avenue overcrossing (Bridge Number 38 0086) at SR 99 and would remove the existing southbound SR 99 off-ramp to Kansas Avenue and the southbound SR 99 loop on-ramp from Kansas Avenue. Alternative 1 would also construct a 1,900-foot off-ramp from southbound SR 99 to Needham Street, which would serve as an off-ramp from southbound SR 99 to the 5th Street connector at Needham Street. The eastbound SR 132 to southbound SR 99 direct-connector ramp would cross beneath the 5th Street connection. Figure 1-8 and Appendix F show the differences between the build alternatives.
Figure 1-8: Unique Features of the Build Alternatives

- Removing the southbound SR 99 loop on-ramp from Kansas Avenue and the southbound SR 99 off-ramp to Kansas Avenue.
- Realigning and lengthening the Kansas Avenue overcrossing above SR 99.
- Constructing a southbound SR 99 off-ramp at Needham Street.
- Constructing the southbound SR 132 to southbound SR 99 direct connector ramp beneath the 6th Street connection.
- Realigning the southbound SR 99 loop on-ramp from Kansas Avenue.
- Realigning the southbound SR 99 off-ramp at Kansas Avenue.
- Retrofitting the Kansas Avenue overcrossing above SR 99.
Specific to Alternative 1, this build alternative would construct retaining walls to limit right-of-way acquisition at the following locations:

- Along the southerly side of the project near the divergence of the eastbound SR 132 to southbound SR 99 direct-connector ramp
- Along the left shoulder of the southbound SR 99 off-ramp to Needham Street, wrapping around to the proposed Needham Street bridge abutment

**Alternative 2**

Instead of realigning, lengthening, and raising Kansas Avenue (as proposed under Alternative 1), Alternative 2 would retrofit and reconstruct the Kansas Avenue overpass above SR 99. The existing southbound SR 99 on- and off-ramps at Kansas Avenue would remain open with some design adjustments, but the build alternative would realign the existing southbound SR 99 loop on-ramp from Kansas Avenue. The build alternative would also realign the southbound off-ramp under Kansas Avenue to the 5th Street two-lane, collector-distributer roadway on the west side of SR 99. Figure 1-8 and Appendix F show the differences between the build alternatives.

Specific to Alternative 2, this build alternative would construct retaining walls to limit right-of-way acquisition along SR 99 at the following locations:

- Along the right shoulder of the southbound SR 99 loop on-ramp
- Along the left shoulder of the ramp from the eastbound SR 132 to southbound SR 99 direct-connector ramp to 5th Street
- Between the eastbound SR 132 to southbound SR 99 direct-connector ramp to SR 99 and 5th Street

**Transportation Demand Management, Transportation System Management, and Mass Transit Alternatives**

**Transportation Demand Management Alternative**

Transportation Demand Management strategies are designed to influence an individual’s behavior by reducing the demand for single occupancy vehicle use (especially during peak commute periods) to maximize the existing transportation system. A Transportation Demand Management alternative normally focuses on regional strategies for reducing the number of vehicle trips and vehicle miles traveled, as well as increasing vehicle occupancy.
For the proposed project, this alternative considered how to accommodate projected traffic volumes on existing SR 132 (Maze Boulevard) by supporting regional agencies to promote ride sharing and by offering other transportation mode choices by way of improving bicycle/pedestrian facilities and transit facilities and services operated and maintained by the area’s current transit providers.

Transit improvements would include improvements for transit riders (such as expanded bus service, the creation of a bus route and stations along the existing highway), as well as transit operators (such as bus turnouts), and shuttle service for the area. These improvements may include multi-modal projects, such as StanCOG’s Non-Motorized Transportation Plan and other projects identified in StanCOG’s 2014 Regional Transportation Plan/Sustainable Communities Strategy.

Traffic volumes on existing SR 132 (Maze Boulevard) are anticipated to increase substantially, despite ongoing efforts to promote ridesharing and programs to encourage more transit use and other transportation mode choices (such as bicycle/pedestrian routes). If the existing highway is not widened to accommodate future traffic volumes, severe congestion would occur that would lead to degraded operations. The Transportation Demand Management alternative also would not improve system connectivity between the existing highway and SR 99. The existing on- and off-ramp configuration would remain as currently configured and would not improve interregional and regional connectivity. Therefore, the alternative fails to meet the project’s purpose and need.

**Transportation System Management Alternative**

Transportation System Management strategies aim to maximize the number of persons traveling in a corridor or on a facility. These strategies include traffic flow improvements, ramp metering, and traffic signal optimization. Transportation System Management emphasizes reducing traffic congestion by increasing the efficiency of existing transportation systems through infrastructure, technological and operational improvements.

This alternative considered implementing cost-effective, minor improvements to existing SR 132 (Maze Boulevard) to eliminate or close driveways, install a new median and signals, construct dedicated bicycle lanes, optimize signals, and restrict turning movements. The intent of the improvements would be to increase highway capacity to accommodate traffic volumes along the existing highway. The alternative would be similar to Alternative 5, described in Section 1.6, Alternatives Considered.
but Eliminated from Further Discussion, as it would involve eliminating driveway access, installing median barriers, providing dedicated bicycle lanes, and optimizing signals.

Removing or reconfiguring driveway access would adversely impact residential and commercial properties along the existing highway, resulting in the relocation of adjacent properties in some locations. Even if driveway access issues could be resolved, the alternative could not sufficiently accommodate increases in traffic volumes, which would lead to severe congestion along the existing highway. Also, the alternative would not improve system connectivity between existing SR 132 (Maze Boulevard) and SR 99. The existing on- and off-ramp configuration would remain, and the increase in traffic volumes and deterioration of service levels would cause traffic to overflow onto SR 99, which is currently at capacity and projected to experience congestion under future conditions.

The Transportation System Management alternative would not meet the project’s purpose and need. However, transportation system management improvements are assumed as part of the regional network, so each are incorporated into future conditions (2048) for all of the alternatives, including the No-Build Alternative. Some of StanCOG’s additional and supporting Transportation System Management strategies are described below.

StanCOG’s 2014 Regional Transportation Plan/Sustainable Communities Strategy details a number of Transportation System Management improvements for intersections, traffic signal installations, roadway preservation and rehabilitation, auxiliary lanes, and railroad crossings along multiple travel corridors in the vicinity of the project. The total estimated cost for all proposed roadway projects would be $2.7 billion, with 37 percent of the total roadway budget accounting for Transportation System Management-related projects.

StanCOG completed its Non-Motorized Transportation Master Plan in October 2013. The plan describes the existing and proposed countywide priority bicycle and pedestrian networks, in addition to the recommended network for the unincorporated portions and each of the nine cities within the county. The plan proposed a total countywide bicycle network of 719 miles, with an estimated cost of $234 million. Because of funding constraints, the plan identified the 10 priority projects as either Tier 1 or Tier 2 priority projects. Tier 1 projects are estimated to cost $24.5 million for 99.7 miles, and Tier 2 would cost $5 million for 31.5 miles. The 2014 Regional
Transportation Plan/Sustainable Communities Strategy (Amendment Number 2) has programmed $226 million for various bicycle and pedestrian improvements, including the construction of multi-modal paths and Class IV bikeways; signage; and roadway striping. Almost half of the plan’s total programmed cost (or $122 million) would be bicycle/pedestrian improvements in Modesto. Funding sources for these improvements include Congestion Management and Air Quality Improvement Program funds, Bicycle Transportation Account funds, Safe Routes to Schools Grants, Modesto’s capital facilities fees, Proposition 84 (Sustainable Community Planning grants), Community Development Block grants, local transportation funds, Regional Surface Transportation Program funds, Highway Safety Improvement Program fees, Stanislaus County public facilities fees, and development fees.

In 2009, StanCOG’s Policy Board approved the Northern San Joaquin Valley Regional Ramp Metering and High Occupancy Vehicle Lane Master Plan, which outlined ramp metering and high occupancy vehicle lanes in San Joaquin, Stanislaus, and Merced counties. The plan would guide improvements to the region’s major corridors, such as Interstate 5, Interstate 205, and SR 99. For SR 99, a number of ramp metering and high occupancy vehicle lanes were identified as medium priority projects needed in the next 10 to 20 years.

**Mass Transit Alternative**

The mass transit alternative would improve or add mass transit (for example, bus or rail) facilities to provide a broader range of transportation options to the traveling public. The alternative would require mass transit improvements on existing SR 132 (Maze Boulevard) by adding bus service routes, adding buses, and installing bus turnouts near major intersections.

Bus service is provided in the area by Modesto Area Express and Stanislaus Regional Transit. Modesto Area Express operates local and intercity bus service year-round and serves the cities of Modesto and Ceres and the communities of Salida and Empire. Stanislaus Regional Transit is operated by Stanislaus County to provide intercity and intercounty fixed route bus services to the cities of Modesto, Riverbank, Oakdale, Turlock, Patterson, Grayson, Westley, Newman, Gustine, and Merced. Currently, no bus service runs along the existing highway. The existing east-west bus routes are situated along SR 99 to either Grayson Road or West Marin Avenue/Las Palmas Avenue to serve the western areas of the county.
The mass transit alternative does not accommodate the projected volumes of truck traffic (21 percent of total traffic volumes) and regional commuters who are traveling to points outside of the study area along existing SR 132 (Maze Boulevard). Related to truck volumes, the alternative would not enhance the ability to transport goods and services. Because there are no direct connections, auxiliary lanes, and improved on- and off-ramps between the existing highway and SR 99, the mass transit alternative does not improve system connectivity. The alternative, by itself, is not consistent with local and regional land use goals and policies that have identified the project as a Tier 1 High Priority project as programmed by the 2014 Regional Transportation Plan/Sustainable Communities Strategy.

1.4.2 No-Build Alternative

The No-Build Alternative does not meet the purpose and need because existing SR 132 (Maze Boulevard) would remain a two-lane, conventional highway. The No-Build Alternative would not improve regional and interregional circulation, would not relieve traffic congestion along both existing SR 132 (Maze Boulevard) and eastward to SR 99, and would not improve operations of the existing transportation network.

No soil stockpile containment via a highway structure would be implemented under the project’s No-Build Alternative. Currently, the perimeter of all three soil stockpiles is enclosed with security fencing, walls, and structures, which under the No-Build Alternative would continue to be maintained by Caltrans. Caltrans would also continue water quality monitoring and maintain the vegetative cover on each stockpile. Under the No-Build Alternative and under the oversight and approval of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board, Caltrans would be required to develop a separate remedial action plan for the stockpiles.

1.5 Comparison of Alternatives

The criteria used to evaluate each of the alternatives included the following: ability to meet the project’s purpose and need, potential impacts to human and natural resources, project feasibility, and overall project cost.

As noted in Table 1-5, both build alternatives would meet the purpose and need by shifting most of the truck and commuter traffic onto the proposed new alignment, and improving regional circulation and operations on the local transportation network. The two build alternatives would have similar potential impacts to the surrounding...
area. The No-Build Alternative would have limited additional impacts to the surrounding area.

Section 1.4, Project Alternatives, provides a full description of the alternatives, as shown in Figures 1-4 through 1-8. Chapter 2, Affected Environment, Environment Consequences, and Avoidance, Minimization, and/or Mitigation Measures, explains the potential impacts for each of the alternatives.

### Table 1-5: Summary Comparison of Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets Purpose and Need</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Consistency with the Modesto General Plan</td>
<td>Consistent. The proposed project is in the General Plan and would be consistent with applicable General Plan goals and policies, except for Circulation and Transportation Policy V-B.6[c] related to Traffic Demand Management measures.</td>
<td>Consistent. The proposed project is in the General Plan and would be consistent with applicable General Plan goals and policies, except for Circulation and Transportation Policy V-B.6[c] related to Traffic Demand Management measures.</td>
<td>Inconsistent. The No-Build Alternative would not result in a transportation project. Therefore, no Transportation Demand Management measures would be applied.</td>
</tr>
<tr>
<td>Land Use</td>
<td>Consistent. The proposed project is in the General Plan and is consistent with applicable General Plan goals and policies, except for the Agricultural Element Policy 2.3 and Land Use Element Policy 2 related to conversion of agricultural land.</td>
<td>Consistent. The proposed project is in the General Plan and is consistent with applicable General Plan goals and policies, except for the Agricultural Element Policy 2.3 and Land Use Element Policy 2 related to conversion of agricultural land.</td>
<td>Inconsistent. Increased traffic congestion and lower average traffic speeds associated with the No-Build Alternative would degrade mobility within the study area and larger region. This would have a negative impact on economic and community prosperity.</td>
</tr>
</tbody>
</table>
Table 1-5: Summary Comparison of Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency with StanCOG Regional Transportation Plan/Sustainable Communities Strategy</td>
<td>Consistent. The proposed project is in the 2016 Regional Transportation Plan/Sustainable Communities Strategy and is consistent with applicable Plan goals and policies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parks and Recreational Facilities</td>
<td>Temporary increases in construction noise and equipment emissions would be minor. There would be no Section 4(f) use of any park or recreational resources.</td>
<td>No impact</td>
<td></td>
</tr>
<tr>
<td>Growth</td>
<td>Both build alternatives are unlikely to have a measurable effect on growth and would result in minimal growth-related impacts beyond what has already been planned.</td>
<td>No impact</td>
<td></td>
</tr>
<tr>
<td>Farmlands/Timberlands</td>
<td>Conversion of 64.8 acres of prime and unique farmland and 3.51 acres of Williamson Act contract lands would occur. Farmland access would be maintained throughout the project.</td>
<td>No impact</td>
<td></td>
</tr>
<tr>
<td>Community Character and Cohesion</td>
<td>No impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relocations/Property Acquisitions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Displacements</td>
<td>11</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Business Partial Acquisitions</td>
<td>24</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Residential Displacements</td>
<td>32</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Residential Partial Acquisitions</td>
<td>30</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
### Table 1-5: Summary Comparison of Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Environmental Justice</strong></td>
<td>Noise, visual, relocation, and construction impacts would predominately occur within environmental justice populations and are considered a disproportionate adverse impact.</td>
<td>Noise, relocation, and construction impacts would predominately occur within environmental justice populations and are considered a disproportionate adverse impact. However, a smaller degree of visual impacts would occur compared to Alternative 1.</td>
<td>Benefits not realized under the No-Build Alternative, including traffic congestion relief and improved access to businesses, would disproportionately adversely affect environmental justice populations.</td>
</tr>
<tr>
<td><strong>Utilities/Emergency Services</strong></td>
<td>Utility service could be temporarily disrupted during construction, but no long-term or permanent impacts would occur. Local road lane closures and detours would occur during construction, but emergency service providers would benefit after completion of Phase 1 by increased mobility, reduced congestion, and improved access.</td>
<td>No utility relocations or abandonments would occur. Emergency service response times may increase because of increased traffic congestion.</td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Traffic and Transportation/ Pedestrian and Bicycle Facilities</strong></td>
<td>Decreased travel times, increased traffic speeds, and improved levels of service along existing SR 132 (Maze Boulevard) and for most of the major intersections would be realized. The proposed new alignment would provide another east-west travel option for motorists. Neither build alternative would directly or indirectly impact existing or planned pedestrian/bicycle facilities, except at the proposed single-point urban interchange of the new alignment with North Carpenter Road. Both build alternatives propose a 12-foot-wide pedestrian/bicycle path along the east side of North Carpenter Road within the limits of the project.</td>
<td>Travel times would increase and level of service and vehicle speeds would degrade to unacceptable levels. Limited pedestrian and bicycle facilities exist within the study area, and no facilities are located west of SR 99 within Modesto’s city limits.</td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Visual/Aesthetics</strong></td>
<td>High visual impact—Certain structures would degrade the visual quality of some residential areas, as well as new highway lighting, signs, tree removal (591 trees), and business and residential relocations.</td>
<td>Moderately high visual impact—While fewer structures and two fewer trees would be removed, Alternative 2 would still degrade visual quality of some residential areas from highway lighting, signs, tree removal (589 trees), and business and residential relocations.</td>
<td>No impact</td>
</tr>
</tbody>
</table>
### Table 1-5: Summary Comparison of Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cultural Resources</strong></td>
<td>The State Route 132 Historic Property Survey Report was completed in December 2011. Following changes in the project’s area of potential effects, additional areas were evaluated, and a supplemental Historic Property Survey Report was completed in October 2014. A Finding of Effects (FOE) would be prepared after the preferred alternative is selected. The FOE would address the two eligible historic resources (416/418 I Street and 3530 Maze Boulevard) within the project area. The proposed freeway/expressway would not have a direct or indirect impact on the resources at 416/418 I Street. Both build alternatives would require the acquisition of 0.13 acre of the northwest corner of 3530 Maze Boulevard. The potential acquisition is located outside the historic property boundary. The FOE would require concurrence from the State Historic Preservation Officer (SHPO) and would include avoidance, minimization, and mitigation measures. These would be included in the Final EIR/EA. There are no known direct impacts on or Section 4(f) uses of any known resources.</td>
<td>No impact</td>
<td></td>
</tr>
<tr>
<td><strong>Hydrology and Floodplain</strong></td>
<td>Impervious surfaces would increase by 55.8 acres, which could affect the area’s watershed by increasing the flow and volume of stormwater runoff entering the watershed.</td>
<td>Impervious surfaces would increase by 57.5 acres, which could affect the area’s watershed by increasing the flow and volume of stormwater runoff entering the watershed.</td>
<td>No impact</td>
</tr>
</tbody>
</table>
Table 1-5: Summary Comparison of Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality and Storm Water Runoff</td>
<td>If left untreated, the increase in stormwater flow and runoff volumes, resulting from the increased impervious surface area due to construction of the proposed freeway/expressway, could negatively affect water quality. Direct impacts may involve water contamination and excessive sedimentation, nutrients, and construction debris entering receiving water bodies. Containment of the Caltrans Modesto Soil Stockpiles would mitigate potential water quality impacts.</td>
<td></td>
<td>The soil stockpiles would not be contained within a highway structure; however, Caltrans would be required to develop a separate remedial action plan for the stockpiles under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board. Caltrans would maintain the perimeter fence, restrict access to authorized personnel, continue water quality monitoring, and maintain vegetative cover of the soil stockpiles until remediation of the stockpiles is completed.</td>
</tr>
<tr>
<td>Geology/Soils/Seismic/Topography</td>
<td>Both build alternatives would result in minimal geologic, soil, seismic, or topographic impacts relative to geotechnical hazards associated with liquefaction, seismic settlement, and slope stability.</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td>Paleontology</td>
<td>The Modesto Formation occurs throughout the study area and is identified as high sensitivity for paleontological resources. Project excavation has the potential to impact paleontological resources.</td>
<td>The Modesto Formation occurs throughout the study area and is identified as high sensitivity for paleontological resources. Project excavation for Alternative 2 has a greater potential to impact paleontological resources than Alternative 1.</td>
<td>No impact</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Conversion of 64.8 acres of prime and unique farmland and 3.51 acres of Williamson Act contract lands would occur.</td>
<td></td>
<td>No Impact</td>
</tr>
</tbody>
</table>
Table 1-5: Summary Comparison of Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Waste/Materials</td>
<td>For these alternatives, 19 parcels that would be partially or fully acquired are known to have recognized environmental conditions. Potential impacts from the acquisition of parcels with recognized environmental conditions, presence of agricultural chemicals, aerially deposited lead, and groundwater contamination would be less than substantial with the implementation of the appropriate avoidance, minimization, and mitigation measures. While there may be potential impacts from the presence of barium contaminants in three soil stockpiles, ongoing monitoring has indicated that no significant impacts have or would occur from airborne dispersion or migration to groundwater. Containment of the three soil stockpiles as construction fill material would mitigate these impacts.</td>
<td></td>
<td>The soil stockpiles would not be contained within a highway structure; however, Caltrans would be required to develop a separate remedial action plan for the stockpiles under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board. Caltrans would maintain the perimeter fence, restrict access to authorized personnel, continue water quality monitoring, and maintain vegetative cover of the soil stockpiles until remediation of the stockpiles is completed.</td>
</tr>
<tr>
<td>Caltrans Modesto Soil Stockpiles</td>
<td>Stockpile soil would be contained behind retaining walls, bridge abutments and beneath highway pavements. Monitoring of the stockpiles and stormwater runoff constituents of potential concern would continue until the project and full containment of all three soil stockpiles are complete.</td>
<td></td>
<td>A remedial action plan would be developed, as soil stockpile containment via a highway structure would not be implemented. Caltrans would maintain the perimeter fence, restrict access to authorized personnel, continue water quality monitoring, and maintain vegetative cover of the soil stockpiles until remediation of the stockpiles is completed.</td>
</tr>
</tbody>
</table>

State Route 132 West Freeway/Expressway Draft EIR/EA • 41
Table 1-5: Summary Comparison of Alternatives

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Air Quality</strong></td>
<td>The proposed project would not lead to new or worsened violations of national and state air quality standards for particulate matter or carbon monoxide. Operational improvements would reduce precursor and criteria pollutant emissions relative to the No-Build Alternative. A temporary increase in precursor and criteria pollutants would occur during construction. Dust generated during stockpile excavation would be monitored by an air monitoring plan approved by the Department of Toxic Substances Control.</td>
<td></td>
<td>Higher traffic congestion and lower average traffic speeds may increase precursor and criteria pollutant emissions. No air quality impacts from non-contained stockpiles would occur under the No-Build Alternative.</td>
</tr>
<tr>
<td><strong>Noise</strong></td>
<td>Predicted future (2048) noise levels would permanently impact 260 receivers.</td>
<td>Predicted future (2048) noise levels would permanently impact 276 receivers.</td>
<td>Noise levels for 162 receivers would approach or exceed the noise abatement criteria in 2048.</td>
</tr>
<tr>
<td><strong>Energy</strong></td>
<td>The build alternatives would reduce overall fuel consumption when compared to existing conditions. Energy would be consumed during construction, but both build alternatives would not have substantial energy impacts.</td>
<td></td>
<td>The No-Build Alternative would cause adverse impacts related to energy consumption.</td>
</tr>
<tr>
<td><strong>Wetlands and Other Waters</strong></td>
<td>Potential direct and permanent impacts to 0.65 acre of non-jurisdictional wetlands (Waters of the State).</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Animal Species</strong></td>
<td>For this alternative, 21 acres of potential burrowing owl habitat would be impacted, and removal of 591 trees could impact migratory birds.</td>
<td>For this alternative, 21 acres of potential burrowing owl habitat would be impacted, and removal of 589 trees could impact migratory birds.</td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Threatened and Endangered Species</strong></td>
<td>Potential impacts to the Swainson’s hawk would include removal of up to 70 acres of possible foraging habitat and up to 414 trees (with low potential to support Swainson’s hawk nesting and roosting).</td>
<td></td>
<td>No impact</td>
</tr>
<tr>
<td><strong>Invasive Species</strong></td>
<td>The area may benefit from covering existing invasive species with impervious surfaces (paving) and preventing further dispersal.</td>
<td></td>
<td>The area would remain predominantly covered by invasive species.</td>
</tr>
<tr>
<td><strong>Cumulative Impacts</strong></td>
<td>A cumulative impact to agriculture could occur. Cumulative visual/aesthetics and noise impacts could occur if avoidance, minimization, or mitigation measures are not incorporated.</td>
<td></td>
<td>No impact</td>
</tr>
</tbody>
</table>
After the public circulation period ends, all comments would be considered, and Caltrans would select a preferred alternative and make the final determination of the project’s effect on the environment. In accordance with CEQA, Caltrans would certify that the project complies with CEQA, prepare findings for all significant impacts identified, prepare a Statement of Overriding Considerations for impacts that would not be mitigated below a level of significance, and certify that the findings and Statement of Overriding Considerations have been considered prior to project approval. Caltrans would then file a Notice of Determination with the State Clearinghouse that would identify whether the project would have significant impacts, if mitigation measures were included as conditions of project approval, that findings were made, and that a Statement of Overriding Considerations was adopted.

Similarly, as a CEQA responsible agency, the California Department of Toxic Substances Control would make a final determination regarding the Containment Alternative as recommended in the Draft Final Remedial Action Plan. The California Department of Toxic Substances Control would certify that the project complies with CEQA and would prepare a Notice of Determination. If the final approved document does not provide a sufficient description and environmental analysis of the remedial activities, then the California Department of Toxic Substances Control would prepare an additional CEQA document, or an addendum to this CEQA document.

If Caltrans, as assigned by the Federal Highway Administration, further determines that the NEPA action does not significantly impact the environment, Caltrans would issue a Finding of No Significant Impact (FONSI) in accordance with NEPA.

### 1.6 Alternatives Considered but Eliminated from Further Discussion

**Initially Proposed Alternative 1**

The initially proposed Alternative 1 would have constructed approximately 3.5 miles of new roadway from the west abutment of the Needham Street Overcrossing Bridge to North Dakota Avenue, ultimately connecting to existing SR 132 (Maze Boulevard) via a new alignment with an S-curve as initially proposed or via the Dakota Avenue alignment as refined during the preliminary design process. Construction would have also included above-grade (elevated) segments of the highway, interchange improvements, branch connectors, separated grade structures, the modification/replacement of existing roadway facilities, and at-grade intersections.
While this build alternative would have met the purpose and need, Alternative 1 would have had three distinct limitations. First, the initially proposed Alternative 1 would have caused additional environmental and community impacts beyond those that would result from the construction of either of the build alternatives, mainly due to the additional conversion of agricultural lands and farmlands. The build alternative would have converted 9.7 additional acres of Stanislaus County-designated agricultural land and 15.3 additional acres of prime farmland. Second, the S-curve design at the west end of the proposed project would not have been a feasible design solution for traffic operations and potential future expansion of the highway to the west, due to the potential realignment of SR 132 and construction of a new two-lane facility from Dakota Avenue to Gates Road, which is currently in the planning phase. Third, the initially proposed Alternative 1 would have had substantially higher costs. The costs associated with the construction of the S-curve are estimated at $3.25 million ($1.3 million capital costs and $1.95 million right of way costs). As such, the cost of the initially proposed Alternative 1 is estimated at $3.25 million above the cost estimated for either of the build alternatives. Therefore, the initially proposed Alternative 1 was eliminated from further discussion by the Project Development Team in March 2014.

**Alternative 3**

Alternative 3 would have constructed approximately 4 miles of new roadway from the west abutment of the Needham Street Overcrossing Bridge to North Dakota Avenue, ultimately connecting to existing SR 132 (Maze Boulevard) via a new alignment with an S-curve. Construction would have also included above-grade (elevated) segments of the highway, interchange improvements, branch connectors, separated grade structures, the modification/replacement of existing highway facilities, at-grade intersections, and a new public road connection.

Similar to the initially proposed Alternative 1, Alternative 3 would have met the purpose and need, but would have had three distinct limitations. First, the build alternative would have caused additional environmental and community impacts beyond those that would result from the construction of either of the build alternatives, mainly due to the additional conversion of agricultural lands and farmlands. The build alternative would have converted 9.7 additional acres of Stanislaus County-designated agricultural land and 15.6 additional acres of prime farmland. Second, the S-curve design at the west end of the proposed project would not have been a feasible design solution for traffic operations and potential future expansion of the highway to the west, due to the potential realignment of SR 132 and
construction of a new two-lane facility from Dakota Avenue to Gates Road, which is currently in the planning phase. Third, Alternative 3 would have had substantially higher costs. The costs associated with the construction of the S-curve are estimated at $3.25 million ($1.3 million capital costs and $1.95 million right of way costs). As such, construction of Alternative 3 is estimated at $3.25 million above the cost estimated for either of the build alternatives. Therefore, Alternative 3 was eliminated from further discussion by the Project Development Team in March 2014.

**Alternative 5 (Widen the Existing SR 132 [Maze Boulevard])**

Alternative 5 would have widened existing SR 132 (Maze Boulevard) from a two-lane, conventional highway to a four-lane highway. Construction would have also included a raised median, the modification or elimination of driveways, the implementation of left- and right-turn lanes, and at-grade signalized intersections at all major local roadways. Alternative 5 would not have used the existing Caltrans right-of-way within the route adopted for the project and would not have resulted in the containment of the soil stockpiles within a highway structure. As such, Caltrans would be required to develop a separate remedial action plan for the stockpiles under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board.

As described in the Project Development Procedures Manual (Chapter 8, Section 6), the early identification of significant environmental impacts, use of protected resources, and impacts on hazardous wastes is a crucial step in project development. The Project Development Team for the proposed project reviewed project design elements and potential environmental effects throughout the course of developing this environmental document, which began with the release of the Notice of Preparation on January 7, 2010.

Following the development of a preliminary design of Alternative 5, environmental and planning staff studied the design and used qualitative and quantitative analysis to determine the potential environmental effects anticipated with the construction and operation of Alternative 5. The results were presented to the Project Development Team to determine if Alternative 5 should be removed from consideration or studied further. The results of that analysis are described below in further detail. Alternative 5 would have had five distinct limitations in addition to not meeting the project’s purpose and need.
First, the alternative would have substantially impacted local residents, businesses, and utilities along the existing highway. It would have impacted more than 160 properties, which would be 100 more properties than either of the two build alternatives. Also, the Alternative 5 would have required an estimated 60 residential relocations and additional businesses to accommodate an interchange with SR 99 near the intersection of Maze Boulevard and 5th Street. This would be almost twice as many relocations compared to the two build alternatives (see Figure 1-9).
Figure 1-9: Alternative 5 Potential Relocations
Chapter 1 • Proposed Project
Second, Alternative 5 would not have provided system connectivity between SR 132 and SR 99 and therefore would not have improved regional and interregional travel. Constructing highway-to-highway connectors at the existing SR 132 (Maze Boulevard) connection to SR 99 in downtown Modesto would not have been feasible because of the substantial right-of-way impacts to downtown development and the conflicts with existing SR 99 ramps.

Third, Alternative 5 would not have accommodated a four-lane freeway/expressway facility with full access control, as identified in Caltrans and Stanislaus County planning reports, which is needed to relieve current and projected traffic congestion on the existing highway. Traffic on existing SR 132 (Maze Boulevard) is expected to increase 67 percent by 2048, and highway conditions throughout the region (conditions on SR 99, for example) would likely worsen. As detailed in Section 2.1.6, Traffic and Transportation/Pedestrian and Bicycle Facilities, future congestion in 2048 along the 3.3-mile stretch between Dakota Avenue and SR 99 would reduce travel speeds by 12.1 miles per hour during the morning commute and 12.3 miles per hour during the evening commute. This would increase travel times and decrease the level of service along SR 132 (Maze Boulevard) and at every area intersection studied.

Fourth, Alternative 5 would not improve operations along the existing highway. Higher traffic volumes would result in less spacing between vehicles so that drivers would have less time to react to sudden changes in traffic flow, such as a stopped vehicle on a highway with already high levels of congestion, numerous intersections, and driveways.

Fifth, Alternative 5 would convert 30.1 acres of prime and unique farmland. Although the converted acres associated with Alternative 5 would be fewer than the acres considered under Alternative 1 or Alternative 2, the soil is of much higher value than the two build alternatives. This is based on Form NRCS-CPA 106 (Farmland Conversion Impact Rating Form) submitted to Modesto Natural Resources Conservation Service that consists of impact evaluation using the following criteria: percent of a site being farmed, protection provided by state and local governments, and availability of agricultural support services nearby. The potential conversion of 64.8 acres of farmland anticipated under Alternatives 1 and 2 was assigned a farmland conversion impact rating of 160 points. Alternative 5, which would result in
a conversion of 30.1 acres of farmland, was assigned a farmland impact rating of 174. Alternative 5 is found to have a higher score relative to Alternative 1 and 2 in terms of the criteria listed above, thus warranting Alternative 5 as a greater risk to valuable existing agricultural operations and potential impacts to Williamson Act contract land. Therefore, the farmland conversion impact would be greater for Alternative 5 in comparison to the other alternatives.

Alternative 5 was eliminated from further discussion by the Project Development Team in July 2011 for the reasons stated above and the alternative’s inability to meet the proposed project’s purpose and need relative to the following:

- Improving regional and interregional circulation within Modesto and Stanislaus County
- Relieving traffic congestion along existing SR 132 (Maze Boulevard)
- Improving operations for the existing and proposed transportation network.

A technical memo documenting these factors was approved by the Project Development Team (see Appendix I).

### 1.7 Permits, Reviews, and Approvals Needed

The following permits, reviews, and approvals would be required for project construction.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit/Approval</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Transportation Commission</td>
<td>Approval of New Public Road Connection at Needham Street</td>
<td>Submittal and approval after Final EIR certification</td>
</tr>
<tr>
<td>California Regional Water Quality Control Board</td>
<td>Section 401 Water Quality Certification</td>
<td>Submittal and approval prior to construction</td>
</tr>
<tr>
<td></td>
<td>Section 402 National Pollutant Discharge Elimination System/Caltrans National Pollutant Discharge Elimination System Permit CAS000003 and CAS00002 (General Construction Permit)</td>
<td>Construction General Permit effective July 1, 2010; Caltrans National Pollutant Discharge Elimination System Permit effective July 1, 2013</td>
</tr>
<tr>
<td></td>
<td>Approval of the stockpile Final Remedial Action Plan, Remedial Design Implementation Plan, and other approvals deemed necessary</td>
<td>The Final Remedial Action Plan would be approved with certification of the Final EIR</td>
</tr>
</tbody>
</table>
### Table 1.6: Permits, Reviews, and Approvals Needed

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit/Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Historic Preservation Officer</td>
<td>Approval and acceptance of hazardous waste investigations and remediation associated with discovery of soil or groundwater contamination discovered during construction</td>
</tr>
<tr>
<td>Various Utilities</td>
<td>Determinations of eligibility and effects upon cultural resources</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>Utility modification/relocation agreements</td>
</tr>
<tr>
<td>City of Modesto and Caltrans</td>
<td>Street tree removal permit</td>
</tr>
<tr>
<td>City of Modesto and Caltrans</td>
<td>Cooperative Agreement for final design of Phase 1</td>
</tr>
<tr>
<td>California Department of Toxic Substances Control</td>
<td>Approval of the stockpile Final Remedial Action Plan and Remedial Design Implementation Plan</td>
</tr>
<tr>
<td>San Joaquin Valley Air Pollution Control District</td>
<td>Air Quality Dust Control Plans</td>
</tr>
<tr>
<td>San Joaquin Valley Air Pollution Control District</td>
<td>Air Impact Assessment Indirect Source Review as required (Rule 9510)</td>
</tr>
<tr>
<td>Stanislaus County Department of Public Works</td>
<td>Encroachment Permit</td>
</tr>
</tbody>
</table>
Chapter 2  Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

This chapter discusses the potential environmental impacts the proposed project may have on the existing environment. Avoidance, minimization, and mitigation measures are included and are listed as abbreviations in the avoidance, minimization, and/or mitigation sections. As part of the scoping and environmental analysis done for the project, the following environmental issues were considered, but no adverse impacts were identified. Consequently, there is no further discussion of these issues in this document.

- Coastal Zones: The proposed project study area is not located near any coastal zones.
- Forested Resources (Timberlands): No timberlands are located within or near the project study area (Community Impact Assessment, July 2016).
- Mineral Resources: The proposed project would not impact any known mineral resources in the project study area (Geotechnical/Geologic Summary Report, October 2010).
- Sensitive Natural Communities: No sensitive natural communities are located within the project study area. The State Route 132 West Freeway/Expressway Natural Environment Study (October 2016) provides more details.
- Special-Status Plant Species: No special-status plant species were identified in the project study area. The State Route 132 West Freeway/Expressway Natural Environment Study (October 2016) provides more details.
- Wild and Scenic Rivers: No wild and scenic rivers are located within or near the project study area.
2.1 Human Environment

2.1.1 Land Use

2.1.1.1 Existing and Future Land Use

Affected Environment
The following section is based on the State Route 132 Community Impact Assessment Report (July 2016).

City of Modesto and Stanislaus County Existing Land Use Patterns
Land uses within the project study area are identified in both Stanislaus County and Modesto’s general plans. Stanislaus County’s General Plan identifies all land west of Morse Road as Agriculture (see Figure 2-1). The land use study area also included the existing SR 132 (Maze Boulevard) corridor from Dakota Avenue to SR 99. Land uses include rural residential farmsteads, large mechanized farms, confined animal facilities, and food and fiber processing facilities. East of Morse Road, the County has designated the area south of Kansas Avenue and west of Carpenter Road as Urban Transition (a designation designed to ensure that land remains in agricultural use until urban development consistent with a city’s general plan designation is approved). Pockets of Residential (low-density housing) and Industrial land uses within Stanislaus County also exist within Modesto’s General Plan boundary.

Also shown in Figure 2-1, Modesto’s General Plan identifies two land uses in the study area: the Redevelopment Planning District (mostly east of North Carpenter Road) and Residential (mostly north of Kansas Avenue between Morse Road and North Carpenter Road). The Redevelopment Planning District designation focuses on Modesto’s economic and community development. The Residential designation includes single-family detached and attached housing, multi-family housing, and mobile homes. Compatible uses under the Residential designation may also include schools, parks, and religious or community facilities. Table 2-1 lists land use designations and acreages within the study area for Stanislaus County and Modesto.
Table 2-1: Land Use within the Project Study Area

<table>
<thead>
<tr>
<th>Land Use Designation</th>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanislaus County</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>68.60 a</td>
</tr>
<tr>
<td>Urban Transition</td>
<td>47.78 a</td>
</tr>
<tr>
<td>Industrial</td>
<td>5.90</td>
</tr>
<tr>
<td>Residential</td>
<td>7.04</td>
</tr>
<tr>
<td>Modesto</td>
<td></td>
</tr>
<tr>
<td>Redevelopment Planning District</td>
<td>106.30 a</td>
</tr>
<tr>
<td>Residential</td>
<td>2.63</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>238.25</strong></td>
</tr>
</tbody>
</table>

*Includes Caltrans right-of-way (totaling 79 acres of the total project study area).

*Source*: Community Impact Assessment (July 2016)
Page Intentionally Left Blank
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-1: Stanislaus County and Modesto Land Use Designations

State Route 132 West Freeway/Expressway Draft EIR/EA • 59
Page Intentionally Left Blank
Between North Dakota Avenue and Morse Road, Kansas Avenue crosses unincorporated Stanislaus County. This land is zoned for agricultural use on both the north and south side of Kansas Avenue. The zoning designation is intended for areas that are presently or potentially desirable for agricultural use. Land included in this designation typically possesses favorable agricultural characteristics. Residential building density normally ranges from zero to two dwellings per 40 acres in this zone. A Planned Development zone may also be consistent with this designation when it is used for agriculturally related uses or for uses of a demonstrably unique character. The portion of the project study area that is within Modesto includes areas zoned for Residential, Commercial, Industrial, and Planned Development.

**City of Modesto and Stanislaus County Development Trends**

Development trends within the study area and Modesto and Stanislaus County are based on information from both the City and County’s planning departments. Additional information regarding growth trends in and around the study area is further discussed in Section 2.1.2, Growth.

According to the Stanislaus County Planning Department, there are no plans for significant urban development in the northern unincorporated areas of the county except for what is noted in the Salida Community Plan, which focuses on an area approximately 7 miles north of the project. Only two minor projects would potentially occur near the study area:

- In 2008, Stanislaus County adopted and passed a resolution approving a conservation easement for the California Department of Conservation Farmland Conservancy Program located on the Menghetti Ranch, west of Stone Avenue.
- In 2009, Stanislaus County adopted and passed a resolution approving a conservation easement for the California Department of Conservation Farmland Conservancy Program located on the Ulm Farm, east of North Dakota Avenue and near the intersection of existing SR 132 (Maze Boulevard) and Texas Avenue. The easement included two parcels and approximately 159 acres.

The only planned development within Modesto is the Kansas-Woodland Business Park, which would be just north of the study area between Kansas and Woodland avenues and along the east side of SR 99. The proposed project is currently inactive, but this remains an area for potential future development. Although Modesto’s Redevelopment Planning District is designated for higher-density, mixed-use
development that stimulates economic development, no major development is planned in the area.

**Environmental Consequences**

**Build Alternatives**

Both build alternatives would convert existing agricultural and scattered Urban Transition uses in Stanislaus County and vacant land (designated for redevelopment planning) in Modesto to a transportation use, thus resulting in minor direct impacts. Despite the changes, neither build alternative would greatly alter the overall land use patterns. Conversion of the land would improve mobility for both regional and local traffic and provide congestion relief. Table 2-2 lists the total acreages to be converted under each build alternative.

**Table 2-2: Land Use Conversion by Build Alternative**

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Alternative 1 (acres)</th>
<th>Alternative 2 (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stanislaus County</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>49.96</td>
<td>49.96</td>
</tr>
<tr>
<td>Urban Transition</td>
<td>44.56</td>
<td>44.56</td>
</tr>
<tr>
<td>Industrial</td>
<td>1.48</td>
<td>1.48</td>
</tr>
<tr>
<td>Residential</td>
<td>6.84</td>
<td>6.84</td>
</tr>
<tr>
<td><strong>Modesto</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redevelopment Planning District</td>
<td>72.45</td>
<td>71.81</td>
</tr>
<tr>
<td>Residential</td>
<td>2.29</td>
<td>2.29</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>177.58</strong></td>
<td><strong>176.94</strong></td>
</tr>
</tbody>
</table>

**Source:** Community Impact Assessment (July 2016)

Impacts to land use would be similar for both build alternatives. However, Alternative 1 would result in slightly greater impacts to Redevelopment Planning District land uses. Direct project impacts for both build alternatives would include operation-related noise, air quality, and visual impacts, as well as temporary construction-related impacts to surrounding land uses. These impacts are described in the applicable sections of this document.

**No-Build Alternative**

The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not convert any existing land use to a transportation use.
Avoidance, Minimization, and/or Mitigation Measures
Despite the land use changes resulting from construction of either of the build alternatives, the proposed project would not greatly alter the overall land use patterns. Benefits of the proposed project include improving regional and interregional circulation and providing congestion relief within the study area. The City of Modesto General Plan and the Stanislaus County General Plan include policies designed to improve circulation and minimize traffic congestion, and these goals cannot be accomplished without impacting some agricultural land. The analysis of farmlands impacts, addressed in Section 2.1.3, Farmlands, differs from the analysis of land use impacts, which considers land use conversion as well as consistency with applicable plans and policies for regional growth and redevelopment. Based on these factors, neither build alternative would result in adverse impacts to land use. Therefore, no avoidance, minimization, or mitigation measures are proposed.

2.1.1.2 Consistency with State, Regional and Local Plans and Programs

Affected Environment
The following section is based on the State Route 132 Community Impact Assessment Report (July 2016).

The proposed project study area lies within both Stanislaus County and Modesto. The County and City jurisdictions develop and manage land use policy in the area through the use of general plans and zoning. Those documents and other regional and federal transportation reports relevant to the project’s development were also reviewed.

Stanislaus County General Plan
The Stanislaus County General Plan describes improvements to SR 132 in the Circulation Element, which details that a federal grant has been secured to study ways to connect the portion of SR 132 east of SR 99 to its new proposed alignment.

Modesto General Plan
The Community Services and Facilities Element of Modesto’s General Plan identifies a four-lane expressway generally aligned with Kansas Avenue. The plan also notes the area surrounding existing SR 132 (Maze Boulevard) as a future 660-acre business park. On March 25, 2014, the City Council finalized the proposed changes to the Modesto Urban Area General Plan Land Use diagram. The proposed land use diagram establishes the project description for purposes of the required environmental
studies for the General Plan Amendment. Included in the amendment is an update to the transportation diagram which reflects the proposed project.

**StanCOG 2014 Regional Transportation Plan/Sustainable Communities Strategy and Regional Transportation Improvement Program**

StanCOG’s 2014 Regional Transportation Plan/Sustainable Communities Strategy was approved in June 2014. The proposed project is programmed into the plan within the 2014 Regional Transportation Improvement Program, which outlines StanCOG’s transportation projects eligible for funding under the state’s Regional Transportation Improvement Program.

**Transportation Concept Reports for State Route 132**

The 2014 Caltrans Transportation Concept Report is a system planning document that includes an analysis of the transportation corridor and establishes a 20-year planning concept. The Ultimate Transportation Corridor is the facility envisioned beyond the 20-year planning horizon and is identified to assist in the preservation of future right-of-way. The Ultimate Transportation Corridor is identified as a roadway segment (between Interstate 5 and SR 99) that should be expanded to a four-lane expressway, with the segment from Stone Avenue to SR 99 as a four-lane freeway.

**2015 Federal Transportation Improvement Program**

StanCOG’s 2015 Federal Transportation Improvement Program was prepared in cooperation with Caltrans and the Federal Highway Administration to document transportation projects that require or use federal funding or are considered regionally significant, non-federal projects. The proposed project is considered a regionally significant project and is included in the 2015 Federal Transportation Improvement Program with programmed federal funding.

**Environmental Consequences**

**Build Alternatives**

Both build alternatives would be consistent with most policies in the plans listed above and in Table 2-3. Both the Stanislaus County General Plan Circulation Element and the Modesto Community Services and Facilities Element identify State Route 132 in the location of the proposed project. As such, general plan amendments would not be required prior to the jurisdictions entering into a freeway agreement with Caltrans. However, the build alternatives would not be consistent with two Stanislaus County General Plan policies related to the conversion of agricultural land and Williamson Act contract land and one Modesto General Plan policy concerning
Transportation Demand Management measures. Section 2.1.3, Farmland, describes how the measures proposed to ensure the conservation of farmland and Transportation Demand Management measures, as a stand-alone alternative, were considered but eliminated from further analysis (Section 1.4, Project Alternatives). As such, the build alternatives would not have adverse impacts related to state, regional, or local plans and programs.
### Table 2-3: Consistency with State, Regional, and Local Plans and Programs

<table>
<thead>
<tr>
<th>Land Use/Transportation Goal</th>
<th>Build Alternatives</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stanislaus County General Plan</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Agricultural Element Policy 2.3:</em> The County shall ensure all lands enrolled in the Williamson Act are devoted to agricultural and compatible uses supportive of the long-term conservation of agricultural land.</td>
<td>Inconsistent. Both build alternatives would result in the conversion of 3.51 acres of Williamson Act contract land to a transportation use.</td>
<td>Consistent. The No-Build Alternative would not result in the conversion of Williamson Act contract land to non-agricultural use.</td>
</tr>
<tr>
<td><em>Agricultural Element Policy 2.7:</em> Proposed amendments to the General Plan Diagram (map) that would allow the conversion of agricultural land to non-agricultural uses shall be approved only if they are consistent with the County's conversion criteria.</td>
<td>Consistent. Both build alternatives would be consistent with all of the agricultural conversion criteria outlined in the Stanislaus County General Plan.</td>
<td>Consistent. The No-Build Alternative would not result in the conversion of farmland to non-agricultural use.</td>
</tr>
<tr>
<td><em>Agricultural Element Policy 2.11:</em> The County recognizes the desire of cities and unincorporated communities to grow and prosper and shall not oppose reasonable requests consistent with city and county agreements to expand, provided the resulting growth minimizes impacts to adjacent agricultural land.</td>
<td>Consistent. Both build alternatives would relieve traffic congestion along an important regional and interregional route. Both build alternatives were designed to minimize impacts to adjacent agricultural lands, while still meeting the project's purpose and need.</td>
<td>Inconsistent. Increased traffic congestion and lower average traffic speeds associated with the No-Build Alternative would degrade mobility within the study area and larger region. This would have a negative impact on economic and community prosperity.</td>
</tr>
<tr>
<td><em>Land Use Element Policy 2:</em> Land designated Agriculture shall be restricted to uses that are compatible with agricultural practices, including natural resources management, open space, outdoor recreation and enjoyment of scenic beauty.</td>
<td>Inconsistent. Both build alternatives would result in the conversion of 64.8 acres of prime and unique farmland and 3.51 acres of Williamson Act contract land to a transportation use.</td>
<td>Consistent. The No-Build Alternative would not result in the conversion of farmland to non-agricultural use.</td>
</tr>
<tr>
<td><em>Circulation Element Policy 2:</em> Circulation systems shall be designed and maintained to promote safety and minimize traffic congestion.</td>
<td>Consistent. The purpose of both build alternatives is to enhance operations, relieve congestion, and improve regional and interregional circulation within Modesto and Stanislaus County.</td>
<td>Inconsistent. Under the No-Build Alternative, travel times would increase and level of service and vehicle speeds would further degrade to unacceptable levels throughout the study area.</td>
</tr>
<tr>
<td><em>Circulation Element Policy 4:</em> The circulation system shall provide for roads in all classifications (Freeway, Expressway, Major, Collector, Local, Minor and Private) as necessary to provide access to all parts of the County and shall be expanded or improved to provide acceptable levels of service based on anticipated land use.</td>
<td>Consistent. Both build alternatives would decrease travel times, increase speeds, and improve level of service along existing SR 132 (Maze Boulevard) and for most major intersections in the study area.</td>
<td>Inconsistent. Under the No-Build Alternative, travel times would increase and level of service and vehicle speeds, would further degrade to unacceptable levels throughout the study area.</td>
</tr>
</tbody>
</table>
# Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

## Table 2-3: Consistency with State, Regional, and Local Plans and Programs

<table>
<thead>
<tr>
<th>Land Use/Transportation Goal</th>
<th>Build Alternatives</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Circulation Element Policy 5:</strong> Transportation requirements of commercial and industrial development shall be considered in all planning, design, construction, and improvements.</td>
<td><strong>Consistent.</strong> Both build alternatives would go through commercial and industrial areas and would be designed to relieve congestion for commercial and industrial use.</td>
<td><strong>Inconsistent.</strong> Under the No-Build Alternative, travel times would increase and level of service and vehicle speeds would further degrade to unacceptable levels throughout the study area. This would negatively impact commercial and industrial development and transportation use.</td>
</tr>
<tr>
<td><strong>Circulation Element Policy 7:</strong> Bikeways and pedestrian facilities shall be designed to provide reasonable access from residential areas to major bicycle and pedestrian traffic destinations such as schools, recreation and transportation facilities, centers of employment, and shopping areas.</td>
<td><strong>Consistent.</strong> Both build alternatives propose a 12-foot-wide pedestrian/bicycle path along the east side of North Carpenter Road within the limits of the project.</td>
<td><strong>Inconsistent.</strong> Limited pedestrian and bicycle facilities exist within the study area, with no facilities located west of SR 99 within Modesto’s city limits. The rural nature of the western portion of the study area generally necessitates that bicyclists share the roadways with motor vehicles.</td>
</tr>
<tr>
<td><strong>Circulation Element Policy 9:</strong> The County shall promote the development of inter-city and interregional transportation facilities that more efficiently moves goods and freight within and through the region.</td>
<td><strong>Consistent.</strong> The purpose of both build alternatives is to promote intercity and interregional circulation, which would facilitate the movement of goods and freight within the study area and larger region.</td>
<td><strong>Inconsistent.</strong> Under the No-Build Alternative, travel times would increase and level of service and vehicle speeds would further degrade to unacceptable levels throughout the study area. This would negatively impact regional movement of goods and freight.</td>
</tr>
<tr>
<td><strong>Modesto General Plan</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Community Growth Policy II-B.1[b]:</strong> As the City expands and vacant land becomes developed, infrastructure such as roads, sewer, water, and storm drainage is necessary to support that development. As the City directs the extension of this infrastructure, economic development opportunities within the City’s limits should receive the highest priority for receiving such infrastructure. The City shall establish the timely provision of infrastructure to support the policies in Section II-B.2.</td>
<td><strong>Consistent.</strong> As identified in the General Plan Amendment, proposed land uses for land next to SR 132 within the study area would be re-designated as a Business Park land use. Both build alternatives would provide improved circulation and traffic congestion relief along existing SR 132 (Maze Boulevard).</td>
<td><strong>Inconsistent.</strong> Under the No-Build Alternative, travel times would increase and level of service and vehicle speeds would further degrade to unacceptable levels throughout the study area. This would negatively impact economic development.</td>
</tr>
</tbody>
</table>
Table 2-3: Consistency with State, Regional, and Local Plans and Programs

<table>
<thead>
<tr>
<th>Land Use/Transportation Goal</th>
<th>Build Alternatives</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Community Services and Facilities: Circulation and Transportation</strong></td>
<td><strong>Consistent.</strong> Both build alternatives would be consistent with the Caltrans-</td>
<td></td>
</tr>
<tr>
<td><strong>Policy V-B.6[a]:</strong> The streets and highways system should be coordinated with Caltrans’,</td>
<td>sponsored Transportation Concept Report and StanCOG’s 2014 Regional</td>
<td></td>
</tr>
<tr>
<td>the County’s, and other jurisdictions’ existing facilities and plans. The adoption of a</td>
<td>Transportation Plan/Sustainable Communities Strategy. Although mass</td>
<td></td>
</tr>
<tr>
<td>regional expressway system by the Stanislaus Council of Governments should be supported,</td>
<td>transit was considered as an alternative for the project, it would not</td>
<td></td>
</tr>
<tr>
<td>and the components of the regional system that lie within the City’s Sphere of Influence</td>
<td>accommodate goods movement, which is a vital element of the project.</td>
<td></td>
</tr>
<tr>
<td>shall be incorporated into the City’s Circulation and Transportation Diagram. The</td>
<td>Accommodations for mass transit (specifically buses) traveling through the</td>
<td></td>
</tr>
<tr>
<td>expressway system shall be designed to accommodate mass transit. The City shall develop</td>
<td>corridor and along local streets within the area would be determined during final</td>
<td></td>
</tr>
<tr>
<td>an efficient, and well-coordinated, multi-modal (rail/air/bus/bicycle/pedestrian)</td>
<td>design.</td>
<td></td>
</tr>
<tr>
<td>transportation system.**</td>
<td><strong>Consistent.</strong> Although neither of the build alternatives proposes specific</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transportation control measures, both build alternatives would reduce vehicle</td>
<td><strong>Inconsistent.</strong> The No-Build Alternative would lead to increased vehicle miles</td>
</tr>
<tr>
<td></td>
<td>miles traveled, idling, and congestion, while not leading to new or worsened</td>
<td>of travel, hours of delay, idling, and congestion, all of which could potentially</td>
</tr>
<tr>
<td></td>
<td>violations of national or state air quality standards. Both build alternatives</td>
<td>increase air quality impacts and</td>
</tr>
<tr>
<td></td>
<td>would also encourage non-motorized transportation in the form of pedestrian</td>
<td>degrade mobility within the study area and larger region.</td>
</tr>
<tr>
<td></td>
<td>and bicycle use in the area of North Carpenter Road.</td>
<td></td>
</tr>
<tr>
<td><strong>Community Services and Facilities: Circulation and Transportation</strong></td>
<td><strong>Inconsistent.</strong> Neither build alternative would apply Transportation Demand</td>
<td></td>
</tr>
<tr>
<td><strong>Policy V-B.6[b]:</strong> Transportation Control Measures shall be implemented where feasible</td>
<td>Management measures. Such measures were considered as a separate alternative but</td>
<td></td>
</tr>
<tr>
<td>or mandated by their agencies, to reduce vehicle miles traveled, vehicle idling, or traffic</td>
<td>they would not meet the project’s purpose and need to improve system</td>
<td></td>
</tr>
<tr>
<td>congestion. Alternatives to the drive-alone auto mode, such as mass transit, ride</td>
<td>connectivity.</td>
<td></td>
</tr>
<tr>
<td>sharing, non-motorized transportation, and telecommuting, should be encouraged. In</td>
<td><strong>Inconsistent.</strong> The No-Build Alternative would not apply Transportation Demand</td>
<td></td>
</tr>
<tr>
<td>addition, the City shall encourage innovative means to reduce traffic congestion and</td>
<td>Management measures.</td>
<td></td>
</tr>
<tr>
<td>enhance air quality.**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Inconsistent.</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Community Services and Facilities: Circulation and Transportation</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Policy V-B.6[c]:</strong> Transportation Demand Management measures are encouraged to directly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>affect trip makers’ choice of travel mode and the routes and time of day for trips.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation Demand Management has as its purpose the reduction in the number of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vehicle trips being made on the street network. Typical types of Transportation Demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management measures would be promotion of transit, carpooling or van pooling, non-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>motorized transportation, and pricing of parking to make these alternative modes of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transportation more attractive and cost competitive.**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Table 2-3: Consistency with State, Regional, and Local Plans and Programs

<table>
<thead>
<tr>
<th>Land Use/Transportation Goal</th>
<th>Build Alternatives</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Community Services and Facilities: Circulation and Transportation Policy V-B.6[f]</strong>: The highest possible levels of service for all transportation modes (vehicle, transit, pedestrian, and bicycle) shall be maintained on City roadways, consistent with the financial resources reasonably available to the City and without unreasonably burdening property owners or developers with excessive roadway improvement costs. On roadways where the level of service is expected to exceed level F, the City should consider mitigation measures other than road widening, such as the addition of bicycle lanes, improved pedestrian access, improved transit service, and the establishment of walkable development patterns.</td>
<td><strong>Consistent.</strong> Both build alternatives would decrease travel times, increase speeds, and improve level of service along existing SR 132 (Maze Boulevard) and for most major intersections in the study area. Both build alternatives propose a 12-foot-wide pedestrian/bicycle path along the east side of North Carpenter Road within the limits of the project.</td>
<td><strong>Inconsistent.</strong> Under the No-Build Alternative, travel times would increase and level of service and vehicle speeds would further degrade to unacceptable levels throughout the study area.</td>
</tr>
<tr>
<td><strong>Community Services and Facilities: Circulation and Transportation Policy V-B.6[o]</strong>: The City shall provide a balanced, feasible, and well-maintained system of transportation for motorized and non-motorized modes.</td>
<td><strong>Consistent.</strong> Both build alternatives propose a 12-foot-wide pedestrian/bicycle path along the east side of North Carpenter Road within the limits of the project.</td>
<td><strong>Inconsistent.</strong> Limited pedestrian and bicycle facilities exist within the study area, with no facilities west of SR 99 within Modesto’s city limits. The rural nature of the western portion of the study area generally necessitates that bicyclists share the roadways with motor vehicles.</td>
</tr>
<tr>
<td><strong>Community Services and Facilities: Circulation and Transportation Policy V-B.7[b]</strong>: The City may allow individual locations to fall below the City’s level of service standards in instances where the construction of physical improvements would be infeasible, be prohibitively expensive, significantly impact adjacent properties or the environment, significantly impact non-motorized transportation systems, or have a significant adverse effect on the character of the community. To the extent feasible, the City shall strive for level of service D on all streets and intersections.</td>
<td><strong>Consistent.</strong> Both build alternatives would decrease travel times, increase speeds, and improve level of service along existing SR 132 (Maze Boulevard) and for most major intersections in the study area.</td>
<td><strong>Inconsistent.</strong> Under the No-Build Alternative, travel times would increase and level of service and vehicle speeds would further degrade to unacceptable levels for most major intersections throughout the study area.</td>
</tr>
<tr>
<td><strong>Environmental Resources and Open Space: Agricultural Resources Policy VII-D.4[d]</strong>: Where necessary to promote planned City growth, the City shall encourage development of those agricultural lands that are already compromised by adjacent urban development or contain property required for the extension of infrastructure or other public facilities, before considering urban development on agricultural lands that are not subject to such urban pressures.</td>
<td><strong>Consistent.</strong> Both build alternatives would use existing Caltrans right-of-way south of Kansas Avenue and land next to existing roadways and developments to minimize the impacts to agricultural lands.</td>
<td><strong>Consistent.</strong> The No-Build Alternative would not result in the conversion of farmland to non-agricultural use.</td>
</tr>
</tbody>
</table>
Table 2-3: Consistency with State, Regional, and Local Plans and Programs

<table>
<thead>
<tr>
<th>Land Use/Transportation Goal</th>
<th>Build Alternatives</th>
<th>No-Build Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>StanCOG 2014 Regional Transportation Plan/Sustainable Communities Strategy</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mobility</strong>: Improve the ability of people and goods to move between desired locations; and provide a variety of transportation choices.</td>
<td>Consistent. Both build alternatives would be consistent with the goals of the Plan by providing improved mobility of people and goods and fostering economic and community vitality via improved regional and interregional circulation within Stanislaus County and Modesto. Improved circulation and enhanced transportation access would also relieve congestion for local residents, leading to improved social equity for those traveling in and around the study area. Both build alternatives would not lead to new or worsened violations of national or state air quality standards.</td>
<td>Inconsistent. Increased traffic congestion and lower average traffic speeds associated with the No-Build Alternative would have the potential to degrade air quality and mobility within the study area and larger region. This would have a negative impact on economic and community vitality, environmental quality, mobility, and social equity.</td>
</tr>
<tr>
<td><strong>Social Equity</strong>: Promote and provide equitable opportunities to access transportation services for all populations and ensure all populations share in the benefits of transportation improvements and provide a range of transportation and housing choices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Economic and Community Vitality</strong>: Foster job creation and business attraction, retention, and expansion by improving quality of life through new and revitalized communities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Environmental Quality</strong>: Consider the environmental impacts when making transportation investments and minimize direct and indirect impacts on clear air and the environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Health &amp; Safety</strong>: Operate and maintain the transportation system to ensure public safety and security; and improve the health of residents by improving air quality and providing more transportation options.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>System Preservation</strong>: Maintain the transportation system in a state of good repair, and protect the region’s transportation investments by maximizing the use of existing facilities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>StanCOG 2015 Federal Transportation Improvement Program</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The program is a compilation of transportation projects that require or utilize federal funding or are considered regionally-significant, non-federal projects. Non-federal projects are included in the Federal Transportation Improvement Program for federal informational and air quality analysis purposes.</td>
<td>Consistent. The proposed project is considered a regionally-significant project and is included in the 2015 Federal Transportation Improvement Program with programmed federal funding.</td>
<td>Inconsistent. The No-Build Alternative is not included in the Federal Transportation Improvement Program.</td>
</tr>
</tbody>
</table>
Avoidance, Minimization, and/or Mitigation Measures

Although both build alternatives could result in the conversion of agricultural land, which would be inconsistent with two land use policies in the Stanislaus County General Plan, measures are proposed under Section 2.1.3, Farmlands, to avoid, minimize, and mitigate impacts. The only other inconsistency with state, regional, and local plans and programs would be not including Transportation Demand Management measures. No avoidance, minimization, and/or mitigation measures would be required.

2.1.1.3 Parks and Recreational Facilities

Affected Environment

The following section is based on the State Route 132 Community Impact Assessment Report (July 2016). Parks and recreational resources are defined as any park, recreational facility, open space area, recreational bikeway, and other recreational trail in or around (within a half-mile of) the project study area.

Four parks lie within a half-mile of the project study area, as noted in Table 2-4. Two of the four parks have associated recreational facilities (a youth center, auditorium, or other recreational facility). The study area also has one Class I bike route, which is a paved path separated from a street or roadway.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Name</th>
<th>Location</th>
<th>Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park and Recreational Facility</td>
<td>Mellis Park/King-Kennedy Memorial Center</td>
<td>601 South Martin Luther King Drive (2,300 feet from the project)</td>
<td>Approximately 9 acres with a lighted softball field, youth ball field, two basketball courts, picnic facilities, playground, and restrooms. The center has an auditorium, kitchen, and a classroom.</td>
</tr>
<tr>
<td></td>
<td>Cesar E. Chavez Park/ Maddux Youth Center</td>
<td>619 Sierra Drive (1,000 feet from the project)</td>
<td>Approximately 7 acres with two basketball courts, picnic facilities, playground, and restrooms. The Maddux Youth Center includes a youth boxing facility, indoor basketball court, and game room.</td>
</tr>
<tr>
<td>Park</td>
<td>J.M. Pike Park</td>
<td>1601 Princeton Avenue (1,900 feet from the project)</td>
<td>Approximately 6.5 acres. Facilities include a baseball field, two basketball half courts, picnic facilities, playground, softball and soccer fields.</td>
</tr>
<tr>
<td></td>
<td>Charles M. Sharp Park</td>
<td>1900 Torrid Avenue (900 feet from the project)</td>
<td>Approximately 7 acres. Amenities include a basketball court, picnic facilities, playground, restrooms, softball field, and volleyball court.</td>
</tr>
<tr>
<td>Class I Trail</td>
<td>Virginia Corridor Trailway</td>
<td>College Avenue - Woodrow Avenue (1,500 feet from the project)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Source: Community Impact Assessment (July 2016)
Environmental Consequences

Build Alternatives

Access to parks, recreational facilities, and trails would be maintained during construction and future operations of either build alternative. As noted in Table 2-4, each of the park facilities and the trail would be a minimum of 900 feet from the project. Therefore, construction-related activities would result in temporary increases in noise and equipment emissions as described in Section 2.2.6, Air Quality, and Section 2.2.7, Noise. Potential impacts to parks are also evaluated pursuant to Section 4(f) of the U.S. Department of Transportation Act. See Appendix B of this document for specific information about Section 4(f).

Any construction-related noise or air quality impact would be minor, however, given the distance of the project to each resource and the temporary nature of disturbance. Applying the standard rule of noise reduction when a distance is doubled, the loudest piece of construction equipment (such as the hydraulic brake ram that would produce 90 A-weighted decibels of noise at 50 feet) would result in noise levels less than 66 A-weighted decibels at 800 feet. The existing noise level in this area (at Noise Analysis Area 3) is 67 A-weighted decibels (see Section 2.2.7, Noise). Construction equipment use would be intermittent throughout the course of a normal workday. Standard best management practices for construction-related air quality and noise impacts would be implemented to reduce any temporary construction impacts as described in Section 2.2.6, Air Quality and Section 2.2.7, Noise. Operation of the proposed project would not have any impacts on parks, recreational facilities, or trails. Therefore, the build alternatives would not directly or indirectly affect parks, recreational facilities, or trails within the study area.

No-Build Alternative

The No-Build Alternative would not result in the construction of any of the proposed improvements and would, therefore, not have direct or indirect impacts on parks and recreational areas within the study area.

Avoidance, Minimization, and/or Mitigation Measures

Because neither build alternative would result in permanent adverse impacts to parks, recreational facilities, or trails, no additional avoidance, minimization, and mitigation measures are required.
2.1.2 Growth

Regulatory Setting
The Council on Environmental Quality regulations, which established the steps necessary to comply with NEPA, require evaluation of the potential environmental effects of all proposed federal activities and programs. This includes a requirement to examine indirect effects, which may occur in areas beyond the immediate influence of a proposed action or at some time in the future. Council on Environmental Quality regulations (40 Code of Federal Regulations 1508.8) refer to these consequences as indirect effects. Indirect effects may include changes in land use, economic vitality, and population density, which are all elements of growth.

CEQA also requires the analysis of a project’s potential to induce growth. The CEQA Guidelines (Section 15126.2[d]), require that environmental documents “…discuss the ways in which the proposed project could foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment….”

Affected Environment
The following section is based on the State Route 132 Community Impact Assessment Report (July 2016). The proposed project would go through urban, urban fringe, and rural (agricultural) land uses through Stanislaus County and Modesto.

Stanislaus County does not have future land use designations, but the County’s General Plan has several growth-related policies, most of which are connected to environmental and service constraints. Regarding proposed development, two minor projects (listed in Section 2.1.1, Land Use) could potentially occur near the study area. These two projects are conservation easements that protect farmland from future development. There are no other county projects currently planned near the study area.

Growth and future development in Modesto are guided by two policies: economic development and maintaining a sound fiscal base. Modesto also does not have future land use designations; however, the City is in the process of preparing a General Plan Amendment to identify transportation corridors that have economic development potential, are primarily mixed-use development, and can provide improved travel mode options. Most changes to the land use diagram would be within the northern portion of Modesto, which would be northeast and outside the geographic area of the
project. Changes to land uses near the project study area include land within the eastern portion of the study area that would be re-designated from a Redevelopment Planning District to an Industrial land use. Also, land west of Morse Road (outside Modesto’s city limits but within the City’s sphere of influence) and east of North Dakota Avenue would be re-designated to a Business Park land use. (The sphere of influence is an area that Modesto intends to annex and develop at some point in the future.) Based on the proposed General Plan Amendment, Modesto would encourage future commercial and industrial development within these areas; however, no development has been proposed at this time, as noted in Section 2.1.1, Land Use.

To ensure that Modesto is responding appropriately to growth pressures, the City regularly conducts a review of its Urban Area Growth Policy to assess Modesto’s inventory of vacant and agricultural land with infrastructure for future development. As part of its review, Modesto evaluates comprehensive planning districts, which are areas identified for future analysis and considered as locations with growth potential. Two of these districts sit within the vicinity of the project study area. The College West Comprehensive Planning District is roughly 2 miles north of the project study area along the west side of SR 99 between Standiford Avenue and Briggsmore Avenue. The second district, the Highway 132 Comprehensive Planning District, includes a portion of the project study area and sits between Kansas Avenue and California Avenue (to the north and south) and Nebraska Avenue and South Carpenter Road (to the west and east).

Growth pressures and anticipated growth within Stanislaus County, while still high compared to the rest of the state, have slowed in recent years with current projections forecasting population to be 589,000 persons by 2020. The estimated population growth rate for Stanislaus County from 2010 to 2020 is projected to be 1.1 percent, whereas the population growth rate for the State of California is 0.9 percent. Previous growth projections indicated a County population of 700,000 persons by 2020. Current projections forecast the population to be 589,000 persons by 2020. Although the City of Modesto has experienced growth over the past two decades with a 14.6 percent increase in population between 1990 and 2000, growth slowed to a 6.5 percent increase between the years 2000 and 2010. Despite the slowed growth rates in Stanislaus County and the City of Modesto, they are still projected to be greater than the overall growth rate for the State. However, it is expected that incorporated cities would have higher population growth rates than Stanislaus County. According to the StanCOG’s 2014 Regional Transportation Plan/Sustainable Communities Strategy, growth would be centered within existing urban areas, and StanCOG would strive to
create more mixed-use developments and increase multi-modal transportation funding.

**Environmental Consequences**

Growth inducement, the environmental consequence of growth, is the relationship between constructing a project and the opportunity for growth within both the project study area and the larger geographical area. This relationship can either support planned growth or lead to unplanned growth. Although a transportation project may affect the amount, location, and rate of growth in an area, market demand for new development, the availability of infrastructure (such as sewers and water), local and regional economic trends, and governmental policies would also contribute to potential growth. All of these factors are necessary when assessing the growth potential for an area.

Table 2-5 lists the first cut screening factors developed to determine the likelihood of growth-inducing impacts from the project. Based on the following assessment, it was determined that further analysis for either a No-Build or Build future development scenario was necessary (see Table 2-5).

**Table 2-5: Growth-related Screening Factors and Evaluation**

<table>
<thead>
<tr>
<th>Screening Factor</th>
<th>Evaluation Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
<td>The proposed project would construct a new alignment on Caltrans right-of-way north of existing SR 132 (Maze Boulevard). The new alignment (with improved circulation, congestion relief, and enhanced operations) would create new access to less developed areas in the western portion of the study area and increase access efficiency throughout the study area by improving travel speeds and times and increasing the level of service for area roadways and intersections (see Section 2.1.6, Traffic and Transportation/Pedestrian and Bicycle Facilities). However, the new facility would be access controlled, thus general accessibility to, from, and within the study area would not change. Additionally, a shift in accessibility to development in the area (for example, employment and shopping centers) would not occur, and the existing highway would remain accessible under its current configuration.</td>
</tr>
<tr>
<td>Project type, location, and growth pressure</td>
<td>The proposed project type would be a new highway on new alignment. The location of the project study area consists mostly of an urban setting (built-out land use) in the eastern portion to urban/suburban fringe (undeveloped parcels next to an urban area) and a rural setting in the western portion of the study area. Transportation projects in urban areas surrounded by rural or fringe land uses generally have higher growth pressures as population and economic development generates demand to convert rural areas to developed uses. On the eastern end of the project study area, growth pressure would be low because the urban area is already built out, and no new development is proposed in the foreseeable future (see Step 2 following the table). As for the western portion of the study area, since route adoption in 1956, the area has not experienced substantial growth. Although growth pressure is anticipated to occur with the project, land conversion restrictions within agricultural zones and on Williamson Act contract lands are expected to minimize growth pressures.</td>
</tr>
</tbody>
</table>
Table 2-5: Growth-related Screening Factors and Evaluation

<table>
<thead>
<tr>
<th>Screening Factor</th>
<th>Evaluation Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreseeable growth</td>
<td>The proposed project could induce minimal growth under either build alternative. There is limited existing and planned infrastructure in the area, regional and local population and economic projections are less than previously forecasted, and land use controls (Williamson Act contract land and agricultural development land use policies) are in place within Stanislaus County to prevent growth beyond what is already planned within the county and city. Also, only minor development is being proposed at the current time and would occur with or without the project. Under the no-build scenario (detailed following the table), increased congestion, constrained mobility, degrading level of service, and access restrictions would limit growth-induced impacts.</td>
</tr>
<tr>
<td>Growth and its impact on resources of concern</td>
<td>Growth-related impacts to surrounding resources of concern would likely involve impacts to cultural resources, farmlands, natural communities, and special-status species.</td>
</tr>
</tbody>
</table>

Note: The assessment of screening factors is based on the “first-cut” screening process outlined in Caltrans’ Guidance for Preparers of Growth-related, Indirect Impact Analyses.

**Step 1: Review Previous Project Information and “Right-Size” the Analysis**

A qualitative analysis was completed based on both the Stanislaus County and Modesto general plans and interviews with the County and City planning departments. The qualitative analysis evaluated potential growth in and around the project study area.

**Step 2: Identify the Potential for Growth for Each Alternative**

Two future development scenarios were analyzed for growth potential.

**Future Development Scenario, No-Build Alternative**

Under the No-Build Alternative, the eastern portion of the project study area would continue to experience low-growth potential because of its urban and developed nature. The only foreseeable change in land use would be the re-designation of land from a Redevelopment Planning District to an Industrial use. The western portion of the study area would remain mostly rural in nature, but Modesto’s urban fringe would push farther into Stanislaus County’s agricultural land. Land west of Morse Road and land east of North Dakota Avenue would be re-designated to a Business Park land use for development at some undefined time in the future. Modesto would continue to assess its inventory of vacant and agricultural lands for future development through its Urban Area Growth Policy, and both the College West and Highway 132 Comprehensive Planning districts would be evaluated as areas for potential economic development.
Future Development Scenario, Build Alternatives
Both build alternatives are analyzed together because of the similarities concerning accessibility; type, location, and growth pressure; foreseeable growth; and potential impact on resources of concern. Both build alternatives would result in changes to existing land use designations by converting current land uses to a transportation use that could potentially result in growth-related impacts on sensitive resources (such as cultural resources, farmlands, natural communities, and special-status species) within the study area and the larger geographical area of the project. Both build alternatives would improve circulation, decrease congestion, and enhance operations, which would increase access efficiency throughout the study area. Within Modesto, the build alternatives could improve access to the College West Comprehensive Planning District, the Highway 132 Comprehensive Planning District, and any future development within the Redevelopment Planning District or Business Park land uses. Through improving travel speeds and times and increasing the level of service for area roadways and intersections, improved access could lead to potential future economic growth or development (growth-related impacts) in these areas. For Stanislaus County, improved access could lead to growth pressure on the urban fringe and rural land in the western portion of the study area.

Planned land use changes as part of Modesto’s General Plan Amendment in the eastern, more urbanized portion of the project study area could benefit from improved regional and interregional circulation, reduced traffic congestion, and enhanced operations under either build alternative. But, this area would likely not experience growth-related impacts because it is already fully developed. The western portion of the study area, which is mostly designated for agricultural land use and a portion of which is proposed as a Business Park land use at some undetermined time in the future, could experience an increased rate of planned growth because of the project.

However, growth-related impacts under both build alternatives would be minimal based on both Modesto’s and Stanislaus County’s general plans and interviews of staff at each respective planning department. For the western portion of the study area, there is limited existing infrastructure (sewer and water) that would support development, and future expansion of this infrastructure is not planned for the area. Stanislaus County also has only two foreseeable projects/developments proposed at this time—two conservation easements. Within Modesto, there are no formal development plans for the two comprehensive planning districts. Furthermore, the proposed Kansas-Woodland Business Park is currently on hold, and no developments are planned within the Redevelopment Planning District. Also, regional population
and economic projections are lower than previously forecasted, and the County has noted that urban development in the area is planned to occur in only the Community of Salida, which is outside the project’s geographical area.

Lastly, the western portion of the project study area (an area more likely to experience growth pressure) is not open to development because of agricultural zoning and Williamson Act contracts. The Stanislaus County General Plan protects agricultural land (particularly prime and statewide important farmland) and allows conversion only for exceptional needs.

As such, neither build alternative is likely to have a measurable effect on growth for the foreseeable future. Therefore, both build alternatives would result in minimal growth-related impacts beyond what has already been planned within Stanislaus County and Modesto and would have no impact on the listed resources of concern in the area.

**Avoidance, Minimization, and/or Mitigation Measures**
Both build alternatives would result in minimal growth-related impacts. Therefore, no avoidance, minimization, and mitigation measures are required.

### 2.1.3 Farmlands

**Regulatory Setting**
NEPA and the Farmland Protection Policy Act (7 U.S. Code 4201-4209; and its regulations, 7 Code of Federal Regulations 658) require federal agencies, such as the Federal Highway Administration, to coordinate with the Natural Resources Conservation Service if their activities may irreversibly convert farmland (directly or indirectly) to nonagricultural use. For purposes of the Farmland Protection Policy Act, farmland includes prime farmland, unique farmland, and land of statewide or local importance (See Appendix I, Farmland Conversion Impact Rating Form).

CEQA requires the review of projects that would convert Williamson Act contract land to non-agricultural uses. The main purposes of the Williamson Act are to preserve agricultural land and to encourage open space preservation and efficient urban growth. The Williamson Act provides incentives to landowners through reduced property taxes to discourage the early conversion of agricultural and open space lands to other uses.
Affected Environment

The following section is based on the State Route 132 Community Impact Assessment Report (July 2016). Accordingly, coordination with the Natural Resources Conservation Service was conducted throughout the planning process for the project.

The proposed project limits encompass 79.34 acres of prime farmland. Of this acreage, 14.33 acres are properties under a Williamson Act contract, which provides property tax relief to owners of farmland and open-space land in exchange for a ten-year agreement that the land would not be developed or converted to another use. Agriculture includes croplands, orchards, and pastures, and the study area is composed mostly of established and fruiting walnut and almond trees. The land also consists of silage and hay crops. Figure 2-2 shows these agricultural lands. A complete methodology for calculating acreages is included in the State Route 132 Community Impact Assessment Report.

Stanislaus County encompasses 1,515 square miles, or 969,600 acres of land. According to the California Department of Conservation Farmland Mapping and Monitoring Program’s 2015 Farmland Conversion Report, Stanislaus County includes 346,910 acres of prime and unique farmland. According to the California Land Conservation Act’s 2014 Status Report, Williamson Act contracts within Stanislaus County accounted for 683,619 acres, more than half of the land within the County.

Environmental Consequences

Build Alternatives

Implementation of either build alternative would result in the conversion of prime and unique farmland to non-agricultural use. Both build alternatives would also conflict with existing agricultural operations and impact Williamson Act contract land. In May 2014, Form NRCS-CPA-106 (Farmland Conversion Impact Rating Form) was submitted to the Modesto Natural Resources Conservation Service to calculate the relative impacts of each build alternative on farmlands (see Appendix I). The site assessment evaluation is based on criteria, such as the percent of a site being farmed, the protection provided by state and local governments, and the availability of agricultural support services nearby. Site assessment scores are used to estimate the value of the impacted farmland and can add up to a maximum of 260 points.

Both build alternatives would result in the conversion of 64.8 acres of prime and unique farmland, 3.51 acres of which are encumbered under Williamson Act contracts. This represents a 0.016 percent and 0.0005 percent decrease in County
wide totals of prime and unique farmland and Williamson Act contract lands, respectively. Table 2-6 lists direct acreage impacts to prime and unique farmland and Williamson Act land and compares these impacts to the total acres within Stanislaus County.

### Table 2-6: Farmland Conversion by Build Alternative

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1</td>
<td>177.58</td>
<td>64.8</td>
<td>0.016%</td>
<td>3.51</td>
<td>0.0005%</td>
<td>160</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>176.94</td>
<td>64.8</td>
<td>0.016%</td>
<td>3.51</td>
<td>0.0005%</td>
<td>160</td>
</tr>
</tbody>
</table>

Source: Form NRCS-CPA-106 (Farmland Conversion Impact Rating for Corridor-Type Projects) (May 2014) in the State Route 132 Community Impact Assessment (July 2016).

While there are no farmlands of statewide importance in the study area, both Alternative 1 and Alternative 2 would result in a Farmland Conversion Impact Rating score of 160. The score is based on twelve criteria related to factors such as farm size, on-farm investments, availability of farm support services, distance to urban areas, percentage of land currently being farmed, state and local government protection, and other factors. The maximum score possible is 260 points. A score of 160 points is used as the minimum impact rating indicator for the Natural Resources Conservation Service and others to evaluate and consider the impacts to farmland as a result of a proposed alternative.

For scores 160 and above, there is the potential for an adverse impact. However, the measures detailed below would minimize farmland impacts in the study area.

Nine parcels under Williamson Act contracts were identified within the project limits. Both build alternatives would acquire 3.51 acres from parcels under Williamson Act contracts. The conversion of small slivers, or linear strips, of land to transportation use should not affect the Williamson Act contract status of the remainder parcels because the amount of acreage remaining on the parcel is substantial enough to avoid cancellation of the contract. One parcel located near the southwest corner of the Kansas Avenue and Dakota Avenue intersection is anticipated to require full acquisition (Appendix F, Right of Way Impacts Figure 1). Therefore, the current Williamson Act contract associated with this parcel would require termination.
Figure 2-2: California Important Farmlands and Williamson Act Land in the Study Area
Both build alternatives would impact irrigation ditches at some locations. The build alternatives would also split some existing agricultural operations, which may result in increased access times for farm equipment and livestock. Bisected parcels would be identified during the project’s final design, and design features would be incorporated to minimize the impact and maintain access to affected properties.

No-Build Alternative

The No-Build Alternative would not result in the construction of any of the proposed improvements and, therefore, would not contribute to direct or indirect impacts related to prime farmland, unique farmland, farmland of statewide or local importance, or Williamson Act contract land.

Avoidance, Minimization, and/or Mitigation Measures

Both build alternatives would result in the conversion of 64.8 acres of prime and unique farmland, 3.51 acres of which are encumbered under Williamson Act contracts. This represents a 0.016 percent and 0.0005 percent decrease in County wide totals of prime and unique farmland and Williamson Act contract lands, respectively. Given the total acreage of prime and unique farmlands and Williamson Act contract lands and the farmland impact rating score of 160 for both build alternatives, this is a minimal impact within Stanislaus County.

During construction of the proposed project temporary impacts related to access and irrigation ditches are anticipated. Implementation of the following measures would reduce temporary impacts to farmland, which may occur during construction.

FARM-1 The contractor would restrict all construction materials, tools, and vehicles within the right-of-way for the project.
FARM-2 The contractor would re-construct irrigation ditches and install irrigation pipelines damaged during construction.
FARM-3 During final design, the California Department of Transportation would coordinate with property owners and agricultural operators to incorporate design features to maintain property access and operation.
FARM-4 The contractor would compensate for the loss or damage to crops resulting from construction activities.
2.1.4 Community Impacts

2.1.4.1 Community Character and Cohesion

Regulatory Setting
NEPA of 1969 as amended established that the federal government use all practicable means to ensure that all Americans have safe, healthful, productive, and aesthetically and culturally pleasing surroundings (42 U.S. Code 4331[b][2]). The Federal Highway Administration in its implementation of NEPA (23 U.S. Code 109[h]) directs that final decisions regarding projects are to be made in the best overall public interest. This requires taking into account adverse environmental impacts, such as destruction or disruption of human-made resources, community cohesion, and the availability of public facilities and services.

Per CEQA, an economic or social change by itself is not considered a significant effect on the environment. But, if a social or economic change is related to a physical change, then social or economic change may be considered in determining whether the physical change is significant. Since the proposed project would result in physical change to the environment, it is appropriate to consider changes to community character and cohesion in assessing the significance of the project’s effects.

Affected Environment
The following section is based on the State Route 132 Community Impact Assessment Report, completed in July 2016. The affected environment of a community is largely based on boundaries, subdivision, demographics (population, housing, income, and economics), and community features, all of which are described further below.

Neighborhoods/Community
A community represents a group of people rooted in a defined geographic place and whose daily lives involve contact with and dependencies on other members of the community. Such contact and relationships may be shared at community facilities (schools, common paths of travel, and use of daily shopping and services) or by common social characteristics that help establish formal or informal organizations or activities. Community cohesion is the degree to which residents have a “sense of belonging” to their neighborhood or a strong attachment to neighbors, groups, or institutions, usually as a result of continued association over time. New transportation projects can potentially bisect and disrupt cohesive communities.
During the 1980s, residential development occurred mostly in the eastern portion of the study area, while the western portion contained mostly agricultural properties along existing SR 132 (Maze Boulevard), as it does today. Because the state had already purchased some of the land for a future realignment of SR 132, development to the east took place mostly north of Kansas Avenue where there are two residential neighborhoods from east of Morse Road to North Carpenter Road. Another neighborhood sits to the south along Elm Avenue from east of Shirley Court to SR 99 (the Elm Tract neighborhood). Though other residential developments lie in and near the study area, these three neighborhoods best represent the concept of community.

Based on addresses gathered during the four public information/neighborhood meetings/open houses for the project and data from the U.S. Census, all three neighborhoods have roughly the same number of residents, housing units (most of which are single-family structures), and households with two or more people residing in each unit, all of which can be indicators of community cohesion. Other potential indicators are the number of owner-occupied houses compared to renter-occupied houses, in addition to the number of families and ethnic characteristics of each neighborhood. About two-thirds of the homes within the Elm Tract neighborhood and the neighborhood north of Kansas Avenue and east of North Rosemore Avenue are owner-occupied. This compares to over three-fourths of the homes being owner-occupied in the neighborhood north of Kansas Avenue and west of North Rosemore Avenue. Families (two or more people in a home) make up about four out of every five households in each of the three neighborhoods, and the ethnic characteristic of each neighborhood is approximately the same as the larger study area (see Table 2-7). Based on these indicators, the three neighborhoods provide a framework for a community and a sense of place and commonality for residents. Living in close proximity, neighbors share not only roads and transportation services but also community facilities; they also have a common social character and engage in local activities together.

Population and Ethnicity Characteristics
Table 2-7 lists the total population, race, and ethnic characteristics of the study area in comparison to Modesto and Stanislaus County.
Table 2-7: Area Population, Race, and Ethnicity Characteristics

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Study Area</th>
<th>Modesto</th>
<th>Stanislaus County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population</td>
<td>17,672</td>
<td>201,165</td>
<td>514,453</td>
</tr>
<tr>
<td>White</td>
<td>55.4%</td>
<td>65.0%</td>
<td>65.5%</td>
</tr>
<tr>
<td>Black or African American</td>
<td>5.8%</td>
<td>4.2%</td>
<td>2.9%</td>
</tr>
<tr>
<td>American Indian and Alaska Native</td>
<td>2.3%</td>
<td>1.2%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Asian</td>
<td>6.2%</td>
<td>6.7%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific</td>
<td>0.9%</td>
<td>1.0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Islander</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some Other Race</td>
<td>22.8%</td>
<td>15.5%</td>
<td>19.3%</td>
</tr>
<tr>
<td>Two or More Races</td>
<td>6.6%</td>
<td>6.3%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Total Minority</td>
<td>44.6%</td>
<td>35.0%</td>
<td>34.5%</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>49.2%</td>
<td>35.5%</td>
<td>41.9%</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>50.8%</td>
<td>64.5%</td>
<td>58.1%</td>
</tr>
</tbody>
</table>

Note: The 2010 Census asked respondents to identify their race and ethnicity based on their own perception of their racial and ethnic identity. Ethnicity is defined as a population that shares common characteristics such as religion, traditions, culture, language, and/or tribal or national origin. As such, people who identify themselves as Hispanic or Latino can be of any race.

Source: Community Impact Assessment (July 2016)

Housing Characteristics

Table 2-8 defines the overall housing characteristics for Stanislaus County and Modesto.

Table 2-8: 2012 Area Housing Characteristics

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Number of Housing Units</th>
<th>Vacancy rate</th>
<th>Number of Housing Units Projected in 2023a</th>
<th>% of Single-family Homesb</th>
<th>Median Rent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modesto</td>
<td>73,918</td>
<td>7.6%</td>
<td>82,711</td>
<td>72.9%c</td>
<td>$997</td>
</tr>
<tr>
<td>Stanislaus County</td>
<td>179,176</td>
<td>7.4%</td>
<td>205,396</td>
<td>78.6%</td>
<td>$978</td>
</tr>
</tbody>
</table>

a Projected housing units in 2023 are based on the 2014 to 2023 Net New Housing Units calculated by the Department of Housing and Community Development and StanCOG’s Housing Needs Assessment.
b This percentage includes both attached and detached single-family homes. The remainder of the total includes multi-units, mobile homes, and farm labor/migrant housing units.
c Per Modesto’s draft Housing Element, the average home price in Modesto is approximately $140,000.

Source: Community Impact Assessment (July 2016)

The California Department of Housing and Community Development administers housing allocations for each region in California as part of a statewide mandate to address housing issues related to future growth. From January 1, 2014 to June 30, 2023, an additional 21,330 housing units would be needed to accommodate projected
household growth within Stanislaus County. This represents a 9.6 percent increase in units for Modesto and an 11.9 percent increase in units for Stanislaus County. Stanislaus County anticipates the following housing unit distribution: 5,225 very low-income housing units, 3,350 low-income housing units, 3,670 moderate-income housing units, and 9,085 above moderate-income housing units.

**Economic, Income, and Business Characteristics**

The economy within the project area can be characterized as relating to both agriculture and professional services. While the agricultural industry dominates the unincorporated areas of the project study area, the retail (13.6 percent), education and health care (25.5 percent), manufacturing (10.8 percent), and arts, entertainment, recreation and accommodation and food service (8.8 percent) industries are most prominent in Modesto. Major manufacturing employers in the region include E&J Gallo Winery, Memorial Medical Center, Modesto City Schools, and Seneca Foods. As for other economic indicators, Table 2-9 lists the overall labor force and unemployment rates for the area.

**Table 2-9: 2012 Area Economic Characteristics**

<table>
<thead>
<tr>
<th>Economic Indicator</th>
<th>Modesto</th>
<th>Stanislaus County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Force</td>
<td>95,519</td>
<td>242,072</td>
</tr>
<tr>
<td>Unemployment</td>
<td>14,738 (9.6%)</td>
<td>37,836 (9.8%)</td>
</tr>
</tbody>
</table>

*Source: Community Impact Assessment (July 2016)*

Table 2-10 presents income information for the project study area, Modesto, and Stanislaus County.

**Table 2-10: Area Household Income and Population Below the Poverty Level**

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Median Household Income$^a$</th>
<th>Percent of Population Below Poverty Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Area</td>
<td>$41,179</td>
<td>23.6%</td>
</tr>
<tr>
<td>Modesto</td>
<td>$49,205</td>
<td>19.5%</td>
</tr>
<tr>
<td>Stanislaus County</td>
<td>$49,866</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

*$^a$ Median household income is in 2012 inflation-adjusted dollars.

*Source: Community Impact Assessment (July 2016)*
Established businesses in the study area are generally east of North Carpenter Road, and many of these businesses depend on freeway and roadway access. Business types are typically retail, including restaurants, automotive, and lodging. One commercial manufacturing business (Foster Farms Dairy) is next to the study area. As noted above, agricultural-related businesses make up most of the economy in the western portion of the study area.

**Community Facilities**
Numerous community facilities (schools, emergency services, and utilities) are sit within a half-mile of the study area. As shown in Figure 2-3, most of these facilities are within Modesto and the eastern portion of the study area. It should be noted that the community impacts study area also included the existing SR 132 (Maze Boulevard) corridor from Dakota Avenue to SR 99.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-3: Community Services and Facilities in the Study Area
Environmental Consequences

Neighborhoods/Community Impacts: Build Alternatives
Because it would sit on existing Caltrans right-of-way for most of the new alignment, neither build alternative would bisect the existing subdivisions/neighborhoods within the project study area. While both build alternatives would require the relocation and acquisition of some businesses and residences (see Section 2.1.4.2, Relocations and Real Property Acquisition), displacements and acquisitions would occur on the periphery of the neighborhoods (primarily the Elm Tract neighborhood) and within areas west of SR 99. The relocations would not introduce a geographical gap or division to existing neighborhoods.

Also, neither build alternative would separate local residents from community facilities or prevent access to community services. Local residents and the surrounding community would experience a change in (potentially enhanced) quality of life from increased circulation, congestion relief, and improved operations of the transportation network. This would, in turn, improve access to businesses, residences, and community services and facilities.

Neighborhoods/Community Impacts: No-Build Alternative
The No-Build Alternative would not result in the construction of any of the proposed improvements and would not create any new physical barriers to community cohesion that would divide, disrupt, or isolate neighborhoods or residents. Therefore, the No-Build Alternative would not impact community cohesion or local neighborhoods in the study area.

Housing Impacts: Build Alternatives
Both build alternatives would result in tenant- and owner-occupied residential relocations and partial acquisitions (see Section 2.1.4.2, Relocations and Real Property Acquisition). Because of the project’s urban setting, the acquisition and removal of existing housing would not likely have an effect on the total housing stock in Modesto or its neighborhoods. Both build alternatives may result in a decrease of residential property values where partial acquisitions would occur because of the encroachment of the project’s right-of-way, the reduction in property square footage, and/or the increase in traffic noise. Properties next to residences that would be acquired may also have property values affected. However, beneficial impacts to property values would result from less truck traffic on residential streets and congestion relief throughout the study area.
Housing Impacts: No-Build Alternative
The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not result in additional housing needs or changes in property values other than what may result because of increased traffic congestion and decreased circulation within and near the study area.

Economic, Income, and Business Impacts: Build Alternatives
Implementation of either build alternative would improve east-west travel within the study area, which would enhance regional and interregional circulation and highway operations. These improvements would benefit local and regional commerce by providing faster and more efficient transportation of goods and services throughout the region. However, short-term economic and business impacts would occur from business displacements, potential loss of tax revenue, and changes to business access.

Both Alternative 1 and Alternative 2 would displace at least 10 businesses, including a Tuff Shed Business, a governmental agency, several automotive shops and commercial warehouses, a hotel, and a restaurant, all of which are further described in Section 2.1.4.2, Relocations and Real Property Acquisition. Because businesses would be relocated, whether within Modesto or the unincorporated portions of Stanislaus County, impacts to long-term employment are not anticipated.

Businesses in the project study area, both on the east and west sides of SR 99 and along Kansas Avenue, have been established with the existing freeway access ramps in mind. Phase 1 of the project involves construction of a new connection between SR 99 and SR 132 in Modesto just south of the Kansas Avenue overcrossing. The proposed project would require closure of some existing ramps, modification of some existing ramps, and construction of some new ramps, all of which may affect surrounding businesses because of the change in freeway traffic circulation patterns.

Relocation outside the immediate vicinity of the project study area would be considered if replacement property were not available because of zoning or other constraints. A decrease in local and business tax revenue could occur, potentially leading to a loss of revenue from permanent and partial acquisitions of residential and business properties. However, the loss of City or County taxes would be very small in proportion to current tax revenues. Until the relocation decisions are finalized, impacts to tax revenue as a result of businesses relocations cannot be quantified.
Access to businesses in the eastern portion of the study area has been oriented to SR 99 and the existing on- and off-ramps. The two build alternatives would require changing or closing some existing ramps and constructing new ramps. Surrounding businesses would be impacted from the change in freeway traffic circulation patterns. The northern driveway for the Harley Davidson Motorcycle dealership would be closed, but the driveway along North Carpenter Road would remain open. Access to Westamerica Bank on North Carpenter Road may also need to be closed. A design exception may be considered to allow the driveways to remain open or modified to mitigate impacts, but exceptions would not be determined until final design. The changes to existing ramps are necessary to provide acceptable freeway traffic operations and to maintain the local road access to SR 99.

**Alternative 1**

Alternative 1 would realign, lengthen, and raise the Kansas Avenue overcrossing. The build alternative would also remove the existing southbound SR 99 off-ramp to Kansas Avenue and the southbound SR 99 loop on-ramp from Kansas Avenue. Removing the SR 99 off-ramp could affect access for businesses in the vicinity. A new SR 99 access configuration at the Needham Street overcrossing would result in out-of-direction travel for patrons and employees of businesses located nearby. Businesses may also experience a potential reduction in freeway-related traffic.

Because the Kansas Avenue overpass would be replaced, the profile of Kansas Avenue would be raised several feet, which would possibly require driveways close to the bridge to be closed or moved. This could make access to the affected properties more difficult.

**Alternative 2**

Under Alternative 2, the southbound SR 99 off-ramp to Kansas Avenue would remain open, but the northbound SR 99 on- and off-ramps would be closed. Southbound freeway traffic would be affected as the existing southbound SR 99 on-ramp from Kansas Avenue would be changed with an on-ramp to a collector-distributor ramp (a type of road that parallels and connects a freeway’s or highway’s main travel lanes to a frontage road or on-ramp) that would become 5th Street. From 5th Street, traffic continuing onto southbound SR 99 would have to enter at the H Street on-ramp. Businesses in this location may be impacted if motorists choose to use services with more traditional freeway access rather than the new access.
Economic Impacts: No-Build Alternative
The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not directly affect the local or regional economy. Indirect and long-term economic effects could result from worsening congestion, loss of mobility, and reduced access to businesses in the project study area. This would likely have an adverse impact on local and regional businesses and the overall economy in the area.

Community Facilities Impacts: Build Alternatives
No community facilities would be directly impacted by either build alternative. Access to community services and facilities would be maintained throughout construction. Alternative 1 and Alternative 2 would not adversely affect local residents from accessing community services and would not have any impact on the number of students attending school. Local residents and commuters would benefit from increased mobility and access improvements to businesses, residences, and community services and facilities.

Community Facilities Impacts: No-Build Alternative
The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not directly impact any community facilities within the project study area.

Avoidance, Minimization, and/or Mitigation Measures
Implementation of measures to reduce impacts to housing and businesses is discussed in Section 2.1.4.2, Relocations and Real Property Acquisitions.

2.1.4.2 Relocations and Real Property Acquisition

Regulatory Setting
Caltrans’ Relocation Assistance Program is based on the Federal Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (as amended) and Title 49 Code of Federal Regulations Part 24. The purpose of the Relocation Assistance Program is to ensure that persons displaced as a result of a transportation project are treated fairly, consistently, and equitably so that such persons would not suffer disproportionate injuries as a result of projects designed for the benefit of the public as a whole. See Appendix D for a summary of the Relocation Assistance Program.
All relocation services and benefits are administered without regard to race, color, national origin, or sex in compliance with Title VI of the Civil Rights Act (42 U.S. Code 2000d, et seq.). See Appendix C for a copy of the Caltrans Title VI Policy Statement.

**Affected Environment**

The following section is based on the *State Route 132 Community Impact Assessment Report* (July 2016) and the *Draft Relocation Impact Report* (September 2014).

Property types found within the project study area (and located within Modesto’s city limits) are composed of residential (mostly single-family residences) and commercial properties (e.g., warehouses, restaurants, hotel), with a small number of industrial properties and places of worship. Section 2.1.4.1, Community and Character Cohesion, describes the general family characteristics (minority, ethnic, family, and income levels) of the households being potentially relocated or partially acquired. The area just west of Modesto, which is under Stanislaus County jurisdiction, is mostly agricultural and single-family residential properties. Right-of-way acquisition would affect the Elm Tract neighborhood, businesses and residents northeast of SR 99 and west of North Washington Street, and the area south of Kansas Avenue along the proposed new alignment right-of-way.

**Environmental Consequences**

**Build Alternatives**

Relocation impacts are among the most sensitive of community-related impacts associated with transportation projects. The relocation of families from neighborhoods, or businesses from their existing locations, affects not only the relocatees, but also those who remain in the affected neighborhood and those who live in the new areas where the relocatees would live. Determination of a partial acquisition versus a full acquisition (a relocation impact) was completed by experienced right-of-way staff after evaluation of proposed project impacts on each parcel in accordance with Caltrans right-of-way manual policies.

Table 2-11 lists the proposed full residential relocations for both build alternatives. A full residential relocation is required when access to the property would be removed by the project or the proximity of the project’s structures would encroach on the property’s setbacks as determined by Stanislaus County and Modesto.
Table 2-11: Residential Relocations by Build Alternative

<table>
<thead>
<tr>
<th>Residential Unit Type</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner occupants of single-family residences</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Tenant occupants of single-family residences</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Owner occupants of multi-unit residences</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Owner occupants of mobile homes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tenant occupants of mobile homes</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td><strong>Total Units</strong></td>
<td><strong>32</strong></td>
<td><strong>32</strong></td>
</tr>
</tbody>
</table>

*Source: Draft Relocation Impact Report (September 2014)*

Table 2-12 lists the proposed partial residential acquisitions for both build alternatives. Partial acquisitions result when only a portion of a property may be needed for the project, and that portion would not be enough to close access, encroach on the property’s setback, or require relocation.

Table 2-12: Residential Partial Acquisitions by Build Alternative

<table>
<thead>
<tr>
<th>Residential Property Type</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner occupants of single-family residences</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Tenant occupants of single-family residences</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Owner occupants of multi-unit residences</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Owner occupants of mobile homes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tenant occupants of mobile homes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Total Properties</strong></td>
<td><strong>30</strong></td>
<td><strong>30</strong></td>
</tr>
</tbody>
</table>

*Source: Draft Relocation Impact Report (September 2014)*

Table 2-13 lists the proposed full business relocations for both build alternatives. Similar to residential relocations, a full business relocation is required when access to the property would be removed by the project or the proximity of the project’s structures would encroach on the property’s setbacks as determined by Stanislaus County and Modesto.
Table 2-13: Business Relocations by Build Alternative

<table>
<thead>
<tr>
<th>Business Type</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Retail</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commercial/Industrial</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Government</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Service</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Agriculture (Farms)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vacant</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>11</strong></td>
<td><strong>10</strong></td>
</tr>
</tbody>
</table>

*Source: Draft Relocation Impact Report (September 2014)*

Table 2-14 lists the proposed partial business acquisitions for both build alternatives. Similar to partial residential acquisitions, a partial business acquisition results when only a portion of a property may be needed for the project, and that portion would not be enough to close access or encroach on the property’s setback.

Table 2-14: Business Partial Acquisitions by Build Alternative

<table>
<thead>
<tr>
<th>Business Type</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Retail</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Commercial/Industrial</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Government</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Service</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Agriculture (Farms)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Vacant</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>24</strong></td>
<td><strong>28</strong></td>
</tr>
</tbody>
</table>

*Source: Draft Relocation Impact Report (September 2014)*

Concerning business relocations or acquisitions, there are numerous warehouse facilities available for rent and purchase in the greater Modesto area. But, auto body and auto repair shops may have a more difficult time finding sites for relocation because very few sites are currently listed for sale or rent in the Modesto area. Finding an appropriate relocation site for the City of Modesto storage/maintenance
facilities may also be difficult because no similar types of properties are for sale or lease in Modesto.

Because of the current real estate market, purchasing a replacement business site may be more difficult for owners that purchased property during the height of the market. For business tenants, increased rental rates may also be a hardship for businesses that have been in the same location for many years paying below-market rental rates. If the businesses are relocated far from the displacement site, employees may need to relocate with the business or find new employment.

The extent of these impacts cannot be determined at this time, but would be given due consideration once relocations are finalized. Once a preferred alternative is selected, an interview process with each of the business owners would be initiated to determine the type of business and occupancy, the size of the business, and the extent of the impacts on the business.

The proposed project would impact the housing stock in the project area. Both Alternative 1 and Alternative 2 would eliminate residential units in the study area. While this may negatively affect the housing stock in the immediate project area, there are available homes for rent in the City of Modesto outside the project area. Because many residential tenants may be required to relocate outside the study area, comparability, in terms of amenities and public utilities would need to be evaluated on an individual basis during the relocation process. While finding suitable replacement housing in the immediate area may pose a problem, rentals and homes for sales in the surrounding area are available. Relocations during Phase 1 would primarily occur along SR 132 and the remaining relocations would occur during Phase 2.

**No-Build Alternative**

The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not result in any impacts caused by residential or business relocations or partial acquisitions.

**Avoidance, Minimization, and/or Mitigation Measures**

Implementation of the following measures would reduce impacts caused by relocations and partial acquisitions:

- **CI-1** For any person(s) whose real property interests may be impacted by the project, the acquisition of those property interests would comply fully with the
Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended. The act is a federally mandated program that applies to all acquisitions of real property or displacements of persons resulting from federal or federally assisted programs or projects. It was created to provide for and ensure the fair and equitable treatment of all such persons (see Appendix D).

Also, the Fifth Amendment of the U.S. Constitution provides that private property may not be taken for a public use without payment of “just compensation.” All impacted owners would be provided notification of the acquiring agency’s intent to acquire an interest in their property, including a written offer letter of just compensation specifically describing those property interests. A right-of-way specialist would be assigned to each property owner to assist them with this process.

CI-2 All impacted owners would be provided notification of the acquiring agency’s intent to acquire an interest in their property, including a written offer letter of just compensation specifically describing those property interests. A right-of-way specialist would be assigned to each property owner to assist them with this process.

CI-3 Caltrans would be responsible for assisting with relocations for individuals and businesses that are undergoing a difficult transition, consistent with the requirements of the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970. Measures would be taken to ensure that nearby adequate, comparable housing for all displaced residents would be utilized before looking beyond the existing neighborhood.

CI-4 The Project Engineer would ensure that design refinements are incorporated in the process to minimize impacts to existing land uses related to the temporary use and/or permanent acquisition of property.

CI-5 Prior to and during construction, the Project Engineer would ensure that the design refinements to minimize impacts to existing land uses related to temporary use and/or permanent acquisition of property are properly implemented by the contractor.
2.1.4.3 Environmental Justice

**Regulatory Setting**
All projects involving a federal action (funding, permit, or land) must comply with Executive Order 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*, signed by President Bill Clinton on February 11, 1994. This order directs federal agencies to take the appropriate and necessary steps to identify and address disproportionately high and adverse effects of federal projects on the health or environment of minority and low-income populations to the greatest extent practicable and permitted by law. Low income is defined based on the Department of Health and Human Services poverty guidelines. For 2012, the low-income threshold for Stanislaus County was $19,090.

All considerations under Title VI of the Civil Rights Act of 1964 and related statutes have also been included in this project. Caltrans’ commitment to upholding the mandates of Title VI is evidenced by its Title VI Policy Statement, signed by the Director, which can be found in Appendix C of this document.

**Affected Environment**
The following section is based on the State Route 132 *Community Impact Assessment Report*, which was completed in July 2016 and the Draft Relocation Impact Report (September 2014).

The environmental justice analysis was conducted using 1) demographic data from the 2010 Census (at the census tract and block levels), 2) the 2008 to 2012 American Community Survey 5-year estimates (at the census tract level), and 3) general observations of the community. As listed in Table 2-15 and shown in Figure 2-4, the project study area consists of mostly minority and low-income populations. Table 2-16 presents the population, race, and ethnicity characteristics in the study area. Table 2-17 presents the household income and the population below poverty for the study area, City of Modesto, and Stanislaus County.
Table 2-15: Area Minority and Poverty Status

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total % of Minority Populationa</th>
<th>Percent of Population Below Poverty Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Area</td>
<td>44.6%</td>
<td>23.6%</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>35.0%</td>
<td>19.5%</td>
</tr>
<tr>
<td>Stanislaus County</td>
<td>34.5%</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

a Does not include Hispanic or Latino origin. People who identify themselves as Hispanic can be of any race.

Source: Community Impact Assessment (July 2016)

Table 2-16: Area Population, Race, and Ethnicity Characteristics

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Study Area</th>
<th>Modesto</th>
<th>Stanislaus County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population</td>
<td>17,672</td>
<td>201,165</td>
<td>514,453</td>
</tr>
<tr>
<td>White</td>
<td>55.4%</td>
<td>65.0%</td>
<td>65.5%</td>
</tr>
<tr>
<td>Black or African American</td>
<td>5.8%</td>
<td>4.2%</td>
<td>2.9%</td>
</tr>
<tr>
<td>American Indian and Alaska Native</td>
<td>2.3%</td>
<td>1.2%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Asian</td>
<td>6.2%</td>
<td>6.7%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander</td>
<td>0.9%</td>
<td>1.0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Some Other Race</td>
<td>22.8%</td>
<td>15.5%</td>
<td>19.3%</td>
</tr>
<tr>
<td>Two or More Races</td>
<td>6.6%</td>
<td>6.3%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Total Minority</td>
<td>44.6%</td>
<td>34.9%</td>
<td>34.5%</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>49.2%</td>
<td>35.5%</td>
<td>41.9%</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>50.8%</td>
<td>64.5%</td>
<td>58.1%</td>
</tr>
</tbody>
</table>

Note: The 2010 Census asked respondent to identify their race and ethnicity based on their own perception of their racial and ethnic identity. Ethnicity is defined as a population that shares common characteristics such as religion, traditions, culture, language, and/or tribal or national origin. As such, people who identify themselves as Hispanic or Latino can be of any race.

Table 2-17: Household Income and Population Below the Poverty Level for the Study Area, City of Modesto and Stanislaus County

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Median Household Incomea</th>
<th>Percent of Population Below Poverty Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Area</td>
<td>$41,179</td>
<td>23.6%</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>$49,205</td>
<td>19.5%</td>
</tr>
<tr>
<td>Stanislaus County</td>
<td>$49,866</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

Source: U.S. Census 2012c.

a Median household income is in 2012 inflation-adjusted dollars.
Figure 2-4: Minority and Low-income Populations within the Study Area
Most of the census blocks with minority populations are concentrated south of Kansas Avenue and west of SR 99, mostly in the Elm Tract neighborhood. Smaller clusters of minority populations sit north of Kansas Avenue between North Rosemore Avenue and North Carpenter Road, as well as in the census blocks south of Kansas Avenue between North Dakota Avenue and Morse Road. There are no relocations or acquisitions proposed in these two areas. A large area of low-income populations exists between North Carpenter Road and SR 99, north and south of the Caltrans right-of-way for the proposed new alignment. While the proposed project study area is representative of the overall San Joaquin Valley, the study area has a meaningfully greater percentage of minority and low-income populations when compared to Stanislaus County and the City of Modesto.

**Environmental Consequences**

The environmental justice analysis evaluated both build alternatives to determine whether there is a potential for disproportionately high and adverse impacts to minority or low-income populations when compared to populations that are not minority or low-income. A disproportionate impact is defined by the Federal Highway Administration as one that is:

- Predominantly borne by a minority and/or low-income population, or
- Suffered by the minority and/or low-income population and is appreciably more severe or greater in magnitude than the adverse effect that would be suffered by the non-minority/non-low-income population

Both negative and beneficial impacts common to Alternatives 1 and 2, as well as impacts specific to each alternative, have been evaluated and are described below.

**Build Alternatives**

Both build alternatives would provide benefits for the overall community and for minority and low-income populations by improving regional and interregional circulation, relieving congestion, and enhancing traffic operations within the study area. However, prior to the implementation of avoidance, minimization and mitigation measures, both build alternatives would cause disproportionately high and adverse effects on any minority or low-income populations per Executive Order 12898 regarding environmental justice, as described in the sections below.
Noise
While noise impacts are anticipated to occur throughout the project study area as a result of either of the build alternatives, most noise impacts would affect receivers (locations representing land uses where frequent human activity occurs, such as residences) located in the areas next to SR 99 and north of Elm Avenue, where minority and low-income populations reside. Most noise impacted receivers for both Alternative 1 and Alternative 2 are in the area on the south side of the project, east of North Carpenter Road, west of SR 99, and north of L Street. (Section 2.2.7, Noise, further explains noise impacts caused by the build alternatives.) As a result, noise impacts in these residential areas would be borne mostly by environmental justice populations and therefore are considered a disproportionate adverse impact on minority and low-income populations.

Visual
The proposed new highway configuration for SR 99, the retaining walls, and the noise barriers associated with both build alternatives would generally not result in substantial or permanent visual impacts to most of the study area. In fact, adverse visual impacts to agricultural areas would not occur, and improvements would occur in industrial areas (see Section 2.1.7, Visual/Aesthetics for further details on visual impacts caused by the build alternatives). However, the two build alternatives would result in substantial permanent visual changes to residential areas, specifically near the SR 132/SR 99 connection and the Elm Tract neighborhood, a neighborhood that has mostly low-income and minority populations.

Under Alternative 1, visual degradation to some residential areas would be slightly higher than under Alternative 2 because the noise barriers would be closer to existing residences and because more homes would be removed. Under Alternative 2, visual impacts would be comparably less because of the location of the noise barriers. Alternative 2 would have greater impacts to existing trees outside Modesto, and both build alternatives would impact the same number of street trees within Modesto.

As a result, visual impacts to residents would be borne mostly by environmental justice populations and therefore are considered a disproportionate adverse impact on minority and low-income populations.
Relocations/Acquisitions
Residential and business relocations and partial acquisitions would also occur as a result of both build alternatives. Most impacts would be borne mostly by environmental justice populations and therefore are considered a disproportionate adverse impact on minority and low-income populations.

Construction
Temporary detours, out-of-direction travel, construction dust, equipment emissions, and construction-related noise would affect residents and businesses throughout the study area as described in Section 2.2.6, Air Quality, and 2.2.7, Noise, of this document. Because most construction would occur in environmental justice communities, construction-related impacts would be borne mostly by environmental justice populations and therefore are considered a disproportionate adverse impact on minority and low-income populations.

No-Build Alternative
Traffic congestion would worsen throughout the study area, limiting access to housing, businesses, and community facilities for both minority and low-income populations, as well as for the general public. While there would be no displacement of minority or low-income residents, businesses, or employees, both minority and low-income populations would be impacted by increased congestion and degrading traffic conditions throughout the study area. The community would not experience the benefits of improved circulation, reduced congestion, and enhanced operations. Benefits not realized under the No-Build Alternative would be borne mostly by environmental justice populations and therefore are considered a disproportionate adverse impact on minority and low-income populations.

Avoidance, Minimization, and/or Mitigation Measures
Implementation of the following measures would reduce the adverse noise, visual, relocation, and construction impacts borne by minority and low-income populations to levels equal to that of the general population.

Noise
Section 2.2.7, Noise, presents the noise abatement measures for both build alternatives. With implementation of these measures, noise impacts would not result in disproportionate adverse impacts on minority and low-income populations.
Visual
Implementing measures VA-1 through VA-8 in Section 2.1.7, Visual/Aesthetics, would reduce disproportionate adverse impacts on minority and low-income populations. However, with the measures implemented, minority and low-income communities (especially residents in the Elm Tract neighborhood) would still experience substantial permanent visual impacts and temporary construction-related impacts because of their proximity to the project. The substantial permanent visual impacts in the residential areas would be borne mostly by an environmental justice population and therefore are considered a disproportionate adverse impact on minority and low-income populations.

Relocations
Implementing measures CI-1 through CI-5 in Section 2.1.4.2, Relocations and Real Property Acquisition, would reduce disproportionate adverse impacts on minority and low-income populations. After these measures are implemented, relocation impacts would not result in disproportionate adverse impacts on minority and low-income populations.

Construction
The implementation of standard best management practices, as described in Section 2.2.6, Air Quality, Section 2.2.7, Noise, and Section 2.1.6, Traffic and Transportation/Pedestrian and Bicycle Facilities, would reduce disproportionate adverse impacts on minority and low-income populations. With the implementation of measures CI-1 through CI-5, the build alternatives would not cause disproportionately high and adverse effects on any minority or low-income populations per Executive Order 12898 regarding environmental justice.

2.1.5 Utilities/Emergency Services

Affected Environment
The following section is based on the State Route 132 Community Impact Assessment Report, completed in July 2016.

Utilities
Utilities within the study area include but are not limited to aboveground power and telephone lines, underground gas lines, and underground fiber optic communication cables. The major utility providers in the area are Bay Area Water Supply Conservation Agency, Pacific Gas and Electric, the Modesto Irrigation District, the City of Modesto, and various private cable and television providers (Comcast, Sprint,
Level 3, and AT&T/Pacific Bell communications). Table 2-18 lists the major utilities within the project study area.

**Table 2-18: Major Utilities within the Study Area**

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Overhead Electric</strong></td>
<td>Existing SR 132 (Maze Boulevard) near Dakota Avenue</td>
</tr>
<tr>
<td></td>
<td>Kansas Avenue between North Dakota Avenue and 9th Street</td>
</tr>
<tr>
<td></td>
<td>East of North Carpenter Road</td>
</tr>
<tr>
<td></td>
<td>North Emerald Avenue</td>
</tr>
<tr>
<td></td>
<td>Near the intersection of North Franklin Street and Beech Street</td>
</tr>
<tr>
<td></td>
<td>Near SR 99 and Elm Avenue</td>
</tr>
<tr>
<td></td>
<td>South of K Street and the intersection of SR 99</td>
</tr>
<tr>
<td><strong>Overhead Telephone</strong></td>
<td>North Dakota Avenue between existing SR 132 (Maze Boulevard) and Kansas Avenue</td>
</tr>
<tr>
<td></td>
<td>Kansas Avenue between North Dakota Avenue and 9th Street</td>
</tr>
<tr>
<td></td>
<td>North Emerald Avenue</td>
</tr>
<tr>
<td></td>
<td>Southwest of SR 99 between Linden Street and South Washington Street</td>
</tr>
<tr>
<td></td>
<td>Southwest of SR 99 between Laurel Avenue and L Street</td>
</tr>
<tr>
<td><strong>Water</strong></td>
<td>Underground line west of North Dakota Avenue between existing SR 132 (Maze Boulevard) and Kansas Avenue</td>
</tr>
<tr>
<td></td>
<td>Underground line south of Kansas Avenue near the intersection of Kansas Avenue and Morse Road</td>
</tr>
<tr>
<td></td>
<td>Underground line within new alignment right-of-way (vacant land) south of Kansas Avenue between North Carpenter Road and Custer Court</td>
</tr>
<tr>
<td></td>
<td>Underground line along North Carpenter Road between Kansas Avenue and Elm Avenue</td>
</tr>
<tr>
<td></td>
<td>Underground line along North Emerald Avenue</td>
</tr>
<tr>
<td></td>
<td>Underground line within new alignment right-of-way (vacant land) south of Bennett Avenue and SR 99</td>
</tr>
<tr>
<td></td>
<td>Underground line along Kansas Avenue between North Carpenter Road and North Franklin Street</td>
</tr>
<tr>
<td></td>
<td>Underground line northeast of Graphics Road, north of Kansas Avenue</td>
</tr>
<tr>
<td></td>
<td>Aboveground water canal near SR 99 and Elm Avenue</td>
</tr>
<tr>
<td></td>
<td>Underground line along North Jefferson Street near the intersection of North Jefferson Street and SR 99</td>
</tr>
<tr>
<td></td>
<td>Underground line southwest of SR 99 between Linden Street and South Washington Street</td>
</tr>
<tr>
<td></td>
<td>Underground main along L Street over SR 99</td>
</tr>
<tr>
<td><strong>Natural Gas</strong></td>
<td>Underground line along Kansas Avenue between Altamont Court and 9th Street</td>
</tr>
<tr>
<td></td>
<td>Underground line along North Emerald Avenue</td>
</tr>
<tr>
<td><strong>Sewer</strong></td>
<td>Underground line along Kansas Avenue between Altamont Court and North Rosemore Avenue</td>
</tr>
<tr>
<td></td>
<td>Underground line along North Emerald Avenue</td>
</tr>
<tr>
<td></td>
<td>Underground line near the intersection of North Jefferson Street and SR 99</td>
</tr>
<tr>
<td></td>
<td>Underground line west of SR 99 near Linden Street</td>
</tr>
<tr>
<td></td>
<td>Underground line along the west side of SR 99 near the intersection of Laurel Avenue and SR 99</td>
</tr>
<tr>
<td></td>
<td>Underground line along the east side of SR 99 between Laurel Street and North Washington Street</td>
</tr>
</tbody>
</table>

*Source: Community Impact Assessment (July 2016)*
Emergency Services

Portions of the study area within Modesto are protected by the Modesto Fire Department, which has 11 fire stations throughout the Modesto area. Fire Station No. 1, about half a mile from the project study area at 610 11th Street, provides fire and emergency service for the study area. The portions of the study area outside Modesto are protected by the Woodland Avenue Fire Protection District, which has a station at 3300 Woodland Avenue, about a quarter-mile north of the study area.

Police services for Modesto are provided by the Modesto Police Department, which has a station at 600 10th Street, about half a mile from the study area. Beyond Modesto city limits, police services are provided by the Stanislaus County Sheriff’s Department. The California Highway Patrol also has jurisdiction over the state routes (SR 132 and SR 99) within the study area.

Emergency medical services are provided by Mountain-Valley Emergency Services and American Medical Response within the study area.

Environmental Consequences

Build Alternatives

Both build alternatives would result in construction-related impacts to utilities within the project study area. However, no long-term utility impacts would occur. All construction-related impacts (potential service disruptions) would be temporary in nature, and no utility services to the community would be permanently affected. Utilities impacted by either build alternative would be abandoned in place, protected in place, or relocated. Based on the current project design, the following impacts would likely occur, but these impacts are subject to change based on final design.

The following utilities would be abandoned:

- Sewer lines along Laurel Avenue west of SR 99 and within an industrial subdivision east of SR 99 near an alley south of Laurel Street
- Water lines near the intersection of Franklin Street and Beech Street, as well as the water lines east of SR 99 near Elm
- Sewer lines along North Emerald Avenue at the intersection of North Emerald Avenue and the study area (south of Kansas Avenue), in addition to sewer lines along North Jefferson Street at the intersection with SR 99
- Water line along L Street over SR 99
Relocation of the following utilities would be required:

- Natural gas lines along North Rosemore Avenue and Kansas Avenue near the intersection of Kansas Avenue and SR 99
- Sewer lines along SR 99 near Linden Street and Laurel Street, as well as along Kansas Avenue at the intersection with SR 99
- Water lines along North Carpenter Road and North Jefferson Street within the study area and along Kansas Avenue at the intersection of Kansas Avenue and SR 99
- All overhead power and communication lines within the study area
- All underground phone lines within the study area

While the proposed project would not create long-term access impacts for emergency vehicles, temporary, construction-related impacts would include use of local roads by construction vehicles, lane closures, and detours. The exact location and impacts of potential use of local roads, lane closures, and detours would be determined during final design of the project. Temporary impacts to emergency services would be the same for both build alternatives. As described in Section 2.1.6, Traffic and Transportation/Pedestrian and Bicycle Facilities, implementation of a traffic management plan would include advance notification for emergency service personnel of any expected delay or detour thereby minimizing temporary, construction-related impacts to emergency service providers. Despite the short-term nature of the impacts, emergency service providers (and the traveling public) would benefit from the project through increased mobility, reduced congestion, and improved access to businesses, residences, and community facilities and services.

All impacted owners and tenants would be provided notification prior to temporary interruption of utilities during Project construction.

**No-Build Alternative**

The No-Build Alternative would not result in the construction of any of the proposed improvements and, therefore, would not require any utility relocations or abandonments. Emergency service response times may increase because of increased traffic congestion that would occur under the No-Build Alternative.
Avoidance, Minimization, and/or Mitigation Measures
Neither build alternative would result in long-term impacts to utilities and emergency services.

2.1.6 Traffic and Transportation/Pedestrian and Bicycle Facilities

Regulatory Setting
Caltrans, as assigned by the Federal Highway Administration, directs that full consideration should be given to the safe accommodation of pedestrians and bicyclists during the development of federal-aid highway projects (23 Code of Federal Regulations 652). It further directs that the special needs of the elderly and the disabled must be considered in all federal-aid projects that include pedestrian facilities. When current or anticipated pedestrian and/or bicycle traffic presents a potential conflict with motor vehicle traffic, every effort must be made to minimize the detrimental effects on all highway users who share the facility.

In July 1999, the U.S. Department of Transportation issued an Accessibility Policy Statement pledging a fully accessible multimodal transportation system. Accessibility in federally assisted programs is governed by U.S. Department of Transportation regulations (49 Code of Federal Regulations Part 27) implementing Section 504 of the Rehabilitation Act (29 U.S. Code 794). The Federal Highway Administration has enacted regulations for the implementation of the 1990 Americans with Disabilities Act, including a commitment to build transportation facilities that provide equal access for all persons. These regulations require application of the Americans with Disabilities Act requirements to federal-aid projects, including Transportation Enhancement Activities.

Affected Environment
The following section is based on the Final Traffic Operations Analysis Report: State Route 132 West Freeway/Expressway PA/ED (completed in July 2012), the Final State Route 132 West Freeway/Expressway Traffic Analysis Addendum to Reflect SPUI Design at SR 132/Carpenter Road Interchange (completed in March 2014), and the Design Year 2048-Southbound State Route 99/I Street Off-Ramp Relocation Operation Analysis (completed in August 2015).

The proposed project study area for the traffic analysis extends along existing SR 132 (Maze Boulevard) from SR 99 to Dakota Avenue and along SR 99 from West Briggsmore Avenue to Tuolumne Boulevard in Modesto. (Figure 1-4 shows all four
roadways in relationship to the project’s location.) The study area also includes local street intersections on both the west and east sides of SR 99 within the vicinity of the project. The traffic analysis evaluated existing and future conditions with and without the project. Existing conditions represent the year 2009. Future conditions were projected for the years 2020 (Phase 1), 2028 (Phase 2), and 2048 (the design year). The No-Build Alternative is the baseline for comparing environmental impacts; the baseline represents future year (2020, 2028, and 2048) conditions if the project were not built.

As described in the Final Traffic Operations Analysis Report, traffic volume forecasts for the new SR 132 freeway/expressway and existing SR 132 (Maze Boulevard) were based on the StanCOG Travel Demand Model. The model was updated to account for changes in land use and the roadway network to reflect year 2009 conditions. Model demand volumes were adjusted to account for differences between base year model volumes and traffic counts conducted for this project.

Existing and Future Year No-Build Traffic Conditions
Four of the best indicators of existing (2009) conditions and predictors for future conditions are traffic volumes, travel times, travel speeds, and level of service along the various roadway/highway segments in the project study area. Comparison of each dataset not only establishes current traffic conditions, but it allows for a more robust evaluation of environmental consequences with and without the project.

Table 2-19 lists average daily traffic volumes and morning (AM peak period, 7:00 a.m. to 9:00 a.m.) and evening (PM peak period, 4:00 p.m. to 6:00 p.m.) peak hour volumes for the existing SR 132 (Maze Boulevard) under current and future No-Build Alternative conditions. The data in the following table are based on regional projections of land use growth and reflect future travel demand that would be expected on the existing highway if the project were not built.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-19: Existing and Future No-Build Traffic Volumes along Existing SR 132 (Maze Boulevard)

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing (2009)</th>
<th>Future No-Build (2020)</th>
<th>Future No-Build (2028)</th>
<th>Future No-Build (2048)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADT AM² PM²</td>
<td>ADT AM² PM²</td>
<td>ADT AM² PM²</td>
<td>ADT AM² PM²</td>
</tr>
<tr>
<td>Existing SR 132/ Maze Boulevard between Grimes Avenue and Carpenter Road</td>
<td>11,500 696 949</td>
<td>15,200 960 1,210</td>
<td>17,700 1,230 1,300</td>
<td>19,700 1,930 1,900</td>
</tr>
<tr>
<td>Existing SR 132/ Maze Boulevard between Carpenter Road and Emerald Avenue</td>
<td>10,230 523 896</td>
<td>14,500 740 1,170</td>
<td>17,000 940 1,370</td>
<td>18,800 1,620 1,890</td>
</tr>
<tr>
<td>Existing SR 132/ Maze Boulevard between Emerald Avenue and Martin Luther King Drive</td>
<td>12,400 749 1,091</td>
<td>15,400 970 1,340</td>
<td>17,700 1,120 1,480</td>
<td>18,400 1,710 2,000</td>
</tr>
</tbody>
</table>

a Peak hours represent the greatest number of vehicles using a roadway or highway in one hour during the morning peak period (7:00 a.m. to 9:00 a.m.) and evening peak period (4:00 p.m. to 6:00 p.m.). The peak of traffic usually occurs when most commuters are traveling to and from work.

Notes: Trucks represent 21 percent, 22 percent, and 14 percent of the daily morning and evening peak hour volumes, respectively, for each segment. ADT = average daily traffic. The traffic analysis for Future No-Build and Phase 1 assumed an opening year of 2018, but that is now projected to be 2020.

Source: Final Traffic Operations Analysis Report (July 2012)

As listed in Table 2-20, travel time, which represents minutes of driving time, and travel speed, shown in miles per hour, are two sets of data that compare and predict performance on existing SR 132 (Maze Boulevard). Slower travel times and speeds often indicate greater congestion and worsening traffic conditions.

Table 2-20: Existing and Future No-Build Travel Times and Speeds along Existing SR 132 (Maze Boulevard)

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing (2009)</th>
<th>Future No-Build (2020)</th>
<th>Future No-Build (2028)</th>
<th>Future No-Build (2048)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM PM</td>
<td>AM PM</td>
<td>AM PM</td>
<td>AM PM</td>
</tr>
<tr>
<td>Eastbound SR 132 between Dakota Avenue and SR 99 (3.3 miles)</td>
<td>6.2 mins. (32.2 mph)</td>
<td>6.0 mins. (33.0 mph)</td>
<td>6.2 mins. (32.2 mph)</td>
<td>6.7 mins. (29.6 mph)</td>
</tr>
<tr>
<td></td>
<td>6.4 mins. (31.2 mph)</td>
<td>7.1 mins. (28.0 mph)</td>
<td>7.9 mins. (26.2 mph)</td>
<td>6.8 mins. (29.2 mph)</td>
</tr>
<tr>
<td>Westbound SR 132 between SR 99 and Dakota Avenue (3.3 miles)</td>
<td>6.4 mins. (30.8 mph)</td>
<td>5.9 mins. (33.4 mph)</td>
<td>7.1 mins. (28.0 mph)</td>
<td>6.7 mins. (29.9 mph)</td>
</tr>
<tr>
<td></td>
<td>10.8 mins. (18.7 mph)</td>
<td>7.7 mins. (26.0 mph)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Data presented includes travel time in minutes (and average speed in mph). mins. = minutes; mph = miles per hour. The traffic analysis for Future No-Build and Phase 1 assumed an opening year of 2018, but that is now projected to be 2020.

Source: Final Traffic Operations Analysis Report (July 2012)
Level of service is a measure of traffic operating conditions that vary from level of service A (indicating free-flow traffic conditions with little or no delay) to level of service F (representing over-saturated conditions where traffic flow exceeds design capacity resulting in long queues and delays) (see Figure 1-3 for level of service of the two-lane highway). The level of service classifications represent driver perception and are an indication of comfort and convenience associated with driving.

According to Modesto’s General Plan, in addition to Caltrans and Federal Highway Administration standards, the goal level of service rating for a highway/local roadway similar to existing SR 132 (Maze Boulevard) is D. Table 2-21 shows current and projected level of service ratings for a number of segments along the existing highway, as well as for applicable intersections in the area.

Existing SR 132 (Maze Boulevard) currently operates at an acceptable level of service D or better between Dakota Avenue and SR 99, but is anticipated to deteriorate to unacceptable levels in the future. All of the study intersections along the existing highway currently operate at an acceptable level of service C or better. But, traffic operations would degrade over time so that, by 2028, the intersection of the existing highway and Carpenter Road would operate at level F, an unacceptable service level, and, by 2048, the intersections of the existing highway with Rosemore Avenue, Carpenter Road, and Emerald Avenue would operate at unacceptable service level F.

A total of 30 intersections were evaluated for the proposed project, including six intersections along existing SR 132 (Maze Boulevard). Only one study intersection not along the existing highway currently operates at unacceptable levels. The intersection of Briggsmore Avenue/SR 99 southbound ramps is not represented in Table 2-21, but is included in the Final Traffic Operations Analysis Report. Traffic operations at the other study intersections are anticipated to degrade as traffic volumes increase so that, by 2020, there would be four intersections in the study area as a whole operating at unacceptable service levels. By 2028, there would be six intersections operating at unacceptable service levels and, by 2048, there would be 12 intersections operating at unacceptable service levels under future no-build conditions.
**Table 2-21: Existing and Future No-Build Level of Service along Existing SR 132 (Maze Boulevard) and at Intersections in the Study Area**

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing (2009) LOS</th>
<th>Future No-Build (2020) LOS</th>
<th>Future No-Build (2028) LOS</th>
<th>Future No-Build (2048) LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>Existing SR 132 (Maze Boulevard) Highway/Roadway Segments&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound between SR 99 and Emerald Avenue</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Westbound between SR 99 and Emerald Avenue</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound between Emerald Avenue and Carpenter Road</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Westbound between Emerald Avenue and Carpenter Road</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>Between Carpenter Road and Dakota Avenue</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>West of Dakota Avenue</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td><strong>Area Intersections</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Dakota Avenue</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Rosemore Avenue</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Carpenter Road</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Emerald Avenue</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Martin Luther King Jr. Drive</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and southbound SR 99 off-ramp</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

<sup>a</sup> Existing SR 132 (Maze Boulevard) was analyzed using both the Highway Capacity Manual’s urban street level of service methodology and two-lane highway level of service methodology because the highway is considered an urban roadway on its eastern end and a two-lane highway on its western end. Also see Figure 1-3 for a graphic representation of level of service.

Notes: Results in bold indicate unacceptable operations. The years represented in the table match the years for Phase 1 (2020), Phase 2 (2028), and the design year (2048). LOS = level of service. The traffic analysis for Future No-Build and Phase 1 assumed an opening year of 2018, but that is now projected to be 2020.

Source: Final Traffic Operations Analysis Report (July 2012)

Table 2-22 presents the existing and future no-build, peak hour level of service and peak period vehicle hours of delay on SR 99 in the study area. Under existing conditions, SR 99 operates at level of service D or better, except in the southbound direction during the evening peak hour, where some segments operate at level of service E or F. Traffic operations on SR 99 would degrade as traffic volumes increase...
so that, by 2028, most of the segments on SR 99 would operate at a level of service E or F during the morning and evening peak hours. By 2048, most of the study segments would operate at level of service F during the morning and evening peak hours. Vehicle delay is also anticipated to increase over time as traffic congestion on SR 99 worsens because of regional and local traffic increases.

### Table 2-22: Existing and Future No-Build Peak Hour Level of Service and Peak Period Vehicle Hours of Delay along SR 99 in the Study Area

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing (2009) LOS</th>
<th>Future No-Build (2020) LOS</th>
<th>Future No-Build (2028) LOS</th>
<th>Future No-Build (2048) LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveling Northbound SR 99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuolumne Boulevard on-ramp to 6th Street off-ramp</td>
<td>D C D F F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Street off-ramp to I Street on-ramp</td>
<td>D C D F F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Street On-Ramp to L Street (SR 132) On-Ramp</td>
<td>D D D F F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 132 on-ramp to Kansas Avenue off-ramp</td>
<td>D D E E F F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansas Avenue on-ramp to West Briggsmore Avenue off-ramp</td>
<td>C D D E D F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Period Vehicle Hours of Delay</td>
<td>7 12 17 303 290 1,043 1,502 1,823</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traveling Southbound SR 99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Briggsmore Avenue on-ramp to Kansas Avenue off-ramp</td>
<td>C D D F D F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansas Avenue on-ramp to SR 132 off-ramp</td>
<td>C D E F E F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 132 off-ramp to I Street off-ramp</td>
<td>C D D F F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Street off-ramp to H Street on-ramp</td>
<td>C F D F D F F F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H Street on-ramp to 5th Street on-ramp</td>
<td>C E E E E E E E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Street on-ramp to Tuolumne Boulevard off-ramp</td>
<td>B D C D C C C C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Period Vehicle Hours of Delay (VHD)</td>
<td>0 31 51 421 142 617 1,317 1,783</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: See Figure 1-3 for a graphic representation of level of service. The years represented in the table match the years for Phase 1 (2020), Phase 2 (2028), and the design year (2048). LOS = level of service. The traffic analysis for Future No-Build and Phase 1 assumed an opening year of 2018, but that is now projected to be 2020. The I Street off-ramp would be closed in Phase 2.

Source: Final Traffic Operations Analysis Report (July 2012)
Pedestrian/Bicycle Facilities

Limited pedestrian and bicycle facilities exist within the study area, with no facilities west of SR 99 within Modesto’s city limits. The study area has one Class I bike route (the Virginia Corridor Trailway), which is a paved path separated from a street or roadway. The study area also has four Class III bike routes, defined as an on-street, shared-use facility (pedestrians or motor vehicles) identified by signage. The rural nature of the western portion of the study area generally necessitates that bicyclists share the roadways with motor vehicles.

Environmental Consequences

Build Alternatives

The proposed project would consist of two construction phases. To be completed in 2020, Phase 1 would involve construction of a two-lane facility on a new alignment between North Dakota Avenue and SR 99. Both build alternatives (Alternative 1 and Alternative 2) would be the same under Phase 1.

To be completed in 2028, Phase 2 would involve construction of a four-lane facility between North Dakota Avenue and SR 99 with a single-point urban interchange at North Carpenter Road.

From a traffic operations perspective and under Phase 2, Alternative 1 and Alternative 2 are nearly identical except for the study area where the build alternatives intersect SR 99.

Traffic operations on existing SR 132 (Maze Boulevard) would be the same for both build alternatives. Table 2-23 compares future travel times and speeds along the existing highway for both the No-Build and build alternatives.

For both build alternatives, travel times would decrease and speeds would increase when compared to future no-build conditions. Therefore, both build alternatives would have a beneficial impact on travel times and speeds along existing SR 132 (Maze Boulevard).

A number of best management practices would be employed during construction as part of the proposed project. These practices include implementation of a traffic management plan; provision of advanced notification of temporary access and parking modifications to owners, residents, and businesses; and advance notification of detours to emergency service providers. These practices are described below in further detail.
• The contractor would implement a traffic management plan that would identify signage to facilitate local and through-traffic movement and the locations of potential temporary detours (if needed). The plan would support the continued access for local residences and businesses, as well as bus and emergency service vehicle access during construction. The plan would specify timeframes for temporary detours and street closures (if needed) and the process for notifying residents, businesses, emergency service providers, and the general public of the construction schedule and any required detours.

• The contractor would provide emergency service providers (i.e., law enforcement, fire protection, and ambulance services) with adequate advance notice of any street closures during the construction phases of the project.

• The contractor would coordinate construction activities to avoid blocking or limiting access to homes and businesses. Residents would be notified in advance through mail and newspaper notices about potential access or parking effects before construction activities begin.

• To the extent possible, the contractor would limit interchange, ramp, or road closures during construction to nighttime hours to reduce impacts to businesses in the area.

Table 2-23: No-Build and Build Travel Times and Speeds along Existing SR 132 (Maze Boulevard)

<table>
<thead>
<tr>
<th>Existing SR 132 (Maze Boulevard)</th>
<th>2020 No-Build</th>
<th>2020 Build</th>
<th>2028 No-Build</th>
<th>2028 Build</th>
<th>2048 No-Build</th>
<th>2048 Build</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastbound between Dakota Avenue and SR 99</td>
<td>AM</td>
<td>6.2 mins. (32.2 mph)</td>
<td>6.0 mins. (32.9 mph)</td>
<td>6.4 mins. (31.2 mph)</td>
<td>6.0 mins. (33.0 mph)</td>
<td>7.0 mins. (28.4 mph)</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.7 mins. (29.6 mph)</td>
<td>6.4 mins. (30.9 mph)</td>
<td>7.1 mins. (28.0 mph)</td>
<td>6.2 mins. (32.0 mph)</td>
<td>9.6 mins. (20.7 mph)</td>
</tr>
<tr>
<td>Westbound SR 132 between SR 99 and Dakota Avenue</td>
<td>AM</td>
<td>7.1 mins. (28.0 mph)</td>
<td>6.3 mins. (31.6 mph)</td>
<td>7.9 mins. (25.2 mph)</td>
<td>6.3 mins. (31.5 mph)</td>
<td>10.6 mins. (18.7 mph)</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.7 mins. (29.9 mph)</td>
<td>6.1 mins. (32.3 mph)</td>
<td>6.8 mins. (29.2 mph)</td>
<td>6.0 mins. (33.3 mph)</td>
<td>7.7 mins. (26.0 mph)</td>
</tr>
</tbody>
</table>

Notes: Data includes travel time in minutes (and average speed in miles per hour). The table represents the design year (2048) for both the No-Build and build alternatives. Both build alternatives are shown in the table as one alternative because Alternative 1 and Alternative 2 are nearly identical from a traffic operations perspective. mins. = minutes; mph = miles per hour. The traffic analysis for the Phase 1 No-Build and build alternatives assumed an opening year of 2018, but that is now projected to be 2020. Source: Final Traffic Operations Analysis Report (July 2012)

Table 2-24 expands on the future no-build conditions of Table 2-19. Both build alternatives would reduce peak hour demand volumes and improve level of service on existing SR 132 (Maze Boulevard).
### Table 2-24: No-Build and Build Level of Service along Existing SR 132 (Maze Boulevard)

<table>
<thead>
<tr>
<th>Location</th>
<th>2020</th>
<th>2028</th>
<th>2048</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No-Build</td>
<td>Build</td>
<td>No-Build</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
</tr>
<tr>
<td><strong>Existing SR 132 (Maze Boulevard) Highway/Roadway Segments</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound between SR 99 and Emerald Avenue</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Westbound between SR 99 and Emerald Avenue</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Eastbound between Emerald Avenue and Carpenter Road</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Westbound between Emerald Avenue and Carpenter Road</td>
<td>E</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Between Carpenter Road and Dakota Avenue</td>
<td>D</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>Between Dakota Avenue and Stone Avenue</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td><strong>Area Intersections</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Dakota Avenue</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Rosemore Avenue</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Carpenter Road</td>
<td>D</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Emerald Avenue</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and Martin Luther King Jr. Drive</td>
<td>B</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Existing 132 (Maze Boulevard) and southbound SR 99 off-ramp</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes: Results in bold indicate unacceptable operations. The table represents the design year (2048) for both the No-Build and build alternatives. Both build alternatives are represented in the table as one alternative because Build Alternative 1 and Build Alternative 2 are nearly identical from a traffic operations perspective. The results presented reflect Project Alternative 4 from the traffic operations analysis report (same as Build Alternative 1). The traffic analysis for the Phase 1 No-Build and build alternatives assumed an opening year of 2018, but that is now projected to be 2020.

Source: Final Traffic Operations Analysis Report (July 2012)
As shown in Table 2-24, both build alternatives would have the most benefit in 2028 and 2048 when traffic volumes on the existing highway are expected to exceed available capacity. Notable roadway improvements include the following segments:

- Eastbound existing SR 132 (Maze Boulevard) between Emerald Avenue and Carpenter Road would improve from level of service F (2048) to C (2048) during the evening peak hour.
- Westbound existing SR 132 (Maze Boulevard) between Emerald Avenue and Carpenter Road would improve from level of service F (2028 and 2048) to D (2028) and E (2048) during the AM peak hour.
- Existing SR 132 (Maze Boulevard) between Carpenter Road and Dakota Avenue would improve from level of service E (2028 and 2048) to C (2028) and D (2048) during the morning and evening peak hours.

Notable intersection improvements would include the following:

- The intersection of existing SR 132 (Maze Boulevard) and Dakota Avenue would improve from level of service D (2048) to B (2048) during the evening peak hour.
- The intersection of existing SR 132 (Maze Boulevard) and Rosemore Avenue would improve from level of service F (2048) to B (2048) during the morning and evening peak hours.
- The intersection of existing SR 132 (Maze Boulevard) and Carpenter Road would improve from level of service F (2028) to C (2028) during morning and evening peak hours. Although this intersection would operate at level of service F in 2048 under the build alternatives, both Alternative 1 and Alternative 2 would reduce the average intersection delay by more than 40 percent.
- The intersection of existing SR 132 (Maze Boulevard) and Emerald Avenue would improve from level of service F (2048) to C/D (2048) during the morning and evening peak hours.
- The intersection of existing SR 132 (Maze Boulevard) and Martin Luther King Jr. Drive would improve from level of service D (2048) to C (2048) during the evening peak hour.
- The intersection of existing SR 132 (Maze Boulevard) and the southbound SR 99 off-ramp would improve from level of service D (2048) to C (2048) during the morning peak hour.
Despite the reduced delay and improved service levels for a number of intersections, some of the intersections would still operate at unacceptable levels in the future. However, reduced delay and improved level of service under both build alternatives would be beneficial and would not lead to direct or indirect impacts on traffic in the study area.

Table 2-25 presents the level of service for the proposed new alignment, which would operate at level of service B in 2020 and level of service A in 2028 and 2048. The single-point urban interchange would operate at level of service A in 2028 and 2048. All of the new intersections under both build alternatives are anticipated to operate at level of service C or better.

<table>
<thead>
<tr>
<th>Proposed New Alignment</th>
<th>2020 Build</th>
<th>2028 Build</th>
<th>2048 Build</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
</tr>
<tr>
<td>Westbound SR 132 between SR 99 and North Carpenter Road</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Westbound SR 132 between North Carpenter Road and North Dakota Avenue</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Eastbound SR 132 between North Dakota Avenue and North Carpenter Road</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Eastbound SR 132 between North Carpenter Road and SR 99</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>New Interchange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 132/North Carpenter Road Single-point Urban Interchange</td>
<td>N/A</td>
<td>N/A</td>
<td>A</td>
</tr>
<tr>
<td>New Intersections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New SR 132/North Dakota Avenue</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Proposed SR 132/SR 99 Off-Ramp (Build Alternative 1 Only)</td>
<td>N/A</td>
<td>N/A</td>
<td>C</td>
</tr>
</tbody>
</table>

Notes: Both build alternatives are represented in the table as one alternative because Alternative 1 and Alternative 2 are nearly identical from a traffic operations perspective. N/A = not applicable. The traffic analysis for the Phase 1 build alternatives assumed an opening year of 2018, but that is now projected to be 2020.


All of the proposed on-ramps under either build alternative would involve ramp metering. Based on the results of the ramp metering queuing analysis, all of the on-ramps would provide adequate vehicle storage, and no impacts are anticipated from the ramp meters.
As discussed in Section 1.2.2, Need, one of the project’s needs is to improve operations along existing SR 132 (Maze Boulevard). The existing highway has had no fatalities in the most recent period studied (November 2010 to October 2013), compared to a statewide average rate for similar facilities of 0.016 accidents per million vehicle miles traveled, and a 2 percent lower fatality/injury accident rate than the statewide average. Most accidents (34 percent) were broadside accidents, followed by rear-end (32 percent), hit-object (15 percent), head-on (9 percent), sideswipe (6 percent), and auto/pedestrian (4 percent) accidents. Based on the *Highway Safety Manual* published by the American Association of State Highway and Transportation Officials, there is a direct correlation between crash frequency and average daily traffic volumes. So, the number of accidents on existing SR 132 (Maze Boulevard) is anticipated to drop as a result of decreased traffic volumes under both build alternatives. Lower traffic volumes would result in greater spacing between vehicles, allowing drivers more time to react to sudden changes in traffic flow, such as a stopped vehicle. Fewer vehicles would also result in fewer conflicts at intersections and driveways.

Existing roadways that would run parallel to (for example, Kansas Avenue and the existing highway) and intersect the project (for example, North Carpenter Road) would likely be impacted during construction. Construction of either build alternative would create temporary traffic delays when work that requires detours or lane reductions is being performed on existing roadways. Because the project involves mainly construction of a new alignment, most construction work would affect only existing crossings, not existing roadways. Any construction-related impact would not be substantial because of its temporary nature and the use of construction staging, detours, and traffic management (explained below) to minimize disruption.

The proposed work on SR 99 under Phase 1 and for both build alternatives would construct auxiliary lanes to improve traffic movements (merging) and ramp access through the study area. Under Phase 1, a southbound auxiliary lane is proposed along SR 99 from the proposed new alignment’s on-ramp onto SR 99 to the existing SR 132 (Maze Boulevard) off-ramp. In the northbound direction, an auxiliary lane would run from the 6th Street on-ramp to the Kansas Avenue off-ramp. Under both build alternatives, the on-ramp from 6th Street would be reconfigured in Phase 2, so that the ramp would access SR 99 about 2,000 feet north of its current location and an auxiliary lane would be provided for the on-ramp. The Phase 2 improvements would also include removal of the northbound SR 99 on- and off-ramps at Kansas Avenue and southbound ramps at L and I streets.
Table 2-26 presents the future no-build and build peak hour level of service and peak period vehicle hours of delay for SR 99 in the study area. As shown, neither of the build alternatives would increase overall traffic volumes on SR 99, but both Alternative 1 and Alternative 2 would change several locations where traffic can access SR 99. Though the build alternatives would not change the overall peak hour level of service on SR 99, both would reduce the peak period vehicle hours of delay as a result of eliminating and/or reconfiguring some ramps and by providing additional capacity through auxiliary lanes described above. The reduced vehicle hours of delay under both build alternatives would be beneficial and would not lead to direct or indirect impacts on SR 99.
### Table 2-26: Peak Hour Level of Service and Peak Period Vehicle Hours of Delay on SR 99 for both Future Build and No-Build Scenarios

<table>
<thead>
<tr>
<th>Location</th>
<th>2020 No-Build</th>
<th>2020 Build</th>
<th>2028 No-Build</th>
<th>2028 Alternative 1</th>
<th>2028 Alternative 2</th>
<th>2048 No-Build</th>
<th>2048 Alternative 1</th>
<th>2048 Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveling Northbound SR 99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuolumne Boulevard on-ramp to 6th Street off-ramp</td>
<td>D F</td>
<td>D F</td>
<td>F F</td>
<td>E F</td>
<td>E F</td>
<td>F F</td>
<td>F F</td>
<td>F F</td>
</tr>
<tr>
<td>6th Street off-ramp to I Street on-ramp</td>
<td>D F</td>
<td>D F</td>
<td>F F</td>
<td>E F</td>
<td>E F</td>
<td>F F</td>
<td>F F</td>
<td>E F</td>
</tr>
<tr>
<td>I Street on-ramp to SR 132 off-ramp</td>
<td>D F</td>
<td>D F</td>
<td>F F</td>
<td>Not Applicable</td>
<td>F F</td>
<td>Not Applicable</td>
<td>F F</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>SR 132 on-ramp to Kansas Avenue off-ramp</td>
<td>E E</td>
<td>D F</td>
<td>F F</td>
<td>Not Applicable</td>
<td>F F</td>
<td>Not Applicable</td>
<td>F F</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Kansas Avenue on-ramp to Briggsmore Avenue off-ramp</td>
<td>D E</td>
<td>D E</td>
<td>D F</td>
<td>E F</td>
<td>E F</td>
<td>F F</td>
<td>F F</td>
<td>F F</td>
</tr>
<tr>
<td>Peak Period Vehicle Hours of Delay</td>
<td>17 303</td>
<td>14 289</td>
<td>290 1,043</td>
<td>40 754</td>
<td>40 754</td>
<td>1,502 1,823</td>
<td>1,048 1,452</td>
<td>1,048 1,452</td>
</tr>
<tr>
<td>Traveling Southbound on SR 99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Briggsmore Avenue on-ramp to Kansas Avenue off-ramp</td>
<td>D F</td>
<td>D F</td>
<td>D F</td>
<td>D D</td>
<td>D D</td>
<td>F F</td>
<td>E D</td>
<td>E F</td>
</tr>
<tr>
<td>Kansas Avenue on-ramp to SR 132 off-ramp</td>
<td>E F</td>
<td>E F</td>
<td>E F</td>
<td>Not Applicable</td>
<td>F F</td>
<td>Not Applicable</td>
<td>F F</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>SR 132 off-ramp to I Street off-ramp</td>
<td>D F</td>
<td>D F</td>
<td>D F</td>
<td>C F</td>
<td>C F</td>
<td>F F</td>
<td>F F</td>
<td>F F</td>
</tr>
<tr>
<td>I Street off-ramp to H Street on-ramp</td>
<td>D F</td>
<td>D F</td>
<td>F F</td>
<td>C F</td>
<td>C F</td>
<td>F F</td>
<td>F F</td>
<td>F F</td>
</tr>
<tr>
<td>H Street on-ramp to 5th Street on-ramp</td>
<td>E E</td>
<td>E E</td>
<td>E E</td>
<td>D E</td>
<td>D E</td>
<td>E E</td>
<td>E E</td>
<td>E E</td>
</tr>
<tr>
<td>5th Street on-ramp to Tuolumne Boulevard off-ramp</td>
<td>C D</td>
<td>C D</td>
<td>C C</td>
<td>D C</td>
<td>D C</td>
<td>C C</td>
<td>D C</td>
<td>D C</td>
</tr>
<tr>
<td>Peak Period Vehicle Hours of Delay</td>
<td>51 421</td>
<td>51 421</td>
<td>142 617</td>
<td>39 73</td>
<td>38 262</td>
<td>1,317 1,783</td>
<td>996 1,268</td>
<td>1,015 1,576</td>
</tr>
</tbody>
</table>

**Notes:** See Figure 1-3 for a graphic representation of level of service. The years represented in the table are the years for Phase 1 (2020), Phase 2 (2028), and the design year (2048). The traffic analysis for the Phase 1 No-Build and build alternatives assumed an opening year of 2018, but that is now projected to be 2020. The I Street off-ramp would be closed in Phase 2.

**Source:** Final Traffic Operations Analysis Report (July 2012)
Pedestrian/Bicycle Facilities
According to Modesto’s *Non-Motorized Transportation Master Plan*, Class I bicycle paths are planned along segments of existing SR 132 (Maze Boulevard), Carpenter Road, 9th Street, and Dakota Avenue within the study area. Class II bicycle lanes are planned along segments of Morse Road, Carpenter Road, and Needham Street within the study area. Neither build alternative would directly or indirectly impact existing or planned pedestrian/bicycle facilities, except at the proposed single-point urban interchange of the new alignment with North Carpenter Road. Both build alternatives propose a 12-foot-wide pedestrian/bicycle path along the east side of North Carpenter Road within the limits of the project. The pedestrian/bicycle facility would be consistent with Modesto’s General Plan and comply with all Americans with Disabilities Act requirements.

Both build alternatives would reduce traffic on the existing highway, resulting in fewer potential conflicts of bicyclists and pedestrians with vehicles.

*No-Build Alternative*
The No-Build Alternative would not result in the construction of any of the proposed improvements, and the existing SR 132 (Maze Boulevard) would remain as it is presently configured. Travel times would increase, and level of service and vehicle speeds would deteriorate to unacceptable levels throughout the study area based on projected future growth. There is also a direct correlation between crash frequency and average daily traffic volumes, as noted earlier, so the number of accidents is expected to increase as average daily traffic volumes increase under the No-Build Alternative.

*Avoidance, Minimization, and/or Mitigation Measures*
There are no temporary or permanent impacts on traffic, and transportation, pedestrian and bicycle facilities, as such no avoidance, minimization, and/or mitigation measures would be required.

2.1.7 Visual/Aesthetics

*Regulatory Setting*
NEPA, as amended, establishes that the federal government use all practicable means to ensure all Americans have safe, healthful, productive, and *aesthetically* (emphasis added) and culturally pleasing surroundings (42 U.S. Code 4331[b][2]). To further
emphasize this point, the Federal Highway Administration in its implementation of NEPA (23 U.S. Code 109[h]) directs that final decisions on projects are to be made in the best overall public interest, taking into account adverse environmental impacts, including among others, the destruction or disruption of aesthetic values.

The CEQA establishes that it is the policy of the state to take all action necessary to provide the people of the state “with…enjoyment of aesthetic, natural, scenic and historic environmental qualities” (CA Public Resources Code [PRC] Section 21001[b]).

**Affected Environment**

The following section is based on the *State Route 132 Visual Impact Assessment Report*, completed in November 2015.

**Visual Setting and Scenic Resources**

In the western portion of the study area, the visual setting includes elements that represent Stanislaus County’s history and principal industry of agriculture and includes visual elements such as orchards, row crops, and pasturelands that represent Stanislaus County’s principal industry of agriculture. In the eastern portion of the study area, agriculture transitions to an urban setting with noticeable residential and commercial-industrial uses.

Stanislaus County is an agricultural community in transition. The population growth experienced in the past decade has converted agricultural land uses to commercial and residential developments. The County’s economic base is diversifying to include more office, residential, commercial and industrial employment opportunities. The landscape character found within the State Route 132 West project area reflects this diversification of land use and population growth.

There are no designated state scenic highways or vistas on Stanislaus County or Modesto city lands within the study area. However, Chapter III of the Stanislaus County General Plan notes that previous studies identified existing SR 132 (Maze Boulevard) west of Modesto to be a potential scenic route. The existing highway and other roads listed in the plan were characterized by “open, undeveloped areas, in either a natural condition or devoted to agricultural production much like the area along Interstate 5” (a state designated scenic highway).
Visual Assessment Units (Landscape Units)

Table 2-27 defines and Figure 2-5 shows the four landscape units identified within the study area. As described in the table, each landscape unit has a distinct visual character whose elements are characteristic of agriculture, residential, highway, and commercial/industrial. The visual quality of each landscape unit was assessed using the criteria of vividness, intactness, and unity, defined as follows:

- **Vividness** is the visual power or memorability of landscape components as they combine in distinctive visual patterns.

- **Intactness** is the visual integrity of the natural and human-built landscape and its freedom from encroaching elements. It can be present in well-kept urban and rural landscapes, as well as in natural settings.

- **Unity** is the visual coherence and compositional harmony of the landscape considered as a whole. It frequently attests to the careful design of individual human-built components in the landscape.

While existing visual quality varies from one landscape unit to the next, as shown in Table 2-27, the Agricultural Landscape Unit exhibited moderately high visual quality while the other landscape units were moderate to moderately low and low.
### Table 2-27: Landscape Units within the Study Area

<table>
<thead>
<tr>
<th>Landscape Unit and Location</th>
<th>Typical Visual Elements&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Existing Visual Quality&lt;sup&gt;b&lt;/sup&gt;</th>
</tr>
</thead>
</table>
| The Agricultural Landscape Unit is on both sides of the project area between existing SR 132 (Maze Boulevard) and Morse Road and is on the south side of the project area to Elm Avenue. | FG: Two-lane country road pavement with grass ditches or dirt shoulders; fencing  
MG: Country road intersections; stop signs; orchards; crop fields; farm buildings and homes; utility poles and wires  
BG: Flat agricultural land; foothills; Modesto buildings and city lights; tree tops and sky | Moderately high |
| The Residential Landscape Unit is on the north side of the project area between Morse Road and North Carpenter Road and is on the south side of the project area between Shirley Court and I Street. | FG: Residential streets and front yards of homes  
MG: Street trees; pavement; cars; highway noise barriers; utility poles and wires; landscaping  
BG: Multi-story buildings; tree tops; utility poles and wires  
Noteworthy visual elements include mature trees along neighborhood streets. | Moderate to moderately low |
| The Highway Landscape Unit is within SR 99 right-of-way between Kansas Avenue and H Street. | FG: Highway pavement; bridge railing; fencing; vacant land; weedy landscape vegetation  
MG: Highway; vacant land; retaining walls; highway noise barriers; slope pavement; highway signs; utility poles and wires; vehicle barriers; lighting  
BG: Noise barriers; building tops; tree canopy | Low |
| The Commercial/Industrial Landscape Unit is centered on Kansas Avenue between North Carpenter Road and SR 99. Industrial land uses are also between SR 99 and the railroad from Kansas Avenue to H Street. | FG: Street pavement; buildings frontages; cars; on-street parking  
MG: Cars; street pavement; building frontages; utility poles and wires; industrial buildings; parking lots; vacant land  
BG: Equipment yards; commercial and industrial buildings; tree tops  
Noteworthy visual elements include the Needham Street Bridge | Moderately low |

<sup>a</sup> Typical visual elements are described in terms of foreground (FG), middle-ground (MG), and background (BG) views.

<sup>b</sup> As defined, the existing visual quality of each landscape unit was evaluated based on the criteria of vividness, intactness, and unity on a scale of very low to very high.

*Source: Visual Impact Assessment (November 2015)*
Page Intentionally Left Blank
Figure 2-5: Existing Landscape Units
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures
Key Views (Viewsheds)

Figure 2-6 shows the six key views (or viewsheds) that represent the landscape units identified in the visual study area. Similar to the assessment of visual quality for each landscape unit, the existing visual quality of each viewshed was assessed based on vividness, intactness, and unity on a scale of very low to very high. Table 2-28 summarizes the visual quality evaluation for each key view.

Table 2-28: Existing Visual Quality Rating for Key Views in the Study Area

| Viewshed       | Vividness       | Intactness | Unity       | Existing Visual Quality
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: Rosemore Avenue</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>#2: Carpenter Road</td>
<td>Moderately low</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>#3: Emerald Avenue</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderately low</td>
</tr>
<tr>
<td>#4: SR 99</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>#5: Needham Street</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderately low</td>
</tr>
<tr>
<td>#6: Elm Avenue</td>
<td>Moderate</td>
<td>Moderately high</td>
<td>Moderately high</td>
<td>Moderately high</td>
</tr>
</tbody>
</table>

a The existing visual quality of each landscape unit was evaluated on a scale of very low to very high.

Viewer Groups

Three viewer groups were identified for the project study area:

- **Highway travelers** would view the study area from SR 99 and the new SR 132 freeway/expressway. Their sensitivity to visual changes would be lower than other viewer groups.

- **Local travelers** (motorists, bicyclists, and pedestrians) live or work in the residential, industrial, and commercial districts along Kansas Avenue, North Emerald Avenue, 6th Street, or Needham Street. Their sensitivity to visual changes would be higher than highway travelers.

- **Local residents** and employees live and work on Kansas Avenue or are residents in the Elm Tract or North Rosemore Avenue neighborhoods. This group would have the highest sensitivity to visual changes among the viewer groups.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-6: Key Views in the Study Area
An analysis of a viewer groups’ reaction to change can be predicted through understanding a community’s goals and values as reflected in the land use plans, policies, and ordinances established by local governments. The Stanislaus County General Plan strives to conserve agricultural land and protect the area’s agricultural heritage and principal industry, stressing the importance of preserving open space and scenic vistas wherever possible. Modesto places special value on its street trees, as evidenced by Modesto’s street tree ordinance and the city being named a Tree City USA community every year since 1980.

**Viewshed #1 Rosemore Avenue**

As seen in Figure 2-7, Viewshed #1 shows views from the Residential Landscape Unit north of Kansas Avenue looking south toward the proposed new alignment and shows how the proposed depressed section would appear to residents and local motorists. The proposed new alignment would be at least 45 feet from the southern edge of Kansas Avenue and located between 20 to 22 feet below current street level at this location. A depressed portion of the new alignment proposed under both build alternatives would essentially preserve the existing visual quality of south-facing views for Kansas Avenue and North Rosemore Avenue residents and local motorists.

Overall, the visual impact of a depressed new alignment crossing under North Rosemore Avenue, would change some of the visual elements. If sound walls are required, they could have more visual impact than a see-through rail type barrier, and would be less consistent with the existing rural character of the Agricultural landscape unit. Views of open land in the middle ground would be replaced with views of an improved North Rosemore Avenue with curb and gutter, sidewalks, pavement striping, striped bicycle lane, and a see-through railing-type barrier. Views of agricultural landscape character would be replaced with urban residential street character. However, with mitigation, the changes would not be enough to change the overall visual quality and impacts would be considered less than significant. Visual quality for Viewshed #1 would remain as moderate.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-7: Viewshed #1: Rosemore Avenue

Viewshed #1: Rosemore Avenue. Local travelers’ existing view from North Rosemore Avenue looking south. Kansas Avenue is seen in the foreground.

Before

Viewshed #1: Rosemore Avenue. Simulated view of either build alternative at the completion of Phase 1. Note: The noise barrier on the right half of the simulation is no longer recommended; instead, there would be the same see-through railing-type barrier as shown on the overcrossing.

After
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Viewshed #2 Carpenter Road

Figure 2-8 shows the proposed new alignment as depressed in this area with both build alternatives. The new alignment would pass under North Carpenter Road, and the road’s on- and off-ramps would be parallel and close to the proposed new alignment. The northbound North Carpenter Road to westbound SR 132 movement would be provided from a left-turn lane and ramp. A barrier-separated bicycle lane would exist along the east side of North Carpenter Road. The existing curb and gutter on the west side of the road would be removed, and a grassy ditch would be installed for roadway runoff, which would make the roadway edge somewhat less defined. Views of the pavement area would increase slightly, but overall the arterial street elements (pavement striping, signals, no overhead power lines, and poles) help organize and unify the street scene. With a see-through railing-type barrier along the top edge of the new alignment, visual changes from these improvements would be consistent with the existing urban street setting. These modifications would not change the vividness, intactness, and unity ratings for this viewshed. Therefore, the visual quality rating for this viewshed would not change and would remain moderate.
Figure 2-8: Viewshed #2: Carpenter Road

Viewshed #2: North Carpenter Road. Local travelers’ existing view from North Carpenter Road looking north.

Viewshed #2: North Carpenter Road. Simulated view of either build alternative at the completion of Phase 1.
Viewshed #3 Emerald Avenue

Both build alternatives would include a bridge for the new alignment to cross over North Emerald Avenue as shown in Figure 2-9. The elevated expressway would create a visual barrier that would obstruct residents’ views to Kansas Avenue, resulting in a feeling of enclosure and separation between the residential neighborhood and the commercial district. The new bridge abutment and slope pavement would enclose the existing soil stockpile on the east side of North Emerald Avenue. The new alignment’s overcrossing span would be sized to allow Modesto to improve North Emerald Avenue with new sidewalks, curb and gutter, and bicycle lanes as appropriate. Figure 2-9 shows the new alignment’s overcrossing as a visual portal to the Commercial/Industrial Landscape Unit north of the project.

Aesthetic treatments to the overcrossing, such as the use of textured wall treatments and compatible hardscape color scheme, would be determined after the preferred alternative is selected, during final project design and in coordination with local stakeholders.

Also, adding sidewalks, curb, and gutter would make the street more inviting for use by pedestrians and bicyclists. While the proposed project would provide new infrastructure that could bring more order to the built landscape, the improvements would be limited to the immediate study area.

Looking north along North Emerald Avenue (from viewpoint #3), the viewshed would be altered by the addition of a highway bridge and bridge abutments. Though the viewshed would be altered, the overall visual quality rating would remain moderately low and therefore would not be impacted. Aesthetic treatments on the structure could improve the vividness rating by providing visual cohesion with other State Route 132 structures. Landscaping planted on the embankments could also improve the vividness rating by softening the visual effect of the project.
Figure 2-9: Viewshed #3: Emerald Avenue

Before

Viewshed #3: Emerald Avenue. Local travelers’ existing view from North Emerald Avenue looking north.

After

Viewshed #3: Emerald Avenue. Simulated view of either build alternative at the completion of Phase 1. Note: The noise barrier recommended for the overpass is not shown, and it would further block views of high-profile vehicles on the overpass.
Viewshed #4 State Route 99

Viewshed #4 represents the views of regional highway motorists as they travel south along SR 99 (Figure 2-10). The visual changes resulting from both build alternatives would be similar in this view. However, Alternative 1 would remove the existing on-ramp from Kansas Avenue, and Alternative 2 would slightly change the ramp’s location. Other ramps proposed under both build alternatives would be in the distance and would not be visible beyond the Kansas Avenue bridge in this view. Pavement widths would increase, and the grassy side slope would be replaced by a retaining wall. Some of the trees on the highway side slope would be removed by the new Kansas Avenue overcrossing.

The Route 99 Corridor Enhancement Master Plan recommends aesthetic treatment consideration for projects in urban portions of SR 99. Modesto’s corridor enhancement plan for SR 99 is in progress, and final aesthetic concepts for this interchange have not been determined. However, a potential structural aesthetic treatment for the Kansas Avenue overcrossing is shown in Viewshed #4. Aesthetic treatments would be determined after the preferred alternative is selected, during final project design and in coordination with local stakeholders.

Views of grass areas would decrease and highway pavement area would increase, but overall, the highway elements (median barrier, retaining walls, noise walls, pavement, and landscaped slopes) would help organize and unify the scene. Overall, the visual quality of Viewshed #4 would improve slightly from low to moderately low.

Figure 2-10: Viewshed #4: SR 99

Viewshed #4: SR 99. Highway travelers’ existing view from SR 99 looking south toward the Kansas Avenue overpass.
Viewshed #4: SR 99. Simulated view of Alternative 1 at the completion of Phase 2.

Viewshed #4: SR 99. Simulated view of Alternative 2 at the completion of Phase 2.
Viewshed #5 Needham Street

The visual simulation for Viewshed #5 shows views experienced by regional and local travelers on Needham Street as well as views experienced by business owners and employees in this commercial/industrial district. As shown in Figure 2-11, one or two buildings would be replaced by a new roadway connection between Needham Street and a new alignment structure over SR 99. Aesthetic treatments to the overpass are under consideration by project stakeholders, so detailed aesthetic treatments are not shown in the visual simulation for Viewshed #5. Aesthetic treatments would be determined after the preferred alternative is selected, during final project design and in coordination with local stakeholders.

The existing view is enclosed and focused on the architecture of the commercial/industrial district. The proposed project would open this enclosed view to objects in the distance, such as the highway interchange, the new alignment, and tall street trees in the Elm Tract neighborhood to improve the visual quality of Viewshed #5. Overall, the visual quality of Viewshed #5 would improve slightly from moderately-low to a solid moderate rating.
Figure 2-11: Viewshed #5: Needham Street

**Before**

*Viewshed #5: Needham Street.* Local travelers’ existing view of the intersection of Needham Street and North Franklin Street looking west.

**After**

*Viewshed #5: Needham Street.* Simulated view of either build alternative at the completion of Phase 2.
Viewshed #6 Elm Street
Two visual simulations were prepared for Viewshed #6 to show the visual changes caused by two different alternatives for the proposed SR 132/SR 99 interchange (Figure 2-12). For both build alternatives, a flyover ramp on a structure with a noise barrier would be constructed above SR 132 and SR 99 to connect northbound SR 99 to westbound SR 132. The flyover ramp would be a major feature for the northeast view from Elm Avenue and nearby streets. The fact that SR 99 is immediately adjacent to Elm Avenue homes would be made more visually obvious.

The interchange design proposed under Alternative 1 would require a new overpass structure to connect the new alignment to 5th Avenue. This overpass would require the construction of approach roads on fill. The area required to construct the roadway on fill requires securing additional right-of-way, removing 5 homes and 16 large trees on the north side of Elm Avenue, and relocating the SR 99 noise barrier toward the southwest. The visual quality rating for Viewshed #6 would be degraded from moderately-high to moderately-low by Alternative 1.

For Alternative 2, the proposed realignment of the 5th Avenue connection would be constructed as an exit ramp from the SR 132 off-ramp to SR 99. Ramp construction would require a smaller area of right-of-way, and fewer homes and trees would be removed compared to Alternative 1 (3 homes instead of 6 and 15 trees instead of 16). The SR 99 noise barrier would be relocated toward the southwest, but not as far southwest as proposed under Alternative 1. The visual quality rating for Viewshed #6 would be degraded from moderately-high to moderately-low by Alternative 2.
Figure 2-12: Viewshed #6: Elm Avenue

Viewshed #6: Elm Avenue. Residents’ existing view from Elm Avenue looking northeast.

Viewshed #6: Elm Avenue. Simulated view of Alternative 1 at the completion of Phase 2. Note: ground-level noise barrier is shown.

Viewshed #6: Elm Avenue. Simulated view of Alternative 2 at the completion of Phase 2.
The visual impacts described above were assessed based on both the full build-out of one of the two build alternatives and separately under Phase 1 (2020) and Phase 2 (2028). Phase 1 would construct only the elements described in Section 1.4, Project Alternatives. As a result, Phase 1 would result in a lower degree of visual changes than what would occur under Phase 2.

Environmental Consequences

Build Alternatives

Visual impacts from the build alternatives were determined by combining the change in visual quality for each viewshed with the predicted viewer response to those changes. If minor visual changes occurred in a viewshed that did not alter its visual quality rating, some level of visual impact could still occur for that viewshed, depending on the level of viewer sensitivity to visual changes.

Table 2-29 summarizes potential changes to the study area’s visual quality. The two build alternatives would result in similar alterations to each viewshed and landscape unit, as described further below, but differences are noted.

Table 2-29: Changes in Visual Quality Ratings for the Build Alternatives

<table>
<thead>
<tr>
<th>Viewshed (Landscape Unit)</th>
<th>Existing Visual Quality</th>
<th>Expected Visual Quality&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Change in Visual Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: Rosemore Avenue</td>
<td>Moderate</td>
<td>Moderate</td>
<td>No change. The minor visual changes did not change rating.</td>
</tr>
<tr>
<td>(Residential and Agricultural)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2: Carpenter Road</td>
<td>Moderate</td>
<td>Moderate</td>
<td>No change. The minor visual changes did not change rating.</td>
</tr>
<tr>
<td>(Commercial/Industrial)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3: Emerald Avenue</td>
<td>Moderately low</td>
<td>Moderately low</td>
<td>No change. The minor visual changes did not change rating.</td>
</tr>
<tr>
<td>(Residential)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4: SR 99 (Highway)</td>
<td>Low</td>
<td>Moderately low</td>
<td>Improved</td>
</tr>
<tr>
<td>#5: Needham Street</td>
<td>Moderately low</td>
<td>Moderate</td>
<td>Improved</td>
</tr>
<tr>
<td>(Commercial/Industrial)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6: Elm Avenue</td>
<td>Moderately high</td>
<td>Moderately low</td>
<td>Degraded</td>
</tr>
<tr>
<td>(Residential)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> The expected visual quality is the anticipated visual quality of each landscape unit and key view after project construction.

Source: Visual Impact Assessment (November 2015)

Combining the change in visual quality ratings with the predicted viewer response determines the visual impacts. Table 2-30 summarizes the potential impacts.
## Table 2-30: Visual Impacts for the Build Alternatives

<table>
<thead>
<tr>
<th>Viewshed (Landscape Unit)</th>
<th>Change in Visual Quality Rating (Vividness + Intactness + Unity = Visual Quality)</th>
<th>Viewer Response</th>
<th>Visual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2: Carpenter Road (Commercial/Industrial)</td>
<td>Vividness: Remains moderately low.  Intactness: Remains moderate.  Unity: Remains moderate.  Visual quality: Remains moderate. The minor visual changes that would occur would not change rating.</td>
<td>High</td>
<td>Moderate&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>#3: Emerald Avenue (Residential)</td>
<td>Vividness: Remains moderate.  Intactness: Remains low.  Unity: Remains low.  Visual quality: Remains moderately low. The minor visual changes that would occur would not change rating.</td>
<td>High</td>
<td>Moderately low&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup> Because the viewer response to the visual change would be high, the overall visual impact from the minor visual changes would be moderate to moderately low.


The design for both build alternatives would be the same in the western portion of the study area and would be similar in the eastern portion, so that Alternative 1 and Alternative 2 would result in very similar visual changes throughout the study area.

Both build alternatives would relocate the intersection of Kansas Avenue and North Dakota Avenue to the north. The new SR 132 intersection with North Dakota Avenue would be just south of the current Kansas Avenue/North Dakota Avenue intersection, adversely affecting views for residents facing Kansas Avenue west of the intersection. One home on the south side of Kansas Avenue, at 4104 Kansas Avenue, would lose the vegetative screen between the residence and the existing road. An access road would be constructed closer to one home, at 4054 Kansas Avenue, in the northwest
quadrant of the Kansas Avenue/North Dakota Avenue intersection, bringing roadway infrastructure closer to that home and making it more immediately visible to those residents. Replacing or preserving trees near the intersection through design modification would help preserve the visual integrity of the Agricultural Landscape Unit.

Both build alternatives would also include a flyover ramp structure as part of the proposed SR 132/SR 99 interchange. Existing mature trees that currently screen views of SR 99 would be replaced with vertical structures, such as the proposed flyover ramp structure. The flyover ramp would be a new highway element visible to Elm Avenue residents and would be incompatible with the existing setting of the Elm Tract neighborhood. Up to six homes would be removed from the north side of Elm Avenue, changing the consistent pattern of homes facing the street and degrading the visual unity and intactness of the neighborhood. The visual degradation would be slightly higher under Alternative 1 because it would remove more homes than Alternative 2 and because the proposed flyover ramp structure and ground-level noise barriers would be closer to the residential area than under Alternative 2. Figure 2-12 shows before and after images for the two build alternatives.

Improvements along the new North Carpenter Road/SR 132 interchange would involve an area on the south side of SR 132 between the on- and off-ramps that would be planted with street trees. This would reduce the visual intrusion from the proposed new alignment, enhance the visual continuity of North Carpenter Road, and support Modesto’s land use policy to “create safe and attractive tree-lined environments.” Within the urbanized area of Modesto, both build alternatives would generally provide a more unified, cohesive human-built landscape that would be consistent with the goals and policies adopted in Modesto’s General Plan.

Neither build alternative would change the following:

- The existing visual quality in the Agricultural Landscape Unit (Viewpoint #1 at North Rosemore Avenue) because the visual changes associated with both build alternatives would not be substantial enough to change the visual quality rating in this area
- The visual quality of the Residential Landscape Unit next to North Rosemore Avenue and North Emerald Avenue (Viewpoints #1 and #3) because the visual changes associated with both build alternatives would not be substantial enough to change the visual quality ratings in these areas
The visual simulations in Figure 2-7 through Figure 2-12 show changes that would result from the two build alternatives. The visual impacts from the recommended noise barriers were included in the evaluation of visual changes. The precise placement and visual treatment would be determined after the preferred alternative is selected, during final project design.

For areas that would have replacement planting, it would take time for the vegetation to grow and lessen the visual impact. Replacement planting would occur as part of Phase 2. Visual impacts would be greatest during the first 10 years after construction and after replacement planting is complete. In 10 to 20 years, newly planted trees would grow to be 50 to 70 percent of their mature size and would replace the screening, filtering, and softening functions provided by the original trees. As a result, the loss of vegetation and its function would be temporary, and any negative viewer response would be lessened over time.

Caltrans supports enrichment of the cultural and visual environment for transportation system users and local communities by using a collaborative approach to the design and selection of aesthetic treatments.

Aesthetic treatments may integrate elements that reflect a community’s identity and values. StanCOG, Stanislaus County and the City of Modesto would collaborate with stakeholders through community meetings or workshops to select treatments to be applied to noise barriers, overcrossings and other structural elements of the proposed project. Following selection of the aesthetic treatments, the applicable local agency would issue a resolution or other official document recommending approval of the proposed design to Caltrans.

Lighting and Glare
Both build alternatives would introduce new highway lighting and illuminated signage along the length of the new alignment, at bridge overpasses and underpasses, and at the proposed SR 132/SR 99 interchange. New lighting and glare would occur in areas currently unlit, most notably west of North Carpenter Road and south of the proposed new alignment. This would be a major visual change for residents with views of the project.

Trees
As indicated in Table 2-31, both build alternatives would impact most of the 713 trees (including 92 Modesto street trees) identified within the project study area.
Table 2-31: Tree Impacts by Build Alternative

<table>
<thead>
<tr>
<th>Build Alternative</th>
<th>Total Trees Impacted</th>
<th>Modesto Street Trees Impacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1</td>
<td>591</td>
<td>35</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>589</td>
<td>33</td>
</tr>
</tbody>
</table>

Source: Visual Impact Assessment (November 2015)

Both build alternatives would remove up to 16 trees next to the Elm Tract neighborhood and in front of homes facing North Dakota Avenue. Tree removal, which would open up residents’ views of the new alignment, may result in highly sensitive responses from residents in the two neighborhoods. The number of impacted orchard trees would be negligible relative to the surrounding orchards in Stanislaus County.

Vegetation and trees would be replaced, but it would take time for the vegetation to grow and lessen the visual impact. Visual impacts would be greatest during the first ten years after construction and replacement planting is complete. In ten to twenty years, newly planted trees would grow to be 50 to 70 percent of their mature size, replacing the screening, filtering and softening functions provided by the original trees. As a result, the loss of vegetation and its function would be temporary.

Consistency with Local Plans and Scenic Resource Impacts
Both build alternatives would comply with the visual and scenic preservation policies contained in the County’s and City’s general plans.

Construction
During Phase 1, all viewer groups would experience temporary visual changes during construction, including new views of heavy equipment and vehicles (such as bulldozers, graders, scrapers, pile drivers, and trucks). The viewer groups would also see construction material stockpiling, vegetation removal within construction areas, dust, and construction signage.

Construction activities would typically occur during daytime hours, though there may be times of nighttime activity. Nighttime work may occur in and around SR 99. If nighttime work is required, viewer groups would see high-wattage lighting used to illuminate the construction site. This would result in nighttime glare and light pollution.
During Phase 2, viewers would experience similar temporary visual impacts during construction.

**No-Build Alternative**
The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not contribute to direct or indirect impacts on visual resources.

**Avoidance, Minimization, and/or Mitigation Measures**
Implementation of the following measures would reduce visual impacts as determined during final project design and in coordination with local stakeholders:

VA-1 The City of Modesto street tree ordinance stipulates that trees removed within the City’s right-of-way would be replaced in kind, if appropriate. The contractor would conform to local tree ordinances for construction projects. The ratios and location of replacement would be determined in coordination with the City of Modesto.

VA-2 Vegetation and trees removed by the contractor would be replaced in accordance with the California Department of Transportation’s Project Development Procedures Manual, Chapter 29, which specifies policies for new highway planting, required mitigation planting, highway planting replacement, and highway planting revegetation. The policy specifies conditions under which planting is appropriate. Landscape policies developed as part of the Route 99 Corridor Enhancement Plan within Modesto city limits would also be a guide for tree replacement and new highway planting. Replacement planting and new highway planting would occur as part of Phase 2. Contractor activities would include, but not be limited to, site grading and seeding, trimming trees and shrubs lightly damaged by construction, site clean-up, and replacement of trees, shrubs, and ground cover.

VA-3 To minimize glare from State Route 132 lighting, lamps that direct light toward the roadway would be used where required to minimize glare and light spillover. Examples of these features include light shields or low level lighting to redirect light away from motorists, homes, businesses and the sky. If night-time construction is needed, causing a temporary degradation of visual quality, procedures would be taken to direct the light inward
toward the construction site and minimize glare for motorists and residents near the site.

VA-4 The contractor would employ a common aesthetic theme to all proposed structures along the new alignment, as determined during final project design and in coordination with local stakeholders, to visually unify the highway’s image with other Modesto structures (e.g., Needham Bridge and the proposed Pelandale Bridge) and to strengthen the landscape character of districts on either side of the highway.

VA-5 The contractor would landscape the highway embankment to enhance homeowners’ views of the proposed new alignment.

VA-6 The contractor would replace trees near the relocated intersection of Kansas Avenue and North Dakota Avenue or modify intersection design to preserve trees in their current location.

VA-7 The contractor would plant street trees at the property edge next to Elm Avenue and align the right-of-way fencing with the noise barriers, which would be set back from the property line.

VA-8 The contractor would apply a corridor-wide aesthetic theme to proposed project elements (e.g., walls and structures), developed during final design, and implement a functional planting style that respects the visual context of the Agricultural Landscape Unit, which is characterized by orchards, crop fields, grass ditches, and farm buildings.

VA-9 The contractor would install roadway lighting features that direct light downward and away from adjacent residential properties or the night sky.

VA-10 The contractor would direct light inward toward the construction site during nighttime construction.

2.1.8 Cultural Resources

Regulatory Setting

The term “cultural resources” as used in this document refers to all “built environment” resources (structures, bridges, railroads, water conveyance systems, etc.), culturally important resources, and archaeological resources (both prehistoric and historic), regardless of significance. Laws and regulations dealing with cultural resources include the following:
The National Historic Preservation Act of 1966, as amended, sets forth national policy and procedures for historic properties, defined as districts, sites, buildings, structures, and objects included in or eligible for the National Register of Historic Places. Section 106 of the National Historic Preservation Act requires federal agencies to take into account the effects of their undertakings on such properties and to allow the Advisory Council on Historic Preservation the opportunity to comment on those undertakings, following regulations issued by the Advisory Council (36 Code of Federal Regulations Part 800). On January 1, 2004, a Section 106 Programmatic Agreement between the Advisory Council, the Federal Highway Administration, State Historic Preservation Officer, and Caltrans went into effect for Caltrans projects, both state and local, with Federal Highway Administration involvement. The Programmatic Agreement implements the Advisory Council’s regulations, streamlining the Section 106 process and delegating certain responsibilities to Caltrans. The Federal Highway Administration’s responsibilities under the Programmatic Agreement have been assigned to Caltrans as part of the Surface Transportation Project Delivery Program (23 U.S. Code 327).

Historic properties are also covered under Section 4(f) of the U.S. Department of Transportation Act, which regulates the “use” of land from historic properties. See Appendix B of this document for specific information about Section 4(f).

Historical resources are also considered under CEQA and the California Public Resources Code Section 5024.1, which established the California Register of Historical Resources. Public Resources Code Section 5024 requires state agencies to identify and protect state-owned resources that meet National Register of Historic Places listing criteria. It further specifically requires Caltrans to inventory state-owned structures in its right-of-way. Sections 5024(f) and 5024.5 require state agencies to provide notice to and consult with the State Historic Preservation Officer before altering, transferring, relocating, or demolishing state-owned historical resources that are listed on or are eligible for inclusion in the National Register of Historic Places or are registered or eligible for registration as California Historical Landmarks.

**Affected Environment**

The following section is based on the *State Route 132 Archaeological Survey Report* completed in October 2011, the *State Route 132 Historic Resources Evaluation Report* completed in December 2011, and the *State Route 132 Historic Property Survey Report* completed in December 2011. Following changes in the project’s area
of potential effects, additional areas were evaluated, and a supplemental *Historic Property Survey Report* was completed in October 2014. The additional areas identified in the supplemental Historic Property Survey Report included primarily narrow portions of parcels adjacent to the proposed alignment between North Dakota Avenue and North Carpenter Road. These areas were added due to design refinements relating to minor roadway improvements and the creation of roadside bioswales and infiltration basins for stormwater runoff.

Record searches, literature reviews, map reviews, consultation with Native American and historical organizations, and a site survey were conducted in 2010 and 2014 for the project. Sources consulted included base maps marked with the locations of previous cultural resource studies and known cultural resources. In addition, the Native American Heritage Commission was contacted in June 2010 and June 2014. The commission noted that a Sacred Lands File search was negative for the presence of Native American cultural resources in the project study area.

**Archaeological Resources**

To determine if any significant archaeological resources are present within the project study area, an archaeological area of potential effects was established to represent both build alternatives and the maximum possible area of direct impacts resulting from the project. The horizontal and vertical limits of the area of potential effects were defined according to the limits of proposed construction work. The vertical area of potential effects would vary from 3 to 5 feet for road grading to 35–40 feet below existing grade. The depressed freeway option includes constructing a new at-grade freeway from North Dakota Avenue to west of North Rosemore Avenue, a depressed roadway from west of North Rosemore Avenue to west of Emerald Avenue, and an elevated roadway from west of Emerald Avenue to SR 99. The area of potential effects also entails all existing right-of-way and those parcels from which new right-of-way would be acquired. As such, the area of potential effects encompasses 1) approximately 4 miles of the proposed new alignment, 2) the footprints for the proposed interchange locations (including the associated on- and off-ramps), and 3) any construction staging areas or locations where ground disturbance would occur.

Over 80 percent of the area of potential effects was inventoried for cultural resources more than 5 years ago, and about 50 percent of the area was surveyed within the last 5 years. Within a half-mile radius of the area of potential effects, 40 cultural resources studies have been previously conducted.
Two previously known historic-era archaeological resources were found within the area of potential effects. Site CA-STA-408H (Hadley Site) was originally recorded in 2000 and consists of nine features, including concrete foundations and a pile of rubble located on the south side of the site near and within the remains of a concrete fountain. The site is estimated to have been constructed after 1914. Site CA-STA-407H (Emerald Site) was also originally recorded in 2000. The site was described as residential, consisting of a concrete pad foundation, remnants of a brick wall, landscaping remnants, and modern refuse. The property was developed in the 1920s, but all structures were gone when Caltrans acquired the property in 1963. Current site conditions show that all structures have been destroyed.

Some parcels in private ownership within the archaeological area of potential effects were inaccessible for archaeological survey. These areas would be surveyed for archaeological resources after selection of the preferred alternative and access to these parcels is obtained. Geoarchaeological investigation (test excavations) of the vertical area of potential effects would also be conducted after selection of the preferred alternative. A second supplemental Historic Property Survey Report would be prepared documenting the results of the additional archaeological survey and geoarchaeological investigation. This report, along with a finding of effect, would be provided to the State Historic Preservation Officer for concurrence. This would complete the identification of archaeological resources for the project.

**Historic Architectural Resources**

The proposed project’s historic architectural area of potential effects includes all existing right-of-way and those parcels from which new right-of-way would be acquired. In addition, some parcels in proximity to the proposed right-of-way are included because of potential indirect impacts (visual and noise-related impacts). The historic architectural area of potential effects extends along existing SR 132 (Maze Boulevard) just west and east of Dakota Avenue. The area of potential effects also covers the area south of Kansas Avenue from west of Dakota Avenue to east of SR 99. Lastly, the area of potential effects follows SR 99 from Lone Palm Avenue at the northern end of the project to H Street at the southern end.

The area of potential effects consists mostly of residential and agricultural buildings, but also includes industrial and commercial buildings and a segment of an irrigation canal (Modesto Irrigation District’s Lateral Canal No. 4). In total, the area of potential effects has 167 properties containing built-environment resources constructed in 1969 or earlier that were formally evaluated under National Register of Historic Places and
California Register of Historic Resources criteria. The Historic Property Survey Report documented 163 properties, and the supplemental report documented an additional four properties. Of the 167 properties, 165 were found to not be eligible for the National Register of Historic Places, nor were they considered historical resources for purposes of CEQA.

Two of the properties evaluated appear to meet the criteria for listing in the National Register of Historic Places and the California Register of Historic Resources. The property at 3530 Maze Boulevard is a residential and farm complex located south of the existing highway between Dakota Avenue and Carpenter Road, on the western end of the area of potential effects. Constructed in 1918, the historic property consists of a Craftsman-style single-family residence with a garage/shed, barn, water tower, outhouse, and associated landscaping on a 15.46-acre parcel. The property appears to meet the criteria for listing in the National Register of Historic Places at the local level of significance under Criterion C in the area of architecture. Consequently, the property would also appear to be a historical resource for the purposes of CEQA.

The property at 416/418 I Street is a two-story commercial structure built between 1924 and 1925. Also known as Dania Hall, the property sits on a 0.11-acre parcel on the south side of I Street near the intersection of 5th and I streets on the eastern end of the area of potential effects. The property appears to qualify for listing in the National Register of Historic Places under Criterion A for its association with the Danish-American settlement in Stanislaus County and as an example of Danish-American fraternal organization.

Environmental Consequences
Build Alternatives
Both historic-era archaeological resources (site CA-STA-407H and CA-STA-408H) were evaluated and recommended to be not eligible for inclusion in the National Register of Historic Places or the California Register of Historic Resources. This recommendation is in concurrence with present survey results. Pending the results of the additional archaeological survey and geoarchaeological investigation discussed above, neither build alternative would have an adverse impact on any known archaeological properties eligible for the National Register of Historic Places or the California Register of Historic Resources. However, impacts could occur to the two eligible historic resources.
The proposed project would not require the temporary or permanent acquisition of any land from the 416/418 I Street parcel. No construction activities are proposed on or adjacent to the property, and there would be no temporary or permanent use of land from the parcel. Therefore, the two build alternatives would not have a direct or indirect impact on the resources at 416/418 I Street. Caltrans would submit a Section 106 finding of effect on the 416/418 I Street property to the State Historic Preservation Officer for concurrence after selection of the preferred alternative.

Since there would be no temporary or permanent use of land from the parcel, there would be no 4(f) property affected at this location and the provisions of Section 4(f) would not be triggered as described in Appendix B of this document.

Both build alternatives would require the acquisition of a portion of the northwest corner of 3530 Maze Boulevard (totaling approximately 0.13 acre of the 15.46-acre parcel) to widen the right-of-way in this area. The potential acquisition is located where a contemporary almond orchard exists outside the historic property boundary. The historic boundary containing eligible buildings and landscaping would not be affected by acquisition.

Construction activities near the Maze Boulevard property could include traffic control, temporary traffic signs during construction, installation of new permanent traffic signs along the roadside, and possibly asphalt concrete resurfacing and re-striping the existing pavement. Construction-related activities east of the acquired portion of the parcel would occur within existing SR 132 (Maze Boulevard) right-of-way. The historic boundary containing the National Register of Historic Places-eligible buildings and landscaping would not be affected by use of this portion of the larger parcel. Access to the historic property from the existing highway would be maintained during construction. Caltrans would submit a Section 106 finding of effect on the 3530 Maze Boulevard property to the State Historic Preservation Officer for concurrence after selection of the preferred alternative.

As detailed in Appendix B of this document, incorporation of the 0.13 acre of land from 3530 Maze Boulevard into the transportation facility would not result in a Section 4(f) use.

A Historic Property Survey Report was submitted to the State Historic Preservation Officer on March 16, 2012 for concurrence on eligibility determinations for the sites identified in the 2011 area of potential effects. A concurrence letter was received
from the State Historic Preservation Officer dated May 16, 2012. A Supplemental Historic Property Survey Report was prepared to evaluate eligible properties within the expanded area of potential effects and submitted to the State Historic Preservation Officer on February 6, 2015. A concurrence letter was received from the State Historic Preservation Officer dated May 16, 2015. As summarized below, Caltrans received letters of concurrence on the following findings under Section 106 from the State Historic Preservation Officer (the letters are included in Appendix I):

- 2012 Area of Potential Effects: two eligible properties and 165 ineligible properties
- 2014 Supplemental Area of Potential Effects: four ineligible properties

As described above, a second supplemental Historic Property Survey Report and the Section 106 finding of effect would be submitted to the State Historic Preservation Officer after additional archaeological survey and geoarchaeological investigations are conducted for the preferred alternative that is selected. Concurrence by the State Historic Preservation Officer would complete the identification and effects determination for archaeological and historic architectural resources for the proposed undertaking.

Because there would be a potential to discover buried cultural resources, including human remains, during construction grading and excavation, best management practices would be employed during construction in the event that unknown buried cultural resources are encountered. If previously recorded cultural materials are discovered during construction, all earthmoving activity within and around the immediate discovery area would be stopped until a qualified archaeologist could assess the nature and significance of the find. If human remains are discovered, State Health and Safety Code Section 7050.5 states that further disturbances and activities must cease in any area or nearby area suspected to overlie remains and the county coroner contacted. Pursuant to Public Resources Code Section 5097.98, if the remains are thought to be Native American, the coroner would notify the Native American Heritage Commission, who would then notify the Most Likely Descendant. At this time, the person who discovered the remains would contact the California Department of Transportation’s District 10 Native American Coordinator so that he or she may work with the Most Likely Descendant on the respectful treatment and disposition of the remains. Further provisions of Public Resources Code 5097.98 are to be followed as applicable.
No-Build Alternative
The No-Build Alternative would not include any roadway improvements and would not have an impact on the two historic architectural resources because no physical disturbance would occur at either property. Therefore, the No-Build Alternative would not cause impacts on cultural resources.

Avoidance, Minimization, and/or Mitigation Measures
There are no direct impacts on known historic resources; as such no avoidance, minimization, and/or mitigation measures would be required for historic resources. Pending the results of an additional archaeological survey of currently inaccessible parcels and geoarchaeological investigations, after the preferred alternative is selected, Caltrans would submit a Section 106 finding of effect. The finding of effect would include the 3530 Maze Boulevard property and any additional properties identified in the additional surveys conducted after selection of the preferred alternative. The Final EIR/EA would include avoidance, minimization and mitigation measures for affected properties identified in the future investigations conducted after selection of the preferred alternative.

2.2 Physical Environment

2.2.1 Hydrology and Floodplain

Regulatory Setting
Executive Order 11988 (Floodplain Management) directs all federal agencies to refrain from conducting, supporting, or allowing actions in floodplains unless it is the only practicable alternative. Federal Highway Administration requirements for compliance are outlined in 23 Code of Federal Regulations 650 Subpart A.

To comply, the following must be analyzed:

- The practicability of alternatives to any longitudinal encroachments.
- Risks of the action.
- Impacts on natural and beneficial floodplain values.
- Support of incompatible floodplain development.
- Measures to minimize floodplain impacts and to preserve/restore any beneficial floodplain values affected by the project.
The base floodplain is defined as “the area subject to flooding by the flood or tide having a one percent chance of being exceeded in any given year.” An encroachment is defined as “an action within the limits of the base floodplain.”

**Affected Environment**

The following section is based on the *State Route 132 Floodplain Study* (October 2015) and *Preliminary Drainage Report* (September 2014).

The proposed project study area is located in California’s Central Valley Basin, the largest hydrologic basin in the state. The San Joaquin River is about 16 miles west of the study area. The Stanislaus River (about 6 miles north of the study area) and the Tuolumne River (about 0.5 mile south of the study area) are two of the San Joaquin River’s main tributaries.

The proposed project study area is also within the San Joaquin Watershed (Natural Resources Conservation Service’s California Watershed Region 6), specifically the Riverbank Hydrologic Area of the San Joaquin Valley Floor Hydrologic Unit.

The proposed project study area is generally flat, with residential and commercial/industrial development in the eastern portion and agricultural fields in the western portion. There are no traditional storm drainage conveyance facilities (inlet and drain pipe systems, detention basins, or pumping plants) in the western portion of the study area, so runoff generally flows from existing roadways into adjacent shallow roadside ditches, onto the agricultural fields, and/or into drywells.

The runoff is allowed to permeate into soils suitable for infiltration and into the underlying aquifer. Most soils within the project area have very low to moderate infiltration rates (about 0.08 to 4.34 inches per hour). Some of the flow enters the Modesto Irrigation District’s lateral canals (mainly Lateral Canal No. 4) and is eventually used by the Modesto Irrigation District as reclaimed water when needed for peak demand. Some runoff enters drywells and permeates into the soils within the western portion of the study area. The eastern portion of the project study area includes an inlet and drain pipe system within SR 99 and stormwater drain inlets for the residential and commercial development in the area. Stormwater collected in the depressed portion of SR 99 within the project limits is pumped to a stormwater basin just east of SR 99 and south of Kansas, where it evaporates or infiltrates the ground. If the capacity of the basin is exceeded, a valve can be opened to transmit basin-held stormwater to the median collection system, which ultimately conveys stormwater to
the Tuolumne River about half a mile to the south. Based on information provided by
the Caltrans Maintenance Division, the valve has not been opened.

The proposed project study area is within the unprinted panel number 06099C0325E
of the Federal Emergency Management Agency’s Flood Insurance Rate Maps
(Figure 2-13) dated September 26, 2008.

Encroachment on a floodplain is not expected because the proposed corridor would
be in an unshaded Zone X area. Unshaded Zone X areas are defined by the Federal
Emergency Management Agency as areas of minimal flood hazard, areas outside of
the Special Flood Hazard Area, or areas higher in elevation than a 0.2-percent annual
chance (500-year) flood elevation. The nearest mapped flood areas are next to the
Stanislaus and Tuolumne rivers, north and south of the project study area,
respectively.
Note: MID = Modesto Irrigation District

Figure 2-13: Federal Emergency Management Agency’s Flood Insurance Rate Map Index 06099C0325E
Environmental Consequences

Build Alternatives
The addition of impervious surface could affect the area’s watershed through increasing the flow and volume of stormwater runoff. This could cause localized flooding downstream, which would affect both local and regional hydrology and peak flows. Alternative 1 and Alternative 2 would result in approximately 55.8 and 57.5 acres, respectively, of increased impervious surface that could result in higher peak flows and volumes entering receiving water bodies. Implementation of the project’s drainage plan would ease flows and reduce potential direct or indirect impacts to local or regional hydrology.

Because the proposed project would not be within a Federal Emergency Management Agency-identified flood zone, there would be no flood zone impacts from project construction or operation. The proposed project would not encroach on a floodplain or have any direct or indirect impacts to a floodplain. Also, the chance of annual flooding in the study area would be less than 0.2 percent per year, which would not be considered substantial.

No-Build Alternative
The No-Build Alternative would not result in the construction of any of the proposed improvements or any additional impervious surfaces that would affect regional or local hydrology. The No-Build Alternative is not located within a Federal Emergency Management Agency-identified flood zone. Therefore, no hydrology or floodplain impacts would result from the No-Build Alternative.

Avoidance, Minimization, and/or Mitigation Measures
Implementation of the following measure would reduce impacts to the regional and local hydrology.

HY-1 All drainage and hydrological improvements would be detailed in the project drainage plan, which would be approved prior to the start of project construction. The plan would include drainage features, where appropriate, such as new drainage inlets, gutters, roadside ditches, pump stations, storm drain pipes, and detention basins.
2.2.2 Water Quality and Storm Water Runoff

Regulatory Setting

Federal Requirements: Clean Water Act

In 1972, Congress amended the Federal Water Pollution Control Act, making the addition of pollutants to the waters of the U.S. from any point source\(^1\) unlawful unless the discharge is in compliance with a National Pollutant Discharge Elimination System permit. This act and its amendments are known today as the Clean Water Act, Congress has amended it several times. In the 1987 amendments, Congress directed dischargers of stormwater from municipal and industrial/construction point sources to comply with the National Pollutant Discharge Elimination System permit scheme. The following are important Clean Water Act sections:

- Sections 303 and 304 require states to promulgate water quality standards, criteria, and guidelines.

- Section 401 requires an applicant for a federal license or permit to conduct any activity, which may result in a discharge to waters of the U.S., to obtain certification from the State that the discharge would comply with other provisions of the act. (This is most frequently required in tandem with a Section 404 permit request. See below).

- Section 402 establishes the National Pollutant Discharge Elimination System, a permitting system for the discharges (except for dredge or fill material) of any pollutant into waters of the U.S. Regional Water Quality Control Boards administer this permitting program in California. Section 402(p) requires permits for discharges of storm water from industrial/construction and Municipal Separate Storm Sewer Systems.

- Section 404 establishes a permit program for the discharge of dredge or fill material into waters of the U.S. This permit program is administered by the U.S. Army Corps of Engineers.

The objective of the Clean Water Act is “to restore and maintain the chemical, physical, and biological integrity of the Nation’s waters.” The U.S. Army Corps of Engineers issues two types of 404 permits: General and Standard permits. For General permits, there are two types: Regional permits and Nationwide permits. Regional permits are issued for a general category of activities when they are similar

---

\(^1\) A point source is any discrete conveyance such as a pipe or a man-made ditch.
in nature and cause minimal environmental effect. Nationwide permits are issued to authorize a variety of minor project activities with no more than minimal effects.

There are two types of Standard permits: Individual permits and Letters of Permission. Ordinarily, projects that do not meet the criteria for a Nationwide Permit may be permitted under one of U.S. Army Corps of Engineers Standard permits. For Standard permits, the decision to approve is based on compliance with the U.S. Environmental Protection Agency’s Section 404 (b)(1) Guidelines (U.S. EPA CFR 40 Part 230), and whether permit approval is in the public interest. The 404(b)(1) Guidelines were developed by the U.S. Environmental Protection Agency in conjunction with the U.S. Army Corps of Engineers, and allow the discharge of dredged or fill material into the aquatic system (waters of the U.S.) only if there is no practicable alternative that would have less adverse effects. The guidelines state that the U.S. Army Corps of Engineers may not issue a permit if there is a least environmentally damaging practicable alternative, to the proposed discharge that would have less effects on waters of the U.S., and not have any other significant adverse environmental consequences. According to the guidelines, documentation is needed that a sequence of avoidance, minimization, and compensation measures have been followed, in that order. The guidelines also restrict permitting activities that violate water quality or toxic effluent standards, jeopardize the continued existence of listed species, violate marine sanctuary protections, or cause “significant degradation” to waters of the U.S. In addition, every permit from the U.S. Army Corps of Engineers, even if not subject to the 404(b)(1) Guidelines, must meet general requirements. See 33 Code of Federal Regulations 320.4.

**State Requirements: Porter-Cologne Water Quality Control Act**

California’s Porter-Cologne Act, enacted in 1969, provides the legal basis for water quality regulation within California. This act requires a “Report of Waste Discharge” for any discharge of waste (liquid, solid, or gaseous) to land or surface waters that may impair beneficial uses for surface and/or groundwater of the state. It predates the Clean Water Act and regulates discharges to waters of the state. Waters of the state include more than just waters of the U.S., like groundwater and surface waters not considered waters of the U.S. Also, it prohibits discharges of “waste” as defined, and this definition is broader than the Clean Water Act definition of “pollutant.” Discharges under the Porter-Cologne Act are permitted by Waste Discharge

---

2 The U.S. EPA defines “effluent” as “wastewater, treated or untreated, that flows out of a treatment plant, sewer, or industrial outfall.”
Requirements and may be required even when the discharge is already permitted or exempt under the Clean Water Act.

The State Water Resources Control Board and Regional Water Quality Control Boards are responsible for establishing the water quality standards (objectives and beneficial uses) required by the Clean Water Act, and regulating discharges to ensure compliance with the water quality standards. Details about water quality standards in a project area are included in the applicable Regional Water Quality Control Board Basin Plan.

In California, Regional Boards designate beneficial uses for all water body segments, and then set criteria necessary to protect these uses. As a result, the water quality standards developed for particular water segments are based on the designated use and vary depending on that use. In addition, the State Water Resources Control Board identifies waters failing to meet standards for specific pollutants. These waters are then state-listed in accordance with the Clean Water Act Section 303(d). If a state determines that waters are impaired for one or more constituents and the standards cannot be met through point source or non-point source controls (National Pollutant Discharge Elimination System permits or Waste Discharge Requirements), the Clean Water Act requires the establishment of total maximum daily loads. These loads specify allowable pollutant loads from all sources (point, non-point, and natural) for a given watershed.

**State Water Resources Control Board and Regional Water Quality Control Boards**

The State Water Resources Control Board administers water rights, sets water pollution control policy, and issues water board orders on matters of statewide application, and oversees water quality functions throughout the state by approving Basin Plans, total maximum daily loads, and National Pollutant Discharge Elimination System permits. Regional Water Quality Control Boards are responsible for protecting beneficial uses of water resources within their regional jurisdiction using planning, permitting, and enforcement authorities to meet this responsibility.

**National Pollutant Discharge Elimination System Program**

Municipal Separate Storm Sewer Systems

Section 402(p) of the Clean Water Act requires the issuance of National Pollutant Discharge Elimination System permits for five categories of stormwater discharges, including municipal separate storm sewer systems. The U.S. Environmental
Protection Agency defines a municipal separate storm sewer system as “any conveyance or system of conveyances (roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, human-made channels, and storm drains) owned or operated by a state, city, town, county, or other public body having jurisdiction over stormwater, that are designed or used for collecting or conveying stormwater.” The State Water Resources Control Board has identified Caltrans as an owner/operator of a municipal separate storm sewer system pursuant to federal regulations. Caltrans’ municipal separate storm sewer system permit covers all Caltrans rights-of-way, properties, facilities, and activities in the state. The State Water Resources Control Board or the Regional Water Quality Control Board issues National Pollutant Discharge Elimination System permits for five years, and permit requirements remain active until a new permit has been adopted.

Caltrans’ Municipal Separate Storm Sewer System Permit was adopted on September 19, 2012, and became effective on July 1, 2013. The permit has three basic requirements:

- Caltrans must comply with the requirements of the Construction General Permit (see below).
- Caltrans must implement a year-round program in all parts of the state to effectively control stormwater and non-stormwater discharges.
- Caltrans stormwater discharges must meet water quality standards through implementation of permanent and temporary (construction) best management practices, to the maximum extent practicable, and other measures that the State Water Resources Control Board determines to be necessary to meet the water quality standards.

To comply with the permit, Caltrans developed the Statewide Storm Water Management Plan to address stormwater pollution controls related to highway planning, design, construction, and maintenance activities throughout California. The Statewide Storm Water Management Plan assigns responsibilities within Caltrans for implementing stormwater management procedures and practices as well as training, public education and participation, monitoring and research, program evaluation, and reporting activities. The Statewide Storm Water Management Plan describes the minimum procedures and practices Caltrans uses to reduce pollutants in stormwater and non-stormwater discharges. It outlines procedures and responsibilities for protecting water quality, including the selection and implementation of best management practices. The proposed project would be programmed to follow the
guidelines and procedures outlined in the latest Statewide Storm Water Management Plan to address stormwater runoff.

**Affected Environment**

The following section is based on the *State Route 132 Water Quality Assessment Report* (April 2016), Preliminary Drainage Report (September 2014), and the section includes technical information regarding soils and groundwater from the *State Route 132 Preliminary Geotechnical Report* (2010), *Caltrans Modesto Soils Stockpiles Groundwater Monitoring Report* (June 2015), and the *Draft Geotechnical Design Report Basin Infiltration Rates for State Route 132 West Expressway* (March 2012).

The proposed project study area sits within California’s Central Valley Basin, the largest hydrologic basin in the state, draining nearly two-thirds of California and containing the state’s two largest rivers—Sacramento River and San Joaquin River. As noted earlier, the San Joaquin River is approximately 16 miles west of the project. Located approximately 6 miles north and 0.5 mile south of the study area (respectively), the Stanislaus and Tuolumne rivers are two of the San Joaquin River’s main tributaries. Beneficial uses for these three waters, as defined in the Central Valley Regional Water Quality Control Board’s Basin Plan, include protecting water quality for municipal, domestic, and agricultural uses; water contact recreation; non-contact water recreation; warm and cold freshwater habitat; wildlife habitat, and industrial services and supplies.

As described in Section 2.2.1, Hydrology and Floodplain, no storm drainage conveyance facilities currently exist in the western portion of the project study area. However, the study area’s soils do provide an opportunity for infiltration and evaporation of stormwater runoff. The Modesto Irrigation District’s Lateral Canal No. 4 is the only perennial waterway within the project limits, and it eventually discharges into the Stanislaus River. The eastern portion of the study area includes an inlet and drain pipe system within SR 99 and stormwater drain inlets for the residential and commercial development in the area. The existing SR 99 roadway corridor includes a storm drainage system that features a longitudinal pipe system, starting north of Kansas Avenue and draining south to a pumping plant in the southeast quadrant of the SR 99/Kansas Avenue interchange. The pumping plant discharges into a concrete-lined channel and then into a detention/retention basin, which is east of and next to the SR 99 northbound lanes, about 800 to 1,000 feet south of Kansas Avenue. Stormwater that enters the detention/retention basin typically evaporates or infiltrates into the ground. This detention/retention basin is also equipped with a valve-
controlled drainage system. If the capacity of the basin is exceeded, the valve can be opened to transmit basin-held stormwater to the median collection system, which ultimately conveys stormwater to the Tuolumne River about 0.5 miles to the south. Based on information provided by the Caltrans Division of Maintenance, the valve has not been opened.

The Stanislaus and the Tuolumne rivers, which drain into the San Joaquin River, are both currently listed as impaired or not meeting water quality standards for various pollutants from primarily agricultural sources. Flows from the realigned portion of SR 132 west of SR 99 would enter infiltration trenches and retention basins for infiltration and evaporation.

A depressed portion of the new alignment would cross under North Carpenter Road and extend to North Rosemore Avenue. This portion of the new alignment would be greater than 10 feet above the groundwater surface. A pump station would be installed at the crossing to pump stormwater runoff out of the depressed section, which would ultimately discharge to a proposed detention basin. The pump station would pump not only runoff at the surface, but also any groundwater within 10 feet of the subgrade. Pumps would run only as necessary.

The study area is underlain by the Modesto Groundwater Sub-basin of the San Joaquin Valley Groundwater Basin. Groundwater recharge for the sub-basin is provided mostly from surface water infiltration and subsurface inflow from adjacent sub-basins. Test borings conducted in 1958 and 1959 indicated that the depth to groundwater was 47.0 and 41.0 feet mean sea level, respectively. More recent subsurface exploration conducted on July 14 and July 15, 2009 encountered static groundwater at elevations of 47.0 and 49.5 feet mean sea level, respectively (about 32 feet below the existing grade). Differences in the depth to groundwater is likely due to non-rainy versus rainy seasons, variations in creek or river levels, and/or irrigation or pumping of wells. The pattern of change in groundwater depth is expected to be unaffected by the stormwater runoff produced by the proposed new SR 132 alignment.

Stormwater runoff associated with the Caltrans Modesto soil stockpiles was most recently sampled in January 2016. Stormwater samples were collected from four locations next to the stockpiles and two background locations away from the stockpiles and analyzed for dissolved metals, chloride, nitrate as nitrogen, sulfate, sulfide, total alkalinity, bicarbonate alkalinity and carbonate alkalinity, total dissolved
solids, and total suspended solids. The results were generally consistent with background values, except for barium for a runoff sample collected next to the south side of soil stockpile 2, and strontium for all four stormwater samples. Results measured for both barium and strontium were higher than those reported for background samples. None of the concentrations in these samples exceeded their primary or secondary Maximum Containment Levels and all were within the same general range of concentrations recorded in previous sampling events.

Groundwater was most recently sampled in April 2015. None of the reported dissolved metals concentrations for the groundwater samples collected exceeded their respective numeric water quality threshold values. Except for nitrate in the samples collected from two wells, none of the reported general minerals for the groundwater samples collected equaled or exceeded their respective California primary Maximum Contaminant Levels. Barium and strontium were reported at concentrations similar to historical levels and remained significantly less than their numeric water quality thresholds. The remaining dissolved metals were also reported at concentrations similar to historical levels.

**Environmental Consequences**

**Build Alternatives**

Because the proposed project would consist mostly of constructing a new highway on a new alignment, the proposed project would result in a permanent (long-term) increase in impervious surfaces and permanent increase in runoff and the amount of pollutants in that runoff. Alternative 1 would increase impervious surfaces by an estimated 55.8 acres, while Alternative 2 would increase impervious surfaces by an estimated 57.5 acres.

The addition of impervious surfaces would affect the integrity and patterns of the local watershed by increasing stormwater peak flows and runoff volumes. This could lead to localized flooding with a potential to introduce pollutants generated as a result of the project into the environment and potentially impact surface or groundwater quality. These increases, if left untreated, could negatively affect the water quality of receiving water bodies, including the Stanislaus, Tuolumne, and San Joaquin rivers. However, the Stanislaus and San Joaquin rivers are located far enough away (16 miles) that no impacts are anticipated.

Although the Tuolumne River is closer (half a mile) to the project area, the proposed design of the SR 99 portion of the proposed project would construct a series of
detention/retention basins designed to accommodate a 25-year storm event (the current basin was designed for a 10-year, 24-hour event). Within the recent past, the existing basin has not reached capacity, and no recent instances of stormwater are known to have collected within the SR 99 corridor and been transmitted to the Tuolumne River. Therefore, although it is possible that a large rain event could result in the release of water from the SR 99 detention/retention basins to the Tuolumne River, it is unlikely to occur. Also, the build alternatives would include best management practices as appropriate to treat runoff from the project site and reduce pollutants of concern.

During operation and maintenance of the proposed project, stormwater runoff would generally be contained within the project area through a series of detention/retention basins and/or infiltrate the groundwater to the greatest extent practical. Stormwater runoff along at-grade roadways and SR 132 would generally be contained through the use of graded swales and retention/detention basins. Stormwater collected within the SR 99 corridor would generally be contained through detention/retention basins and pumping plants. Additionally, erosion control (e.g., hydroseed) would be applied to the basins to prevent erosion and facilitate biofiltration of any sediment within the basins. Under the build alternatives, the existing SR 99 pumping plant and detention/retention basin would be removed and replaced with a new pumping plant and multiple, larger basins. The implementation of BMPs, final design features, and right-of-way acquisition to increase the amount of area for water infiltration would help minimize the potential impacts to water quality.

Potential direct impacts to water quality would be similar for both build alternatives:

- **Sediment.** The increase in impervious surface, as well as the expected increase in vehicles along the project corridor, could lead to more sediment in the runoff. Excessive sedimentation degrades aquatic habitat by stunting aquatic plant productivity. Suspended sediment (particles that are carried by the water and/or accumulate on the bottom of natural water bodies) can also cause a reduction in dissolved oxygen levels, which can be fatal to aquatic species.

- **Metals.** Metals that attach to these particles (the suspended sediments) and decayed organic matter can persist in the environment for long periods. These metals can be transferred from one organism to another in aquatic species and cause contamination of water supplies.
• **Nutrients.** Project paving and landscaping activities can increase nutrients in stormwater from sources such as vehicle exhaust and fertilizers. Excessive nutrients, particularly nitrogen and phosphorous, can cause extreme algal growth that could be toxic to certain aquatic organisms. Algal blooms and subsequent die-off can cause large variations in dissolved oxygen levels and, in some cases, can kill fish.

• **Storm Water Velocity and Volume.** Increases in impervious surfaces may lead to increased stormwater runoff flow, velocity, and volume. The impervious area collects increased pollutant loading, and the increased velocity easily transports contaminants to waterways. Increased velocity in channelized waterways also intensifies erosion and sedimentation.

• **Caltrans Modesto Stockpile Impacts.** Potential impacts to water quality would be mitigated through implementation of the containment remedy identified in the Draft Final Remedial Action Plan. The containment remedy would be accomplished through a Remedial Design Implementation Plan prepared under oversight and approval of the California Department of Toxic Substances Control and Central Valley Regional Water Quality Control Board.

As part of the project, treatment best management practices would be implemented to target pollutants of concern in stormwater runoff. Design Pollution Prevention and Treatment Control best management practices would be incorporated per the requirements of Caltrans’ statewide National Pollutant Discharge Elimination System Permit and in accordance with the requirements of Caltrans’ Project Planning and Design Guide and Stormwater Management Plan.

Through implementation of avoidance, minimization, and mitigation measures (explained below), the proposed project would result in no adverse impacts to water quality or stormwater runoff. No indirect water quality or stormwater impacts would occur under either build alternative.

Short term construction-related impacts that could occur to water quality and from stormwater runoff may include the following elements:

• **General Construction.** Vegetation removal at construction sites can increase stormwater runoff velocity and volume, causing accelerated erosion. Construction vehicles can deposit sediment onto surrounding roadway, which can later wash into local water bodies.
Construction Debris. Construction site debris, if not contained or removed regularly, can blow away in the wind and/or wash into local water bodies.

Under the General Construction National Pollutant Discharge Elimination System Permit, a Stormwater Pollution Prevention Plan and the implementation of erosion and sediment control best management practices would be required. Preparation and implementation of construction site best management practices would be in accordance with the State of California Construction General Permit (Order 2012-011-DWQ) as amended by Order WQ 2014-0006-EXEC, Order WQ 2014-0077-DWQ, and Order WQ 2015-0036-EXEC, National Pollutant Discharge Elimination System Permit Number CAS000003) and any subsequent permit related to construction activity for the project. This would include submission of the Notice of Intent to the online Storm Water Multiple Application and Report Tracking System database at least 30 days prior to project construction commencement; preparation and implementation of a Stormwater Pollution Prevention Plan, including monitoring and reporting; and submission of a Notice of Termination to the Central Valley Regional Water Quality Control Board upon completion of the project. If best management practices are properly selected and implemented, then no adverse water quality impacts are anticipated to occur during construction.

Dewatering may be necessary because the proposed project includes the construction of undercrossings at existing roadways. However, groundwater was encountered at elevations of 47.0 and 49.5 feet mean sea level. The amount of dewatering associated within construction is anticipated to be minimal, if it is required at all, and would not deplete groundwater supplies or interfere with recharge. Dewatering activities are subject to the requirements of the Central Valley Regional Water Quality Control Board and the local jurisdiction (Stanislaus County).

Caltrans Modesto Soil Stockpiles
Stockpile soil would be contained behind retaining walls, bridge abutments and beneath highway pavements. Phase 1 of the proposed project would consist of a two-lane roadway, which would be constructed over the southern portions of soil stockpiles 1 and 2. The northern portions of soil stockpiles 1 and 2, which would not be contained beneath the highway and behind retaining walls and bridge abutments, would be graded for drainage and capped with a minimum of a 6- to 12-inch-thick clean, vegetated soil cap.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Soil stockpile 3 would be treated differently than soil stockpiles 1 and 2, in that the stockpile would be entirely contained within the initial construction phase of the project. Much of soil stockpile 3 would be placed in the stockpile fill consolidation zone within the eastern abutment of the proposed SR 132/SR 99 interchange. The remainder of soil stockpile 3 would be placed in the stockpile fill consolidation zone of soil stockpile 2.

Monitoring of the stockpiles and stormwater runoff constituents of potential concern would continue until the project and full containment of all three soil stockpiles are complete. The frequency of groundwater monitoring would be subject to change until the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board indicate that monitoring is no longer required. Past and continued maintenance, in accordance with the California Department of Toxic Substances Control and Central Valley Regional Water Quality Control Board requirements, would continue and include monitoring the condition and effectiveness of the vegetative cover on the portions of the stockpiles not yet contained or capped by the project. Maintaining perimeter fencing would ensure access to each stockpile is restricted to prevent soil transport off site from Caltrans right-of-way and for the continued monitoring for potential erosion.

Containment of the soil stockpiles would eliminate direct exposure and would be protective of groundwater and surface water. Therefore, no impacts to water quality from the soil stockpiles are anticipated under either build alternative, since both alternatives would contain the soils.

None of the reported dissolved metals concentrations for the groundwater samples collected exceeded their respective numeric water quality threshold values. Barium and strontium were reported at concentrations similar to historical levels and remained significantly less than their numeric water quality thresholds. The remaining dissolved metals were also reported at concentrations similar to historical levels. Due to adsorption of heavy metals to soil, their potential to infiltrate the groundwater is very low.

Upon full containment and with implementation of the construction best management practices described in this section as well as avoidance, minimization, and mitigation measures SHAZ-1 through SHAZ-10, either build alternative would ensure no direct or indirect adverse impacts to water quality or stormwater runoff with respect to the soil stockpiles.
No-Build Alternative

The No-Build Alternative would not result in construction of any of the proposed improvements or any increase in impervious surfaces that would increase stormwater runoff volumes and concentration of pollutants entering the water system.

Soil stockpile containment via a highway structure would not be implemented under the project’s No-Build Alternative. But, impacts to the environment posed by the continued presence of the soil stockpiles would be mitigated by a remedial action developed under oversight and approval of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board. Currently, the perimeter of all three soil stockpiles is enclosed with security fencing, walls, and structures. Under the No-Build Alternative, Caltrans would continue to maintain the perimeter fence, restrict access to authorized personnel, continue water quality monitoring, and maintain each of the soil stockpile’s vegetative cover until remediation of the stockpiles is completed under the oversight and approval of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board.

Avoidance, Minimization, and/or Mitigation Measures

Project design and construction must adhere to the requirements in the National Pollutant Discharge Elimination System Permit, the Caltrans Stormwater Management Plan, the Caltrans Project Planning and Design Guide, and the best management practices outlined above. Implementation of the following measures would reduce impacts to water quality and from stormwater runoff:

WQ-1 Because dewatering activities may be necessary, the Central Valley Regional Water Quality Control Board and Stanislaus County requirements for dewatering and discharge of non-stormwater would be followed.

WQ-2 The contractor would conduct groundwater and stormwater monitoring on and adjacent to the soil stockpiles until the proposed project is complete or the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board indicate that it is no longer necessary.
2.2.3 Geology/Soils/Seismic/Topography

Regulatory Setting
For geologic and topographic features, the key federal law is the Historic Sites Act of 1935, which establishes a national registry of natural landmarks and protects “outstanding examples of major geological features.” Topographic and geologic features are also protected under CEQA.

This section also discusses geology, soils, and seismic concerns as they relate to public safety and project design. Earthquakes are a prime consideration in the design and retrofit of structures. Caltrans’ Office of Earthquake Engineering is responsible for assessing the seismic hazard for Caltrans projects. Structures are designed using Caltrans’ Seismic Design Criteria. The Seismic Design Criteria provide the minimum seismic requirements for highway bridges designed in California. A bridge’s category and classification would determine its seismic performance level and which methods are used for estimating the seismic demands and structural capabilities. For more information, please see Caltrans’ Division of Engineering Services, Office of Earthquake Engineering, Seismic Design Criteria.

Affected Environment
The following section is based on the State Route 132 Geotechnical/Geologic Summary Report, which was completed in October 2010. The “Geologic Hazard and Seismic Impacts” section of Modesto’s General Plan was also reviewed, and the project conforms to the standards described therein.

The proposed project study area sits in the Great Valley Geomorphic Province that includes the Sacramento and San Joaquin valleys. It is generally bounded by the Sierra Nevada Mountains to the east and the Coast Ranges to the west. The site lies in the San Joaquin Valley, which is a structural trough containing the southern portion of the Great Valley.

The relatively flat surface of the San Joaquin Valley is underlain by deposits that have accumulated as the structural trough formed and the adjacent mountain ranges were elevated. The thickness of the sediments varies from thin along the valley margins to thousands of feet thick at the center (approximately 15 miles east of the project study area).

The U.S. Department of Agriculture Soil Survey of Eastern Stanislaus has not mapped the study area; however, nearby areas have been mapped. These areas consist
of clay and sandy loams. The Modesto clay loam has a high shrink-swell potential, moderate to high corrosion potential for steel, a low corrosion potential for concrete, and low permeability. (Shrink-swell is the extent to which a soil expands when wet and retracts when dry. Corrosion potential is the disintegration of an engineered material into its constituent atoms. Permeability is the rate of flow of a liquid through a porous material.) The other soil units have low shrink-swell potential, moderate corrosion potential for steel, a low corrosion potential for concrete, and are moderately permeable.

Six shallow soil borings and two deep borings (101 feet and 106.5 feet) were sampled as part of the State Route 132 Geotechnical/Geologic Summary Report. In general, the borings indicated that the project study area is underlain by layers of very stiff to hard lean clay and sandy clay; medium dense to very dense, poorly graded sand and silty sand; and poorly graded sand with clay within the upper 40 to 49 feet. Underlying the near surface soil is dense to very dense, poorly graded sand to depths of 66 to 70 feet below the surface (elevations of 12 to 13 feet above mean sea level). Below the poorly graded sand, layers of hard silt, sandy silt, lean clay with sand, sandy clay, and very dense, poorly graded sand are encountered to the maximum depths explored. The soils have low to non-existent potential for landslides and slope instability, respectively.

Based on historic records, groundwater occurred at an elevation of 47 feet above mean sea level in 1958 and 41 feet above mean sea level in 1959. Subsurface exploration, conducted for the project in 2009, determined that static groundwater elevations ranged from 47 to 49.5 feet above mean sea level (about 32 feet below the existing grade).

No active faults sit in or next to the project study area, and the area does not occur within an Alquist-Priolo Earthquake Fault Zone. Field reconnaissance and review of geologic literature did not disclose the potential presence of faulting within or next to the project study area.

According to the State Route 132 Geotechnical/Geologic Summary Report, there are no known geologic hazards, including seismic or non-seismic hazards that would impact the project.
Environmental Consequences

Build Alternatives
The build alternatives would not affect any natural geologic landmarks and landforms. During final design, additional seismic and geotechnical studies would be conducted to address potential geotechnical hazards associated with liquefaction, seismic settlement, and slope stability. If localized geologic concerns are identified in the geotechnical investigation, requirements would be provided therein for grading and foundation design. Recommendations from the investigation would be implemented during project construction.

Faulting and Ground Shaking
The potential for surface rupture from faulting is considered low under both build alternatives. Ground rupture and/or fault creep is not expected to occur, but some degree of ground motion is expected from seismic activity in the region. However, risk of loss, injury, or death because of seismic activity is unlikely to occur and the proposed project is not anticipated to increase the risk to workers during construction or the traveling public during operation of the roadway.

Liquefaction and Seismic Settlement Potential
Based on the soil profile, soils within the study area are non-liquefiable or have a very low potential for liquefaction (a condition where soil turns to a jellylike consistency). Therefore, risk of loss, injury, or death because of liquefaction is unlikely to occur and the proposed project is not anticipated to increase the risk to workers during construction or the traveling public during operation of the roadway.

According to the State Route 132 Geotechnical/Geologic Summary Report, the potential for seismic settlement from loose granular soil above the water table and from seismic slope instability are both considered low. However, a seismic settlement analysis and the stability of existing embankments would be addressed during final design.

Landslides and Slope Stability
Because of the low topographic relief throughout the study area, the potential for land sliding or failure of natural slopes would be non-existent for both build alternatives. The potential for seismic slope instability is low for properly constructed embankments because of the subsurface soil conditions and relatively low anticipated peak ground acceleration. The proposed project is not anticipated to increase the risk
to workers during construction or the traveling public during operation of the roadway.

**Expansive Soil**
Shallow, highly expansive clay soils were not observed for either build alternative. Therefore, near-surface soils would have a low expansion potential and the proposed project is not anticipated to increase the risk to workers during construction or the traveling public during operation of the roadway.

**No-Build Alternative**
The No-Build Alternative would not result in construction of any of the proposed improvements and therefore would not contribute to direct or indirect impacts related to geologic, soil, seismic, and topographical conditions.

**Avoidance, Minimization, and/or Mitigation Measures**
Both build alternatives would result in minimal geologic, soil, seismic, or topographic impacts. Therefore, no avoidance, minimization, or mitigation measures are required.

### 2.2.4 Paleontology

**Regulatory Setting**
Paleontology is a natural science focused on the study of ancient animal and plant life as it is preserved in the geologic record as fossils. Several federal statutes address paleontological resources, their treatment, and funding for mitigation as a part of federally authorized projects:

- 16 U.S. Code 431-433 (the “Antiquities Act”) prohibits appropriating, excavating, injuring, or destroying any object of antiquity situated on federal land without the permission of the Secretary of the Department of Government having jurisdiction over the land. Fossils are considered “objects of antiquity” by the Bureau of Land Management, the National Park Service, the Forest Service, and other federal agencies.

- 16 U.S. Code 461-467 (the National Registry of Natural Landmarks) establishes the National Natural Landmarks program. Under this program, property owners agree to protect biological and geological resources such as paleontological features. Federal agencies and their agents must consider the existence and location of designated National Natural Landmarks, and of areas found to meet the criteria for
national significance, in assessing the effects of their activities on the environment under NEPA.

- 23 U.S. Code 305 authorizes the appropriation and use of federal highway funds for paleontological salvage as necessary by the highway department of any state, in compliance with 16 U.S. Code 431-433 above and state law.

Under California law, paleontological resources are protected by CEQA.

**Affected Environment**

The following section is based on the *State Route 132 West Paleontological Identification Report*, completed in February 2011, which is an appendix to the *State Route 132 Paleontological Evaluation Report/Preliminary Paleontological Mitigation Plan*, completed in October 2015. The latter report was prepared because of the presence of a known paleontological resource that could be impacted by the project.

Stanislaus County is in the San Joaquin Valley, which is bounded by the low mountains of the Coast Ranges to the west, the San Emigdio and Tehachapi ranges to the south, and the foothills of the Sierra Nevada Mountains to the east. The area is also in the Great Valley geomorphic province of California, a flat to gently sloping alluvial plain (sediment deposited by flowing water) that is approximately 50 to 60 miles wide and 400 miles long in central California. The sediment consists of approximately 6 vertical miles of marine, fluvial, alluvial, and lacustrine deposits spanning the Jurassic period, which dates from approximately 160 million years old to recent time.

The fluvial and alluvial continental deposits of Pleistocene age present at the near-surface and surface in the eastern side of the San Joaquin Valley within the project study area belong to the Modesto Formation. Several fossil localities from this formation occur within or near the study area. These contain organisms that provide valuable information, such as stratigraphic indicators for correlation of deposits containing them, relative geologic age determination, past life forms providing information on the course of evolutionary trends of plants and animals, and evidence of changing paleo-environments (see Figure 2-14). This formation is known to contain significant paleontological resources that have included mammoth, camel, vole, wood rat, coyote, dog, fox, jackal, wolf, giant kangaroo rat, western pocket gopher, amphibian, lizard, snake, horse, tree frog, hare, and rabbit.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-14: Geologic Map of the Study Area
Source: State Route 132 Paleontological Evaluation Report/Preliminary Paleontological Mitigation Plan (October 2015)

Based on Caltrans guidelines, the study area has been assigned a “High Potential (High Sensitivity)” to contain paleontological resources of national or scientific importance. Geologic deposits of similar age and in similar formations elsewhere in the San Joaquin Valley have yielded the fossil remains of Pleistocene vertebrates, invertebrates, and plants. It has also been documented that several extinct vertebrate fossil locations are within half a mile of the study area.

Environmental Consequences

Build Alternatives
The Modesto Formation, which underlies both build alternatives, would be impacted because of ground disturbance during general construction activities, excavation, and construction of retaining walls, structural foundations, and the pump station for the proposed new highway.
The primary mechanism for impacts on paleontological resources would be ground disturbance during construction. There is a potential for significant impacts in the entire project alignment, where the highly sensitive Pleistocene Modesto Formation has previously been mapped at or near the surface. Construction of the proposed project would require disturbance of large areas of soil and excavation in areas to depths between 15 and 40 feet depending on the design option selected and the element of the project being constructed. Grading would occur throughout the project footprint.

Excavation would range from 15 to 40 feet below the existing ground surface. Table 2-32 lists the total cut and fill requirements for construction of the proposed project. In general, an increased number of cubic yards of soil cut would likely increase impacts on the Modesto Formation.

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Total Cut</th>
<th>Total Fill</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1</td>
<td>716,000 cubic yards</td>
<td>254,000 cubic yards</td>
<td>462,000 cubic yards</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>738,000 cubic yards</td>
<td>246,000 cubic yards</td>
<td>492,000 cubic yards</td>
</tr>
</tbody>
</table>

Note: These totals are approximate based on modeling results.

Source: Draft Project Report (July 2016)

Excavation for Alternative 1 would involve less soil cut when compared to Alternative 2, and while Alternative 1 could result in impacts on paleontological resources within the study area, this build alternative is less likely to impact resources compared to Alternative 2.

Proposed grading and excavation for the proposed build alternatives would most likely encroach into the known fossiliferous Modesto Formation. If important paleontological vertebrate fossil resources are present at the project site then construction activities could cause adverse impacts under NEPA and significant impacts under CEQA, such as destruction and loss of scientifically significant paleontological vertebrate fossil resources. Implementation of the mitigation described in this report would reduce this impact to less-than-significant levels under CEQA and would ensure that adverse impacts under NEPA would not occur.
No-Build Alternative
The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not directly or indirectly impact the Modesto Formation or associated paleontological resources because no construction excavation or grading would occur.

Avoidance, Minimization, and/or Mitigation Measures
Implementation of the following measures would reduce and/or eliminate potential project-related impacts on paleontological resources. The measures would help avoid destruction of, and mitigate other potential effects on, significant paleontological resources that may be present in Pleistocene-age deposits in the subsurface of the study area. In some instances, construction equipment may have to operate at night. Paleontological monitoring during nighttime hours is usually not productive for the collection of fossils, as the paleontological remains are not as visible as they are during daylight hours, even under artificial light. Therefore, it is recommended that no monitoring occur at night.

If grading must occur at night, it is recommended that all work be limited to those areas identified as having low sensitivity for paleontological resources, or within areas that, although identified as having high sensitivity, have been approved by the Principal Paleontologist to have reduced monitoring levels because the units are not producing scientifically significant paleontological remains. If needed, the areas that receive approval from the Principal Paleontologist to be graded at night can be surveyed by the monitors the following morning. A Preliminary Paleontological Mitigation Plan has been prepared for the proposed project. If there are no changes to the depths of excavation, the Plan would be finalized. If there are changes to the depths of excavation made during final design, the Plan would be updated. The Plan would be implemented prior to, during, and/or after construction. Measures could include, but are not limited to the following:

PR-1 Special Provision 14-7.03 and 19-1.01A for paleontology mitigation would be included in the construction contract special provisions section to advise the construction contractor of the requirement to conduct paleontological salvage. A qualified professional paleontologist would be retained to prepare and implement a final Paleontological Mitigation Plan prior to construction.

PR-2 The professional paleontologist would designate a paleontological monitor to be present during qualifying earthmoving activities, as described in the

PR-3 The professional paleontologist and paleontological monitor(s) would be notified by the Resident Engineer in advance of the start of construction activity and would attend any safety training programs for the proposed project.

PR-4 The full-time paleontological monitor would have at least 5 years of paleontological resources construction monitoring experience.

PR-5 The proposed project paleontologist would meet with the Resident Engineer and construction contractor at a preconstruction meeting to develop an agreed-upon communication plan and provide for worker safety. All project personnel would receive a paleontological awareness training session prior to commencement of work.

PR-6 If paleontological resources are discovered during earthmoving activities, the construction crew would immediately cease work within a 60-foot radius of the find, and immediately notify the Resident Engineer.

PR-7 For sediments containing microfossils (pollen, freshwater ostracods), the monitor would take bulk samples for off-site processing at a later time to recover any fossils.

PR-8 Macro fossils (large enough to view with the unaided eye) could include tusks and other vertebrate remains. Some of these resources may be fragile and require hardening before moving, and may require encasing within a plaster jacket for later preparation and conservation in a laboratory.

PR-9 Oriented samples must be preserved for paleomagnetic analysis. Samples of fine matrices would be obtained and stored for pollen analysis.

PR-10 Recovered specimens would be prepared for identification (not exhibition) and stabilized.

PR-11 Specimens would be identified by competent qualified specialists to a point of maximum specificity. Ideally, identification is of individual specimens to element, genus, and species.
PR-12 Where appropriate, specimens would be analyzed by stratigraphic occurrence, and by size, taxa, or taphonomic conditions. The results would be presented in a faunal list, a stratigraphic distribution of taxa, or evolutionary, ecological, or depositional deductions.

PR-13 Adequate storage in a recognized repository institution for the recovered specimens would be required. Specimens would be cataloged and a complete list would be prepared of specimens introduced into the collections or a repository by the curator of the museum or university.

PR-14 In the event that paleontological resources are discovered, fossil specimens would be properly collected and sufficiently documented to be of scientific value.

PR-15 A Paleontological Mitigation Report would be prepared by the project paleontologist, including a summary of the field and laboratory methods, site geology and stratigraphy, faunal list, and a brief statement of the significance and relationship of the site to similar fossil localities. Full copies of the final Paleontological Mitigation Report are deposited with the repository institution.

2.2.5 Hazardous Waste/Materials

Regulatory Setting

Hazardous materials including hazardous substances and wastes are regulated by many state and federal laws. Statutes govern the generation, treatment, storage, and disposal of hazardous materials, substances, and waste, and also the investigation and mitigation of waste releases, air and water quality, human health and land use.

The main federal laws regulating hazardous wastes/materials are the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. The purpose of the Comprehensive Environmental Response, Compensation and Liability Act, often referred to as “Superfund,” is to identify and clean up abandoned contaminated sites so that public health and welfare are not compromised. The Resource Conservation and Recovery Act provides for “cradle to grave” regulation of hazardous waste generated by operating entities. Other federal laws include the following:

- Community Environmental Response Facilitation Act of 1992
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

- Clean Water Act
- Clean Air Act
- Safe Drinking Water Act
- Occupational Safety and Health Act
- Atomic Energy Act
- Toxic Substances Control Act
- Federal Insecticide, Fungicide, and Rodenticide Act

In addition to those acts, Executive Order 12088, Federal Compliance with Pollution Control Standards, mandates that necessary actions be taken to prevent and control environmental pollution when federal activities or federal facilities are involved.

California regulates hazardous materials, waste, and substances under the authority of the California Health and Safety Code Division 20, Chapter 6.5 (Hazardous Waste Control) and Chapter 6.8 (Hazardous Substance Account) and is also authorized by the federal government to implement the Resource Conservation and Recovery Act. California law also addresses specific handling, storage, transportation, disposal, treatment, reduction, cleanup, and emergency planning of hazardous waste. The Porter-Cologne Water Quality Control Act also restricts disposal of wastes and requires cleanup of wastes that are below hazardous waste concentrations but could impact groundwater and surface water quality. California regulations that address waste management and prevention and cleanup of contamination include Title 22 Division 4.5 Environmental Health Standards for the Management of Hazardous Waste, Title 23 Waters, and Title 27 Environmental Protection.

Worker and public health and safety are key issues when addressing hazardous materials that may affect human health and the environment. Proper management and disposal of hazardous material is vital if it is found, disturbed, or generated during project construction.

**Affected Environment**

The hazardous waste/materials analysis is based on the following reports prepared for the project:
• **Initial Site Assessment, SR 132 West Expressway** (October 2010) (a second Initial Site Assessment was prepared in October 2015 due to changes in projects limits and affected parcels)

• **Limited Phase II Site Assessment, SR 132 West Expressway** (April 2012)

• **Aerially Deposited Lead Assessment, SR 132 West Expressway** (December 2012)

• **Asbestos-Containing Material/Lead-Containing Paint Hazardous Material Survey Reports** (May 2015)

• **Aerially Deposited Lead Assessment, Maze Boulevard, SR 132 West Expressway** (October 2015)

• **Phase II Environmental Site Assessment, SR 132 West Freeway/Expressway Project** (October 2015)

The Initial Site Assessments identified recognized environmental conditions related to potential historical and/or current contamination, storage, use, or handling of hazardous material contaminants within and/or next to the project. The Initial Site Assessments determined the risk level that each of these parcels could pose upon project schedule, human health and the environment and categorized that risk level as low, medium, or high. Some of the methods used to determine potential hazards include determining both past and present land use, review of federal, state, and county data bases for use, misuse, or storage of hazardous substances, and limited site inspections of publicly visible portions of parcels that may be impacted by the proposed project. Site inspections may also include owner interviews.

Within the proposed right-of-way, the Initial Site Assessments identified a total of 19 parcels proposed for partial or full acquisition as having a recognized environmental condition. Twelve of the parcels are characterized as high risk due to the historical, existing or suspected presence of underground storage tanks as well as agricultural chemicals, solvents and heavy metals. Four parcels have a medium risk for the presence of on-site contamination, based on the current use of petroleum or hydrocarbon-based products, solvents, or metals on-site. Three of the parcels were characterized as having a low risk due to on-site waste oil storage within a proper containment area.

The Initial Site Assessments also identified potential project wide hazardous materials conditions including aerially deposited lead, pesticides, asbestos containing material,
and lead based paint. These conditions were further evaluated as part of the Phase II Assessment process.

Phase II Environmental Site Assessments were also conducted, most recently in 2015. Assessments include screening site conditions using data collected from soil borings located at each site. Whenever possible, borings were located where future excavations is planned or expected, as well as in distinct areas of historical contamination. Soil sample were collected at varying depths below ground surface from 31 boring locations within and/or adjacent to identified parcels.

The Phase II Assessment was conducted for those parcels with a medium or high risk designation, as defined in the Initial Site Assessment. Except as described below, these parcels were generally subject to soil sampling, and analysis. Three of the identified parcels (815 Kansas Avenue, 301 North Washington Street and 524 Kansas Avenue) did not have right-of-entry access and could not be directly assessed for asbestos containing material and lead based paint. Therefore, these three sites were characterized by soil samples collected from adjacent Caltrans right-of-way.

The following four high risk level parcels were not evaluated in the Phase II Assessment (2015) because either excavation at these locations may not occur, or if excavation is to occur, would be shallow and the risk of encountering contaminants was considered minimal:

- 818 N. Carpenter Road
- 529 Kansas Avenue
- 415 Kansas Avenue
- 820 Kansas Avenue

Additionally, two medium risk level parcels also were not evaluated. 700 N. Franklin Street was a former car dealership, however, the dealership was removed for construction of the Needham Street overpass and there is no indication of unauthorized releases. There are also no indications of unauthorized releases at 127 Laurel.

In addition to the 19 parcel sites, the project area includes four sites within the existing right-of-way that were identified to have recognized environmental conditions. Location and potential risk is listed below:

- Former northeast corner of 5th Street and I Street – High
• State Route 99 off-ramp at Kansas Avenue north of gas station – Medium
• State Route 99 at North Emerald Avenue – Medium
• State Route 132 right-of-way (proposed alignment) south of Kansas Avenue – Medium

The former corner of 5th and I Streets is now part of the State Route 99 freeway and it is not expected that the proposed project would impact this area. Both the State Route 99 off-ramp at Kansas and the route north of North Emerald were included in Phase II boring analysis. The State Route 132 right-of-way is where the Caltrans Modesto Soil Stockpiles are located and these are discussed in Section 2.2.5.1.

Data generated during Phase II is used to evaluate and document current site conditions, to the extent practicable. Analytical data is compared to background conditions and/or relevant screening levels to aid in determining the need for additional assessment of the parcels, and to address potential exposure concerns during excavation and/or grading of contaminated soil that could result in exposure to on-site workers and end users.

**Environmental Consequences**

*Build Alternatives*

Predominant land use in the local region has historically been agricultural, including almond and walnut orchards and row crops. Agricultural practices, including the application of pesticides and machinery maintenance are potential sources of contamination. In addition, the project area includes historic industrial land uses such as the FMC facility, which occupied approximately 40 acres located north of Kansas Avenue predominantly east of SR 99, and is the subject of Section 2.2.5.1, Caltrans Modesto Soil Stockpiles Site. The proposed alignment of Alternative 1 and Alternative 2 occupy the same corridor between Dakota Avenue and State Route 99. As such, the acquisition of parcels with recognized environmental conditions is unavoidable under either alternative. The acquisition of land characterized as contaminated would be consistent with the requirements and approval process defined in Caltrans Project Delivery Directive 02.

Specific parcels with recognized environmental conditions that require partial or full acquisition are summarized in Table 2-33, and depicted in Figure 2-15. Each parcel summary includes the type of potential contamination, level/extent of contamination, and Phase II recommendations and findings. Direct and indirect impacts related to recognized environmental conditions would be the same for both build alternatives.

Assessments for potential environmental conditions that may exist project wide or
include multiple acquisition parcels and/or right-of-way areas, such as aerially deposited lead, pesticides, asbestos-containing material and lead based paint are similarly summarized below.

In the event that future investigations and cleanup of these parcels or sites within the existing right-of-way are necessary, oversight from various agencies, including but not limited to, California Department of Toxic Substances Control, Central Valley Regional Water Quality Control Board, Stanislaus County, and the City of Modesto, may be required. Depending upon the extent of the contamination and the cleanup, further action may be required to comply with CEQA, which could impact Project cost and schedule.

Table 2-33: Recognized Environmental Conditions within Parcels that Require Partial or Full Acquisition

<table>
<thead>
<tr>
<th>Address</th>
<th>Land Use</th>
<th>Recognized Environmental Conditions</th>
<th>Partial/Full Acquisition</th>
<th>Construction Phase When Acquired</th>
<th>2015 Phase II Findings and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 Rosemore Avenue</td>
<td>Agricultural/residence</td>
<td>Underground storage tank and petroleum hydrocarbons (High)</td>
<td>Partial</td>
<td>Phase 1</td>
<td>Minor total petroleum hydrocarbon (total petroleum hydrocarbons)-mo (motor oil) at shallow soil depth at one boring. Levels are below regulatory benchmarks. Results are consistent with site use as active farming operation. No further assessment is recommended.</td>
</tr>
<tr>
<td>800 North Carpenter Road</td>
<td>Car wash</td>
<td>Oil/water separator (Low)</td>
<td>Partial</td>
<td>Phase 2</td>
<td>Not evaluated (low risk)</td>
</tr>
<tr>
<td>818 North Carpenter Road</td>
<td>Auto repair/gas station</td>
<td>Underground storage tank and petroleum hydrocarbons (High)</td>
<td>Partial</td>
<td>Phase 2</td>
<td>Not evaluated (excavation would be shallow with minimal risk of encountering contamination)</td>
</tr>
<tr>
<td>815 Kansas Avenue</td>
<td>Gas station</td>
<td>Documented soil and groundwater contamination from leaking underground storage tank and petroleum hydrocarbons (High)</td>
<td>Full</td>
<td>Phase 2</td>
<td>Three 10,000-gallon underground storage tanks remain onsite. Closure Report: Minor groundwater impacts for methyl terbutyl ether only at one location. Soil impacts localized and attenuating. Potential for unidentified release unrelated to fuel system piping or leaking underground storage tank from 1996.</td>
</tr>
</tbody>
</table>
Table 2-33: Recognized Environmental Conditions within Parcels that Require Partial or Full Acquisition

<table>
<thead>
<tr>
<th>Address</th>
<th>Land Use</th>
<th>Recognized Environmental Conditions</th>
<th>Partial/Full Acquisition</th>
<th>Construction Phase When Acquired</th>
<th>2015 Phase II Findings and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>529 Kansas Avenue</td>
<td>Corporate office</td>
<td>Underground storage tank, petroleum hydrocarbons, and solvents (High)</td>
<td>Partial</td>
<td>Phase 2</td>
<td>Not evaluated (excavation would be shallow with minimal risk of encountering contamination)</td>
</tr>
<tr>
<td>531 Kansas Avenue</td>
<td>Cycle shop</td>
<td>Petroleum hydrocarbons and solvents (Low)</td>
<td>Partial</td>
<td>Phase 2</td>
<td>Not evaluated (low risk site)</td>
</tr>
<tr>
<td>415 Kansas Avenue</td>
<td>Foster Farms (former Borden Plant)</td>
<td>Petroleum hydrocarbons and heavy metals (High)</td>
<td>Partial</td>
<td>Phase 2</td>
<td>Not evaluated (excavation would be shallow with minimal risk of encountering contamination)</td>
</tr>
<tr>
<td>820 Kansas Avenue</td>
<td>Former gas station</td>
<td>Leaking underground storage tank and petroleum hydrocarbons (High)</td>
<td>Partial</td>
<td>Phase 2</td>
<td>Not evaluated (excavation would be shallow with minimal risk of encountering contamination)</td>
</tr>
<tr>
<td>611 North Franklin Street</td>
<td>Auto and other repair shops</td>
<td>Underground storage tank, petroleum hydrocarbons, solvents, and metals (High)</td>
<td>Full</td>
<td>Phase 1</td>
<td>No results above detection limits. Recommendation: No further assessment.</td>
</tr>
<tr>
<td>812 Kansas Avenue</td>
<td>Car lot (former gas station)</td>
<td>Underground storage tank, volatile organic compounds and petroleum hydrocarbons (High)</td>
<td>Partial</td>
<td>Phase 2</td>
<td>Unidentified trace amount of total petroleum hydrocarbon-d (diesel) range organic detected at one location. Results are inconclusive. Recommendation: No further assessment unless additional site acquisition occurs.</td>
</tr>
<tr>
<td>524 Kansas Avenue</td>
<td>Commercial supply company</td>
<td>Waste oil (Low)</td>
<td>Full</td>
<td>Phase 2</td>
<td>Not evaluated (low risk)</td>
</tr>
<tr>
<td>824 North Dakota Avenue</td>
<td>Former agricultural barn</td>
<td>Possible underground storage tank, agricultural chemicals, and petroleum</td>
<td>Partial</td>
<td>Phase 1</td>
<td>No detectable levels of persistent pesticides. Minor total petroleum hydrocarbon-d impacts. Levels are below regulatory benchmarks;</td>
</tr>
</tbody>
</table>
Table 2-33: Recognized Environmental Conditions within Parcels that Require Partial or Full Acquisition

<table>
<thead>
<tr>
<th>Address</th>
<th>Land Use</th>
<th>Recognized Environmental Conditions</th>
<th>Partial/Full Acquisition</th>
<th>Construction Phase When Acquired</th>
<th>2015 Phase II Findings and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>612 North Franklin Street</td>
<td>Body shop</td>
<td>Petroleum hydrocarbons, solvents, and metals (Medium)</td>
<td>Full</td>
<td>Phase 1</td>
<td>Minor traces of total petroleum hydrocarbon-mo were detected at one location. Results indicate site development. Recommendation: No further assessment.</td>
</tr>
<tr>
<td>309 Beech Street</td>
<td>Body shop (former bus storage yard)</td>
<td>Petroleum hydrocarbons, solvents, oil, grease and metals (Medium)</td>
<td>Full</td>
<td>Phase 1</td>
<td>Minor total petroleum hydrocarbon-d, total petroleum hydrocarbon-mo and OG (oil and grease). Results are consistent with site development. Indication that there is a potential to encounter total petroleum hydrocarbon and OG contamination throughout the site. Recommendation: Once final excavation limits of future drainage basin are known, conduct further assessment of OG and total petroleum hydrocarbon in soils and groundwater. Potential NSSP for soil management.</td>
</tr>
<tr>
<td>522 North Franklin Street</td>
<td>Auto/truck repair (former truck washing station and holding pond)</td>
<td>Leaking underground storage tank, petroleum hydrocarbons, solvents, and metals (High)</td>
<td>Full</td>
<td>Phase 1</td>
<td>Minor traces of total petroleum hydrocarbon-d and OG detected at all locations indicate potential impacts from former truck washing/maintenance operations. Recommendation: Due to proposed use as a drainage basin, conduct</td>
</tr>
</tbody>
</table>
### Table 2-33: Recognized Environmental Conditions within Parcels that Require Partial or Full Acquisition

<table>
<thead>
<tr>
<th>Address</th>
<th>Land Use</th>
<th>Recognized Environmental Conditions</th>
<th>Partial/Full Acquisition</th>
<th>Construction Phase When Acquired</th>
<th>2015 Phase II Findings and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>501 North Jefferson Street</td>
<td>Modesto corporation yard</td>
<td>Leaking underground storage tank, pesticides, petroleum hydrocarbons, solvents, and metals (<strong>High</strong>)</td>
<td>Partial and Full&lt;sup&gt;c&lt;/sup&gt;</td>
<td>Phase 1 and Phase 2&lt;sup&gt;c&lt;/sup&gt;</td>
<td>Further assessment of OG and total petroleum hydrocarbon in soils and groundwater where basin footprint is defined. Potential NSSP for soil management.</td>
</tr>
<tr>
<td>301 North Washington Street</td>
<td>Tin manufacturer</td>
<td>Underground storage tank, petroleum hydrocarbons, and metals (<strong>High</strong>)</td>
<td>Full</td>
<td>Phase 1</td>
<td>Minor total petroleum hydrocarbon-d detected at three sample locations. Results are all below regulatory benchmarks. Results may be from residual impacts of former underground storage tanks, operating aboveground storage tanks or from minor releases during site history. Recommendation: After final design, conduct additional shallow soil assessment for diesel. Potential NSSP for soil management.</td>
</tr>
<tr>
<td>127 Laurel Street</td>
<td>Motorcycle shop</td>
<td>Petroleum hydrocarbons and solvents (<strong>Medium</strong>)</td>
<td>Full</td>
<td>Phase 1</td>
<td>Site assessment was conducted from the adjacent parcel due to denial of property access by owner. Minor total petroleum hydrocarbon-d detected at one location. Elevated total petroleum hydrocarbon levels may be present within the acquisition parcel. Recommendation: When right-of-entry is obtained, conduct soil assessment at former underground storage tank location. Potential NSSP for soil management. Records reference small quantities of petroleum hydrocarbons and solvents. Out of business. No indication of unauthorized releases.</td>
</tr>
</tbody>
</table>
Table 2-33: Recognized Environmental Conditions within Parcels that Require Partial or Full Acquisition

<table>
<thead>
<tr>
<th>Address</th>
<th>Land Use</th>
<th>Recognized Environmental Conditions</th>
<th>Partial/Full Acquisition</th>
<th>Construction Phase When Acquired</th>
<th>2015 Phase II Findings and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 North Franklin Street</td>
<td>Former car dealership</td>
<td>Petroleum hydrocarbons and automotive fluids (Medium)</td>
<td>Full</td>
<td>Phase 1&lt;sup&gt;d&lt;/sup&gt;</td>
<td>A car dealership was removed for construction of the Needham Street overpass. Records reference small quantities of waste. No indication of unauthorized releases.</td>
</tr>
</tbody>
</table>

<sup>a</sup> Both Alternative 1 and Alternative 2 would be equally affected by the listed recognized environmental conditions.

<sup>b</sup> Potential for discovery of onsite contamination is noted in parentheses. High, medium, and low refer to the potential for discovery of onsite contamination.

<sup>c</sup> There are two parcels with recognizable environmental conditions at 501 North Jefferson Street. See Figure 2-15.

<sup>d</sup> The parcel at 700 North Franklin Street is owned by the City of Modesto, though it does not have an assessor’s parcel number.

Source: Phase II Environmental Site Assessment (October 2015)

Soil Investigation of Existing Caltrans Right-of-Way

In addition to the 19 parcels summarized above, the project area includes four sites within the existing Caltrans right-of-way, identified to have recognized environmental conditions (Table 2-34). The first site was a historic gas and oil facility with a high potential for on-site contamination; however, the proposed project is not anticipated to impact this site. The second site at the SR 99 off-ramp at Kansas Avenue is immediately north of a gas station (Chevron) that has documented soil and groundwater contamination. The third site is the location of a former Food Machinery and Chemical Corporation (FMC) disposal pond near SR 99, with may potentially be impacted with heavy metals. The fourth site includes the three soil stockpiles, created during the construction of SR 99. The three stockpiles are referred to as the Caltrans Modesto Soil Stockpiles and are discussed further in Section 2.2.5.1, Caltrans Modesto Soil Stockpiles Site.
Table 2-34: Recognized Environmental Conditions within the Existing SR 99 or SR 132 Right-of-Way

<table>
<thead>
<tr>
<th>Location</th>
<th>Land Use</th>
<th>Description of RECs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Former northeast corner of 5th Street and I Street</td>
<td>SR 99 (freeway) and a former &quot;gas &amp; oil&quot; facility</td>
<td>Underground storage tank and petroleum hydrocarbons (High)</td>
</tr>
<tr>
<td>SR 99 off-ramp at Kansas Avenue north of a gas station</td>
<td>Identified for drainage basin</td>
<td>Adjacent underground storage tank (Medium)</td>
</tr>
<tr>
<td>SR 99 at North Emerald Avenue</td>
<td>SR 99 (freeway) and former disposal pond for the FMC\textsuperscript{c} processing plant</td>
<td>Soil with heavy metals (Medium)</td>
</tr>
<tr>
<td>SR 132 right-of-way (proposed alignment) south of Kansas Avenue</td>
<td>Historic soil stockpiles and miscellaneous debris</td>
<td>Soil with heavy metals (Medium)\textsuperscript{d}</td>
</tr>
</tbody>
</table>

\textsuperscript{a} Both Alternative 1 and Alternative 2 would be impacted by the listed recognized environmental conditions.  
\textsuperscript{b} Potential for discovery of onsite contamination is noted in parentheses. High, medium, and low refer to the potential for discovery of onsite contamination.  
\textsuperscript{c} Food Machinery and Chemical Corporation, Modesto Processing Plant  
\textsuperscript{d} See Section 2.2.5.1, Caltrans Modesto Soil Stockpiles site for a full description and analysis of this location and the recognized environmental conditions.  

Source: Initial Site Assessment (October 2015)

Soil sampling was conducted in the following two areas within the existing Caltrans right-of-way within the project limits. The results are as follows:

- **SR 99 at Emerald Avenue**
  Soil samples were assessed to determine if subsurface contamination is present due to the former industrial waste pond. This assessment focuses on metals. Though the levels of barium, chromium, cobalt, copper, nickel, vanadium and zinc encountered in this assessment are elevated compared to natural background levels, they are below regulatory screening levels and do not warrant further assessment.

The tested concentrations of lead at this location are consistent with findings of the aerially deposited lead survey conducted for SR 99, described below. According to sampling results, soil in the upper six inches contains lead ranging from below the detection limit of 3.0 mg/kg to 100 mg/kg. If substantial off-site disposal is necessary it could have a significant effect on the project schedule.

Once the final excavation limits are determined, the aerially deposited lead report for SR 99, including this location, would be reviewed to determine if additional sampling would be conducted. Based on the findings of the aerially deposited lead studies, applicable regulatory disposal criteria, including preparation of non-standard special provisions and management in accordance with the statewide agreement, would be incorporated into the project plans and specifications.
SR 99 at Kansas Avenue

Soil samples were assessed to determine if subsurface conditions due to potential releases from underground storage tanks at the adjacent Chevron station are present within the proposed improvement area. This assessment focused on petroleum hydrocarbons and volatile organic compounds, mainly the constituents benzene, toluene, ethylbenzene, and xylenes and methyl tertiary-butyl ether. Soil sample concentrations were below the detection limit for all tested constituents. No further investigation or action is required.

Aerially Deposited Lead within Caltrans Right-of-Way

Aerially deposited lead from the historical use of leaded gasoline, exists along roadways throughout California. There is the likely presence of soils with elevated concentrations of lead as a result of aerially deposited lead on the state highway system right of way within the limits of the project alternatives that must be managed under the July 1, 2016, Aerially Deposited Lead Agreement between Caltrans and the California Department of Toxic Substances Control. This Agreement allows such soils to be safely reused within the project limits as long as all requirements of the Agreement are met.

Surveys for aerially deposited lead in surface and shallow subsurface soils were conducted in the project limits along Maze Boulevard in 2014 and State Route 99 in 2012. Aerially deposited lead concentrations in the samples collected along Maze Boulevard are below regulatory screening levels, while samples collected along State Route 99 contained elevated concentrations of aerially deposited lead. According to sampling results, soil in the upper six inches contains lead ranging from below the detection limit of 3.0 mg/kg to 100 mg/kg. If substantial off-site disposal is necessary it could have a significant effect on the project schedule.

Once the final excavation limits are determined, the aerially deposited lead report for State Route 99 would be reviewed to determine if additional sampling would be conducted. Based on the findings of the aerially deposited lead studies, applicable regulatory disposal criteria, including preparation of non-standard special provisions and management in accordance with the July 1, 2016, Aerially Deposited Lead Agreement, would be incorporated into the project plans and specifications. Applicable cleanup levels for aerially deposited lead in commercial use and solubility levels for residential use, at the time of project construction, would apply to the proposed project.
Asbestos-containing Material and Lead-based Paint Survey
The Phase II Site Assessment also included an asbestos and lead-based paint survey conducted at the following sites:

- **Kansas Avenue Bridge over Highway 99**
The results of the survey indicate asbestos is present in the gasket beneath the rail. The gasket material contains 80–90 percent chrysotile. The total estimated quantity of gasket material throughout the bridge structure is approximately 675 square feet. The results of the survey indicate the existing paint on the bridge structure (grey paint existing on the metal rails) does not contain detectable lead.

- **Structures at six private parcels**
Three of the identified parcels (815 Kansas Avenue, 301 North Washington Street, and 524 Kansas Avenue) did not authorize access, so they were not surveyed as part of the Phase II Assessment. The remaining three parcels authorized partial access; these sites were not evaluated in their entirety. These parcels would be assessed for asbestos-containing material and lead-based paint during final design to minimize further disruption to the property owners.

Table 2-34 summarizes and Figure 2-15 depicts recognized environmental conditions within the existing SR 99 and SR 132 right-of-way. As previously listed, these recognized environmental conditions have a medium to high risk of on-site contamination, which could adversely affect the project depending on the extent of contamination and the depth of soil disturbance. The extent of contamination is directly correlated to the cost of remediation.

In the event that final design alters the proposed right-of-way limits within the parcels identified herein as partial acquisitions, further site-specific assessments may be warranted for the affected parcels. The assessments may include updated site inspection, regulatory files review, interviews with current owners and occupants, and building material and soil sample collection and analysis.

**General Hazardous Materials Issues**
Direct and indirect impacts related to the use of agricultural chemicals (low potential for occurrence and low likelihood to adversely impact the project), aerially deposited lead (moderate potential for occurrence but less likely to adversely impact the project), and groundwater contamination (low potential for occurrence and low
likelihood to impact the project) would be the same for both build alternatives. The assessment did not include an investigation of groundwater conditions.

The assessment did not include an inventory of past and present electrical transformers in the study area. However, ground and pole-mounted transformers and power lines were observed within the proposed right-of-way. If power facilities or high-voltage power lines are to be relocated, existing transformers would be checked for the presence of polychlorinated biphenyls or other hazardous materials that would require proper remediation and disposal.

Yellow traffic stripes are present at various locations and may contain heavy metals such as lead and chromium at concentrations in excess of the hazardous waste thresholds established by the California Code of Regulations and may produce toxic fumes when heated. Consequently removal or disturbance of any yellow traffic striping within the project area would require development and implementation of an appropriate Lead Compliance Plan.

Evidence of buried distribution lines for natural gas was observed. No record of contamination resulting from these lines was discovered in this assessment; however, there is the potential for unidentified leaks along buried pipelines. Due to its explosive potential, natural gas is considered a hazardous material. Unless further information becomes available regarding the type and location of distribution lines, assessment and potential relocation of any lines would be addressed during construction.

Older commercial and residential structures in rural areas often have associated aboveground or below ground heating oil and/or motor vehicle fuel tanks. Septic tanks are also commonly associated with these types of structures. If heating oil tanks, fuel tanks, or septic tanks are (or were previously) associated with the structures, there is the potential for recognized environmental conditions to be present. Septic and fuel tanks would be addressed if discovered during construction.

Storm drainage in the Modesto area is provided by both hard-piped storm drains and dry wells. Dry wells drain directly into permeable subsurface sediments in the immediate vicinity of the well. According to the Modesto DPW there are an estimated 11,000 dry wells located in city right-of-way and an estimated additional 10,000 dry wells on private property. The dry wells are recognized by federal and state regulatory agencies as a potential source of soil and groundwater contamination.
Dry wells located on private parcels would be addressed if discovered during construction.

**No-Build Alternative**

The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not result in direct or indirect impacts related to hazardous wastes or materials.

As discussed in the following section (2.2.5.1), impacts to the environment posed by the continued presence of the soil stockpiles would be mitigated by a remedial action developed under the oversight and approval of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-15: Recognized Environmental Conditions in the Study Area
Construction Impacts
The risk of encountering potential recognized environmental conditions would depend on the type of construction activities and the location relative to the previously identified recognized environmental conditions in Table 2-33 and Table 2-34. In areas where significant excavation would not be expected (such as shallow utility relocations), the recognized environmental condition risk to construction personnel would be low. In areas where significant excavation would be expected (such as bridge replacement, deep subsurface utility replacement, and drilled caissons), the potential to encounter a recognized environmental condition would increase for excavated soils and any groundwater that would be displaced to the surface during construction.

Hazardous materials associated with structures that may be impacted during construction could pose a risk to residents and construction personnel. Potential lead-based paint or asbestos-containing materials may be encountered under both of the build alternatives due to the alteration and/or demolition of a bridge, buildings, guardrails, or signs. However, impacts would be reduced by implementing measures HAZ-1 through HAZ-14.

Because many of the properties identified for acquisition have the potential for elevated levels of petroleum hydrocarbons, and/or metals in soil, monitoring for adherence to the Materials Management Plan, Health and Safety Plan, and a Spill Prevention Countermeasures and Control Plan, as described in measures HAZ-5, HAZ-6 and HAZ-8, would reduce impacts related to the handling of materials or contaminated soil.

Project construction would require the use and transport of chemical agents, fuels, lubricants, solvents, paints, and other hazardous materials that could pose a risk to construction personnel and residents in the vicinity of project. Although the proposed project would use hazardous materials, the amount would be limited, and the release of any such substance would be unlikely. Therefore, associated construction-related impacts would be considered minimal and construction activities would comply with existing government regulations.

Avoidance, Minimization, and/or Mitigation Measures
The following avoidance and minimization measures would reduce potential impacts related to hazardous wastes and materials during construction of the project:
HAZ-1 As soon as access is acquired, but prior to construction, any building structures that would be renovated or demolished would be investigated for asbestos, lead-based paint, and polychlorinated biphenyls by a certified consultant.

HAZ-2 If analytical results indicate building materials contain asbestos, the contractor would prepare an Asbestos Operations and Maintenance Plan in accordance with applicable regulations. The plan would address worker training and safety measures to be taken when disturbing asbestos-containing materials during abatement activities.

HAZ-3 The contractor would ensure that proper removal and disposal of asbestos-containing material is conducted by a licensed contractor registered with the California Occupational Safety and Health Administration for asbestos-related work, or by a licensed and certified asbestos abatement contractor.

HAZ-4 If the analytical results indicate that lead-based paint and/or polychlorinated biphenyls are present, the contractor would ensure that demolition materials are handled and disposed of in accordance with applicable regulations.

HAZ-5 Prior to construction, the contractor would prepare a Materials Management Plan that identifies potential recognized environmental conditions, locations, extent of impact, proposed remediation work, waste management procedures, and avoidance measures, investigation measures and a contingency plan for addressing unforeseen conditions. Documentation of completed waste profiles, manifest forms, and bill-of-lading forms for proper transportation and disposal of materials offsite would be maintained by the contractor. The plan would include the following provisions:

- Characterization and handling of contaminated soils requiring offsite disposal
- Soils to be stockpiled for further characterization
- Process for identifying soils with waste concentrations below regulatory thresholds that can be reused without restriction
- Process for identifying and handling wastewater requiring offsite disposal and/or treatment
- Procedures for handling asbestos-containing material discovered during construction activities
HAZ-6 Prior to initiating construction activities, the contractor would prepare a sitespecific Health and Safety Plan that identifies key personnel and provides a summary risk assessment for workers, the community, and the environment. The Health and Safety Plan would include an Air Monitoring Plan and Emergency Response Plan.

HAZ-7 Prior to construction, the contractor would prepare a Sampling and Analysis Plan to identify and characterize potential recognized environmental conditions that may be encountered. The plan would provide for monitoring/screening during construction activities to provide safety controls in areas previously not identified. The plan would include:

- Data quality objectives
- Sample collection procedures (e.g., field screening, borehole drilling/abatement, monitoring well construction, soil, groundwater, and decontamination)
- Quality control
- Quality assurance objectives (data)

HAZ-8 Prior to construction, the contractor would prepare a Spill Prevention Control and Countermeasures Plan to ensure that construction best management practices are adequate for site conditions and to prevent discharge of any sediment or pollutants into any storm drains, receiving waters, or drywells.

HAZ-9 Prior to construction, the contractor would inspect all utility pole-mounted and pad-mounted electrical transformers within the project limits for leaks. Leaking transformers would be considered a potential polychlorinated biphenyl hazard (unless tested) and would be handled in accordance with applicable laws and regulations.

HAZ-10 The contractor would ensure that all wooden utility poles that are to be removed or relocated as part of the project, as well as the soils at the bases of the utility poles (unless documentation from the utility company indicates that creosote was not used), would be handled as treated wood waste in accordance with the California Department of Transportation’s Standard Special Provision 14-010.
HAZ-11 Before construction, the contractor would notify all utility companies to ensure that the locations of underground transmission lines and facilities are marked. In addition, Underground Service Alert would be contacted at least two working days before subsurface excavation.

HAZ-12 The contractor would adhere to the requirements of San Joaquin Valley Air Pollution Control District and applicable National Emission Standards for Hazardous Air Pollutants during demolition/renovation activities. Any demolition or renovation of a building structure would require notification and submittal fees to the San Joaquin Valley Air Pollution Control District at least 10 days before proceeding with the demolition work.

HAZ-13 The contractor would adhere to the procedures outlined in the California Department of Transportation’s Unknown Hazards Procedures for Construction in the event that unknown hazardous contamination from above/below ground oil/motor vehicle fuel tanks and septic tanks is revealed or unknown hazardous waste/material is encountered during construction.

HAZ-14 The contractor would prepare a Lead Compliance Plan to prevent or minimize worker exposure to lead from handling material containing aerially deposited lead (California Code of Regulations, Title 8, and Section 1532.1). The plan would also be required for work performed on painted structures. The contractor would prepare a written, project-specific Excavation and Transportation Plan establishing procedures the contractor would use for excavating, stockpiling, transporting, and placing (or disposing) of material containing aerially deposited lead and lead-based paint. The plan would conform to the California Department of Toxic Substances Control and California Occupational Safety and Health Administration regulations. For samples where lead levels exceed hazardous waste criteria, the excavated soil would be either managed or disposed of as a California hazardous waste or stockpiled and resampled to confirm waste classification and potential to recycle soil onsite. The appropriate Standard Special Provision would be included in the Plans, Specifications, and Estimate. Special handling, treatment, or disposal of aerially deposited lead in soils during construction activities would be consistent with the July 1, 2016, Aerially Deposited Lead Agreement between Caltrans and the California Department of Toxic Substances Control.
2.2.5.1 Caltrans Modesto Soil Stockpiles Site

Affected Environment

The hazardous waste/materials analysis of the Caltrans Modesto Soil Stockpiles Site is based on site investigations of the three soil stockpiles, which have been completed under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board (see Appendix J for a complete list of technical studies).

The Caltrans Modesto soil stockpiles site consists of three separate and distinct stockpiles in Modesto, totaling 160,000 cubic yards. The site is within Caltrans right-of-way, south of the SR 99/Kansas Avenue interchange. The following summarizes the configuration, orientation, size, and surrounding vicinity of each soil stockpile:

- Soil stockpile 1 occupies approximately 2.5 acres and lies south of Kansas Avenue and west of North Emerald Avenue. The stockpile is approximately 600 feet long in the east-west direction, 160 feet wide, and has an estimated volume of approximately 34,000 cubic yards. The stockpile is bounded by commercial/light industrial development to the north and single-family residential uses to the south. Undeveloped right-of-way exists both west and east of the stockpile with the eastern end bounded by North Emerald Avenue. Soil stockpile 1 is enclosed by security fence.

- Soil stockpile 2 occupies approximately 7.6 acres and lies south of Kansas Avenue, between North Emerald Avenue and SR 99. The stockpile is approximately 1,650 feet long in the east-west direction, 160 feet wide, and has an estimated volume of approximately 102,000 cubic yards. It is bounded by commercial/light industrial development to the north and single-family residential uses to the south. To the west is North Emerald Avenue and to the east is SR 99. Soil stockpile 2 is enclosed by security fence.

- Soil stockpile 3 occupies approximately 2.5 acres and lies south of Kansas Avenue and east of SR 99. The stockpile has a curvilinear shape extending northwest to southeast (concave to the southwest) with a length of approximately 1,100 feet and a width of approximately 120 feet. The stockpile has an estimated volume of approximately 24,000 cubic yards. Soil stockpile 3 is bounded by SR 99 to the south and west and commercial/light industrial development to the north and east. The concrete box culvert for the Modesto Irrigation District’s Lateral Canal No. 4 extends beneath the stockpile’s southeastern end. Soil stockpile 3 is enclosed by security fence.
The stockpiles were generated in the early 1960s when the 4.3-acre parcel at the southwest corner of the FMC Corporation, Modesto Processing Plant, was purchased by Caltrans to construct the SR 99 Modesto bypass. Soil in and around FMC’s former disposal pond was excavated during construction and stockpiled within the eastern portion of the project study area. Figure 2-16 shows the three soil stockpiles, right-of-way boundaries, monitoring well locations, and surrounding vicinity.

FMC and its predecessors operated a chemical processing facility at this location from 1929 to approximately 1985. The facility processed barium, strontium minerals (barite and celestite), and other materials to produce a variety of industrial chemicals. From the early 1950s to the late 1970s, liquid wastes were discharged to seven unlined ponds.

Since 2004, numerous site investigations of the three soil stockpiles have been completed under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board. Investigations included stockpile characterization and a risk assessment. Regulatory involvement was solicited after preliminary investigation of the stockpiles detected contamination associated with barite and celestite processing. The preliminary studies were conducted as part of the environmental discovery process associated with re-initiation of the proposed project. The investigations and associated reports are described in the Draft Final Remedial Action Plan in Appendix H.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-16: Caltrans Modesto Soil Stockpiles Locations
A 2004 preliminary site investigation was conducted to characterize each of the stockpiles. The investigation collected soil samples from 50 stockpile borings. The samples were analyzed for heavy metals, polycyclic aromatic hydrocarbons, nitrate, and pH. The analytical results indicated elevated barium concentrations in stockpile soil samples that exceed commercial/industrial California human health screening levels.

An initial site assessment was conducted in 2003 for the soil stockpiles. The assessment identified a potential for the three soil stockpiles to contain residual chemicals associated with the former FMC impoundments. A 2004 preliminary site investigation was conducted to characterize each of the stockpiles. The investigation collected soil samples from 50 stockpile borings. The samples were analyzed for heavy metals, polycyclic aromatic hydrocarbons, nitrate, and pH. The analytical results indicated elevated barium concentrations in stockpile soil samples that exceed commercial/industrial California human health screening levels. Cadmium concentrations exceeding these same commercial/industrial screening levels were also detected in soil samples collected from soil stockpiles 2 and 3.

In 2006, an additional 278 soil samples were collected for comparison to background conditions and California human health screening levels. The 2004 and 2006 investigations found that the stockpiles have an average thickness of 20 feet and are composed mostly of layered, poorly graded sand and silty sand similar to underlying native alluvial deposits of the Modesto Formation. Antimony, selenium, and silver were not detected in any of the 278 soil samples analyzed. Beryllium, cadmium, mercury, molybdenum, and thallium were detected in the stockpile soil samples at low concentrations. Arsenic, chromium, cobalt, and copper were detected in the stockpile soil samples at concentrations slightly exceeding background concentrations. Barium, lead, nickel, vanadium, and zinc were detected in the stockpile soil samples at concentrations considerably higher than background values. Barium, the primary constituent of potential concern, was detected at maximum concentrations of 130 milligrams per kilograms (mg/kg) in soil stockpile 1; 64,000 mg/kg in soil stockpile 2; and 72,000 mg/kg in soil stockpile 3. Barium concentrations reported for the background soil samples ranged from 17 to 120 mg/kg.

To assess groundwater quality next to the site, eight groundwater monitoring wells were installed in 2006. Groundwater was encountered in the vicinity of the project at depths between 30 and 40 feet (below natural grade), with flow toward the southeast.
The results of analysis of groundwater samples collected from the eight monitoring wells in June and October 2006 indicated that groundwater, which is not a source of municipal drinking water, did not exceed drinking water standards for the constituents analyzed.

In 2007, a human health risk assessment was prepared to calculate risk associated with constituents of potential concern in the soil stockpiles and groundwater using multiple exposure scenarios. Metals (notably barium) and polycyclic aromatic hydrocarbons were identified as the primary constituents of potential concern in the soil stockpiles, and metals and general minerals (for example, nitrate and total dissolved solids) were the primary constituents of potential concern in groundwater. The results of the human health risk assessment indicated that the three soil stockpiles do not pose an unacceptable risk or hazard to current or future offsite residents, trespassers, construction workers, or hypothetical future shallow groundwater users, based on current soil management practices, including vegetation maintenance and groundwater monitoring.

Following the California Department of Toxic Substances Control’s review of the human health risk assessment, a final preliminary endangerment assessment was prepared in 2009 to summarize the findings of previous reports prepared for the soil stockpiles and provide the additional clarification requested by the California Department of Toxic Substances Control. The Department concurred that the stockpiles do not pose a risk to human health for State workers (who mow vegetation on the stockpiles), trespassers, and adjacent residents. The Department also determined that until the proposed project is constructed, soil stockpile access must be limited, existing security fencing be maintained, excavation/grading or additional soil placement be prohibited, and the grade and vegetative cover be maintained.

In conjunction with activities associated with the proposed project, groundwater monitoring was reinitiated and conducted bi-monthly from March 2012 to March 2013. Since June 2013, groundwater monitoring is being conducted quarterly. Analytical results from the 2012 to present groundwater monitoring are similar to the results from 2006, with primary constituents reported at concentrations less than maximum contaminant levels.

Additional soil sampling was conducted in 2012 prior to preparing the Soil Stockpiles Feasibility Study and the Draft Final Remedial Action Plan. Sampling evaluated fence line migration and stockpile perimeter and confirmation testing. Results of the
sampling were used to update the 2007 Human Health Risk Assessment. Following review of the supplemental data, the California Department of Toxic Substances Control concurred with the findings of the Human Health Risk Assessment 2013 Update, which did not change the results originally determined in 2007.

**Environmental Consequences**

The Soil Stockpiles Feasibility Study (see Appendix G) was prepared to identify remedial action objectives, general response actions, and process options for the three soil stockpiles. The study also developed and screened remedial alternatives and presented an individual and comparative analysis of each retained remedial alternative for the three soil stockpiles. The options were then evaluated based on nine criteria to support an informed decision for the most appropriate remedy for the stockpiles.

Following California Department of Toxic Substances Control acceptance of the Soil Stockpiles Feasibility Study, a Draft Final Remedial Action Plan was prepared. The purpose of the Draft Final Remedial Action Plan is to 1) summarize in one document all of the studies that have analyzed contaminant impacts at the Caltrans Modesto Soil Stockpiles site, 2) provide an assessment of potential risks to human health and the environment associated with the impacts, 3) develop a remedial action alternative to reduce those risks, and 4) provide the information to the public for review and comment. The Draft Final Remedial Action Plan is provided in Appendix H of this document.

Based on the screening of alternatives and comparative analysis, containment of the contaminated soil was selected as the Recommended Stockpile Alternative (Containment). The alternative would be implemented by using the three stockpiles for project construction, which would require a significant amount of fill for the embankments of the proposed SR 132/SR 99 interchange.

The Recommended Stockpile Alternative (Containment) was selected because of the alternative’s effectiveness in providing long-term and overall protection of human health and the environment; technical feasibility; cost-effectiveness; and the ability to minimize the potential for contaminants to migrate to groundwater or to be eroded by stormwater runoff.

The Draft Final Remedial Action Plan would be circulated for public review and comment with this document. Based upon receipt of public comments and, if
warranted, the Draft Final Remedial Action Plan would be modified accordingly, prior to approval by the California Department of Toxic Substances Control and the Regional Water Quality Control Board. After approval of the Final Remedial Action Plan, project construction details would be presented in a Remedial Design Implementation Plan.

**Build Alternatives**

Stockpile soil would be contained behind retaining walls, bridge abutments and beneath highway pavements. The proposed project’s initial construction phase (Phase 1) would consist of a two-lane roadway, which would be constructed over the southern portions of soil stockpiles 1 and 2. The northern portions of soil stockpiles 1 and 2, which would not be contained beneath the highway and behind retaining walls and bridge abutments, would be graded for drainage and capped with a minimum of a 6- to 12-inch-thick clean, vegetated soil cap. Figure 2-17 shows a typical cross-section of the initial construction phase and shows the portion of the stockpiles that would be temporarily covered by the clean soil cap until the ultimate build-out is completed. Figure 2-18 shows a typical cross-section of the ultimate build-out (Phase 2) and shows the complete containment of the stockpiles within the project’s retaining walls and beneath highway pavements. Also shown in Figure 2-17 is the median between the eastbound and westbound lanes, which would be covered by either pavement or a synthetic liner and clean soil layer.

Soil stockpile 3 would be treated differently than soil stockpiles 1 and 2: the stockpile would be entirely contained within the initial construction phase of the project. Much of soil stockpile 3 would be placed in the stockpile fill consolidation zone within the eastern abutment of the proposed SR 132/SR 99 interchange. The remainder of soil stockpile 3 would be placed in the stockpile fill consolidation zone of soil stockpile 2 (Figure 2-18).
Figure 2-17: Phase 1 - Typical Stockpile Cross-Section

Figure 2-18: Phase 2 - Typical Stockpile Cross-Section

Monitoring of the stockpiles and stormwater runoff constituents of potential concern would continue until the project and full containment of all three soil stockpiles are complete. The frequency of groundwater monitoring would be subject to change until the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board indicate that monitoring is no longer required. Past and continued maintenance, in accordance with the California Department of Toxic Substances Control and Central Valley Regional Water Quality Control Board requirements, would continue and include monitoring the condition and effectiveness of the vegetative cover on the portions of the stockpiles not yet contained or capped.
by the project. Maintaining perimeter fencing would ensure access is restricted to each stockpile to prevent soil transport offsite from Caltrans right-of-way and for the continued monitoring for potential erosion.

**No-Build Alternative**

Soil stockpile containment via a highway structure would not be implemented under the project’s No-Build Alternative. However, impacts to the environment posed by the continued presence of the soil stockpiles would be mitigated by a remedial action developed under the oversight and approval of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board. Currently, the perimeter of all three soil stockpiles is enclosed with security fencing, walls, and structures. Under the No-Build Alternative, Caltrans would continue to maintain the perimeter fence, restrict access to authorized personnel, continue water quality monitoring, and maintain each of the soil stockpile’s vegetative cover until remediation of the stockpiles is completed under the oversight and approval of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board.

**Avoidance, Minimization, and/or Mitigation Measures**

Following the California Department of Toxic Substances Control and Central Valley Regional Water Quality Control Board approval of the Final Remedial Action Plan, the details of project construction would be presented in a Remedial Design Implementation Plan.

The following avoidance and minimization measures would reduce potential impacts related to hazardous waste and materials in the three soil stockpiles during construction and implementation of the Final Remedial Action Plan:

**SHAZ-1**

Prior to any earthmoving or construction activities related to the soil stockpiles, a grading permit from the City of Modesto would be secured by the construction contractor. Additionally, prior to any earthmoving or construction activities related to the soil stockpiles, a Health and Safety Plan that addresses all hazards associated with the movement and disposition of stockpile soil related to construction of the containment features would also be prepared by the construction contractor. The hazards associated with the movement and disposition of stockpile soil to be included in the Health and Safety Plan would be identified in the Remedial Design Implementation Plan that would be submitted to the
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. As described in Section 2.2.6, Air Quality, the contractor would comply with the San Joaquin Valley Air Pollution Control District’s Rule 9510. As described in Section 2.2.2, Water Quality, the contractor would prepare and implement construction site best management practices in accordance with the California Department of Transportation’s Stormwater Management Plan and National Pollutant Discharge Elimination System Permit (Order No. 99-06-DWQ National Pollutant Discharge Elimination System No. CAS000003).

SHAZ-2 The contractor would remove all debris on or adjacent to the soil stockpiles prior to grading. The contractor would dispose of it accordance with regulations pertaining to the type of waste encountered.

SHAZ-3 If any vegetation grubbing is required, the contractor would minimize dust generation consistent with standard best management practices described in Section 2.2.6, Air Quality. The contractor would implement the California Department of Transportation’s Standard Specifications control measures Section 14-9.02 (Air Pollution Control) and Section 14-9.03 (Dust Control). The contractor would apply water under Section 17 and dust palliative under Section 18.

SHAZ-4 The contractor would minimize reconfiguration of the soil stockpiles to the minimum extent possible to meet project design criteria for fill placement, thereby reducing the potential for stormwater and/or wind erosion and stormwater infiltration into the soil stockpiles.

SHAZ-5 Perimeter air quality monitoring would occur during any earthmoving or construction activities related to the soil stockpiles, including clearing and grubbing or other site grading activities performed by the construction contractor. Perimeter air quality monitoring would occur according to an Air Monitoring Plan that would describe monitoring locations, equipment, sampling and analysis methods, hazardous exposure threshold values, etc. All elements of the Air Quality Monitoring Plan would be identified in the Remedial Design Implementation Plan that would be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. The contractor would provide monitoring results to the California Department of Toxic Substances Control for its review and approval. If the results of air
monitoring demonstrate that dust control measures are effective and that there is no exposure to constituents of potential concern in the soil stockpiles via airborne dust, then the frequency of monitoring may be decreased with the California Department of Toxic Substances Control’s approval.

SHAZ-6 The contractor would submit requests to the California Department of Toxic Substances Control for approval prior to modifying procedures for soil excavation, relocation, dust control, air monitoring, or other field activities.

SHAZ-7 The contractor would maintain detailed records related to movement, placement, and inspection of the stockpile soil.

SHAZ-8 As required by California Code of Regulations, Title 22, section 67391.1, the California Department of Transportation would prepare and record a land use covenant to restrict the types of land use that are allowed on the site. The land use covenant would identify that the proposed transportation land use is compatible and acceptable with respect to health risk. The land use covenant would be prepared in compliance with California Department of Toxic Substances Control policies and finalized and recorded after remedial measures are implemented and before the soil stockpile site is certified by the California Department of Toxic Substances Control as remediated.

SHAZ-9 A groundwater and storm water quality monitoring program for the contained Caltrans Modesto Soil Stockpiles would be proposed and included in the Remedial Design Implementation Plan to be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. In addition to design specifications for construction of the containment features, the Remedial Design Implementation Plan would address water quality monitoring for the initial and final construction phases of the project. Until the groundwater and surface water quality monitoring program is approved, or if the no-build alternative is selected, groundwater and storm water quality monitoring would continue as currently conducted in accordance with the 2006 and 2012 (amendment) sampling and analysis plans approved by the California Department of Toxic Substances Control and the Regional Water Quality Control Board.
SHAZ-10 The functionality and condition of each stockpile containment feature (pavement, retaining walls, abutments, vegetated soil cover, etc.) would be evaluated in accordance with an operation and maintenance plan established in accordance with an operation and maintenance agreement between the California Department of Transportation and the California Department of Toxic Substances Control and the California Regional Water Quality Control Board. The proposed operation and maintenance plan and operation and maintenance agreement would be included in the Remedial Design Implementation Plan that would be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. The operation and maintenance plan would address containment feature assessment, management, and reporting to ensure the ongoing integrity of the containment feature for the protection of human health and the environment. The operation and maintenance plan would address containment feature assessment for the initial and final construction phases of the project. If the no-build alternative is selected, a separate Caltrans-initiated stockpile remediation project would be proposed and remedy selection document prepared under the oversight the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board.

2.2.6 Air Quality

Regulatory Setting
The federal Clean Air Act, as amended, is the main federal law that governs air quality. The California Clean Air Act is its companion state law. These laws and related regulations by the U.S. Environmental Protection Agency and the California Air Resources Board, set standards for the concentration of pollutants in the air.

At the federal level, these standards are called National Ambient Air Quality Standards. National Ambient Air Quality Standards and state ambient air quality standards have been established for six transportation-related criteria pollutants that have been linked to potential health concerns: carbon monoxide, nitrogen dioxide, ozone, sulfur dioxide, and particulate matter, which is broken down for regulatory purposes into particles of 10 micrometers or smaller (PM$_{10}$) and particles of 2.5 micrometers and smaller (PM$_{2.5}$). In addition, national and state standards exist for
lead, and state standards exist for visibility-reducing particles, sulfates, hydrogen sulfide, and vinyl chloride.

National Ambient Air Quality Standards and state standards are set at levels that protect public health with a margin of safety and are subject to periodic review and revision. Both state and federal regulatory requirements also cover toxic air contaminants (air toxics); some criteria pollutants are also air toxics or may include certain air toxics in their general definition.

Federal air quality standards and regulations provide the basic framework for project-level air quality analysis under NEPA. In addition to this environmental analysis, a parallel “conformity” requirement under the federal Clean Air Act also applies.

**Conformity**

The conformity requirement is based on Federal Clean Air Act Section 176(c), which prohibits the U.S. Department of Transportation and other federal agencies from funding, authorizing, or approving plans, programs, or projects that do not conform to state implementation plans for attaining National Ambient Air Quality Standards. “Transportation conformity” applies to highway and transit projects and takes place on two levels: the regional—or, planning and programming level—and the project level. The proposed project must conform at both levels to be approved.

Conformity requirements apply only in nonattainment and “maintenance” (former nonattainment) areas for National Ambient Air Quality Standards, and only for the specific National Ambient Air Quality Standards that are or were violated. U.S. Environmental Protection Agency regulations at 40 Code of Federal Regulations Part 93 govern the conformity process. Conformity requirements do not apply in unclassifiable/attainment areas for National Ambient Air Quality Standards and do not apply for state standards regardless of the status of the area.

Regional conformity is concerned with how well the regional transportation system supports plans for attaining National Ambient Air Quality Standards for carbon monoxide, nitrogen dioxide, ozone, PM$_{10}$, PM$_{2.5}$, and, in some areas (although not in California), sulfur dioxide. California has attainment or maintenance areas for all of these transportation-related “criteria pollutants” except sulfur dioxide, and also has a nonattainment area for lead; however, lead is not currently required by the Federal Clean Air Act to be covered in transportation conformity analysis.
Regional conformity is based on emission analysis of Regional Transportation Plans and Federal Transportation Improvement Programs that include all transportation projects planned for a region over a period of at least 20 years (for the Regional Transportation Plan) and a minimum of 4 years (for the Federal Transportation Improvement Program). Regional Transportation Plan and Federal Transportation Improvement Program conformity uses travel demand and emission models to determine whether or not the implementation of those projects would conform to emission budgets or other tests at various analysis years showing that requirements of the Clean Air Act and the state implementation plan are met. If the conformity analysis is successful, the Metropolitan Planning Organization, Federal Highway Administration, and Federal Transit Administration make the determinations that the Regional Transportation Plan and Federal Transportation Improvement Program are in conformity with the state implementation plan for achieving the goals of the Clean Air Act. Otherwise, the projects in the Regional Transportation Plan and/or Federal Transportation Improvement Program must be modified until conformity is attained.

If the design concept, scope, and “open-to-traffic” schedule of a proposed transportation project are the same as described in the Regional Transportation Plan and the Transportation Improvement Program, then the proposed project meets regional conformity requirements for the purpose of project level analysis.

Conformity analysis at the project-level includes verification that the project is included in the regional conformity analysis and a “hot-spot” analysis if an area is “nonattainment” or “maintenance” for carbon monoxide and/or particulate matter (PM$_{10}$ or PM$_{2.5}$). A region is “nonattainment” if one or more of the monitoring stations in the region measure a violation of the relevant standard and the U.S. Environmental Protection Agency officially designates the area nonattainment. Areas that were previously designated as nonattainment areas but subsequently meet the standard may be officially redesignated to attainment by the U.S. Environmental Protection Agency, and are then called “maintenance” areas. “Hot-spot” analysis is essentially the same, for technical purposes, as carbon monoxide or particulate matter analysis performed for NEPA purposes.

Conformity does include some specific procedural and documentation standards for projects that require a “hot-spot” analysis. In general, projects must not cause the “hot-spot”-related standard to be violated and must not cause any increase in the number and severity of violations in nonattainment areas. If a known carbon monoxide or particulate matter violation is located in the project vicinity, the project must include measures to reduce or eliminate the existing violation(s) as well.
Affected Environment
The following section is based on the *State Route 132 Air Quality Study Report* and the *State Route 132 Air Quality Conformity Analysis*, both completed in May 2016.

The proposed project study area sits within the San Joaquin Valley Air Basin, which includes all or part of seven counties, including Stanislaus County. The San Joaquin Valley Air Pollution Control District is principally responsible for air pollution control within the basin through monitoring air quality and through planning, implementing, and enforcing programs designed to reach and maintain state and federal ambient air quality standards in the Air Pollution Control District.

The proposed project study area is in the northern portion of the San Joaquin Valley Air Basin, a basin known for an “inland Mediterranean” climate, characterized by dry summers and cool winters. Summer high temperatures often exceed 100 degrees Fahrenheit. The surrounding mountain ranges restrict air movement through and out of the basin. While prevailing wind patterns, periodic high-pressure systems, and inversion layers contain air pollutants within the area, wind speed and direction can influence how air pollutants (such as ozone precursors, PM$_{10}$, and carbon monoxide) are dispersed by winds moving pollutants out of the area. Precipitation and fog, somewhat common in the basin and study area, also tend to reduce or limit pollutant concentrations. Annual precipitation in the basin decreases from north to south. Roughly 20 inches of rain falls annually in the basin’s northern portion.

Existing air quality standards areas are classified as either attainment, attainment with maintenance, or nonattainment with respect to state and federal ambient air quality standards. If data are insufficient to determine whether a pollutant is violating the standard, the area is designated unclassified. Table 2-35 shows applicable standards and area attainment statuses for each relevant pollutant.
Table 2-35: State and Federal Criteria Air Pollutant Standards, Effects, and Sources

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>State Standard</th>
<th>Federal Standard</th>
<th>Principal Health and Atmospheric Effects</th>
<th>Typical Sources</th>
<th>Project Area Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone ((\text{O}_3)^2)</td>
<td>1 hour</td>
<td>0.09 ppm</td>
<td>0.070 ppm</td>
<td>High concentrations irritate lungs. Long-term exposure may cause lung tissue damage and cancer. Long-term exposure damages plant materials and reduces crop productivity. Precursor organic compounds include many known toxic air contaminants. Biogenic VOC may also contribute.</td>
<td>Low-altitude ozone is almost entirely formed from reactive organic gases/volatile organic compounds (ROG or VOC) and nitrogen oxides (NOx) in the presence of sunlight and heat. Common precursor emitters include motor vehicles and other internal combustion engines, solvent evaporation, boilers, furnaces, and industrial processes.</td>
<td>Federal: Extreme nonattainment (8-hour) State: Nonattainment (8-hour) Severe nonattainment (1-hour)</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>0.075 ppm</td>
<td>0.075 ppm (^3)</td>
<td>(4(^{th}) highest in 3 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.075 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 ppm</td>
<td>9 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide ((\text{CO}))</td>
<td>1 hour</td>
<td>20 ppm</td>
<td>35 ppm (^5)</td>
<td>CO interferes with the transfer of oxygen to the blood and deprives sensitive tissues of oxygen. CO also is a minor precursor for photochemical ozone. Colorless, odorless.</td>
<td>Combustion sources, especially gasoline-powered engines and motor vehicles. CO is the traditional signature pollutant for on-road mobile sources at the local and neighborhood scale.</td>
<td>Federal: Moderate Maintenance (Designation applies to urbanized portions of the San Joaquin Valley) State: Attainment</td>
</tr>
<tr>
<td></td>
<td>8 hours (^4)</td>
<td>9 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 hours (^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^2\) Ozone \((\text{O}_3)^2\) is the sum of the 1-hour and 8-hour averages.

\(^3\) Ozone \((\text{O}_3)^2\) standard is the 4\(^{th}\) highest in 3 years.

\(^4\) Data for Lake Tahoe.

\(^5\) CO standard is based on 8-hour average.
### Table 2-35: State and Federal Criteria Air Pollutant Standards, Effects, and Sources

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>State Standard</th>
<th>Federal Standard</th>
<th>Principal Health and Atmospheric Effects</th>
<th>Typical Sources</th>
<th>Project Area Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respirable Particulate Matter (PM$_{10}$)²</td>
<td>24 hours Annual 50 μg/m³ 20 μg/m³</td>
<td>150 μg/m³ ---²</td>
<td>Irritates eyes and respiratory tract. Decreases lung capacity. Associated with increased cancer and mortality. Contributes to haze and reduced visibility. Includes some toxic air contaminants. Many toxic and other aerosol and solid compounds are part of PM$_{10}$.</td>
<td>Dust- and fume-producing industrial and agricultural operations; combustion smoke &amp; vehicle exhaust; atmospheric chemical reactions; construction and other dust-producing activities; unpaved road dust and re-entrained paved road dust; natural sources.</td>
<td>Federal: Serious Maintenance (24-hour) State: Non-attainment</td>
<td></td>
</tr>
<tr>
<td>Fine Particulate Matter (PM$_{2.5}$)²</td>
<td>24 hours Annual 12 μg/m³ 24 hours (conformity process ³) Secondary Standard (annual; also for conformity process ³) 15 μg/m³ (98th percentile over 3 years)</td>
<td>35 μg/m³ 12.0 μg/m³ 65 μg/m³</td>
<td>Increases respiratory disease, lung damage, cancer, and premature death. Reduces visibility and produces surface soiling. Most diesel exhaust particulate matter – a toxic air contaminant – is in the PM$<em>{2.5}$ size range. Many toxic and other aerosol and solid compounds are part of PM$</em>{2.5}$.</td>
<td>Combustion including motor vehicles, other mobile sources, and industrial activities; residential and agricultural burning; also formed through atmospheric chemical and photochemical reactions involving other pollutants including NOX, sulfur oxides (SOx), ammonia, and ROG.</td>
<td>Federal: Non-attainment State: Non-attainment (annual)</td>
<td></td>
</tr>
</tbody>
</table>

1. Annual standard. 2. Project-specific limit. 3. Federal limit not shown in Table 2-35. 4. Project: 150 μg/m³. 5. Annual standard. 6. Project: 12 μg/m³. 7. Project: 35 μg/m³. 8. Project: 65 μg/m³. 9. 98th percentile over 3 years.
### Table 2-35: State and Federal Criteria Air Pollutant Standards, Effects, and Sources

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>State Standard</th>
<th>Federal Standard</th>
<th>Principal Health and Atmospheric Effects</th>
<th>Typical Sources</th>
<th>Project Area Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>1 hour</td>
<td>0.18 ppm</td>
<td>0.100 ppm₉ (98th percentile over 3 years)</td>
<td>Irritating to eyes and respiratory tract. Colors atmosphere reddish-brown. Contributes to acid rain and nitrate contamination of stormwater. Part of the “NOx” group of ozone precursors.</td>
<td>Motor vehicles and other mobile or portable engines, especially diesel; refineries; industrial operations.</td>
<td>Federal: Attainment State: Attainment</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.030 ppm</td>
<td>0.053 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>0.04 ppm</td>
<td></td>
<td></td>
<td></td>
<td>Federal: Attainment State: Attainment</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>1 hour</td>
<td>0.25 ppm</td>
<td>0.075 ppm₇ (99th percentile over 3 years)</td>
<td>Irritates respiratory tract; injures lung tissue. Can yellow plant leaves. Destructive to marble, iron, steel. Contributes to acid rain. Limits visibility.</td>
<td>Fuel combustion (especially coal and high-sulfur oil), chemical plants, sulfur recovery plants, metal processing; some natural sources like active volcanoes. Limited contribution possible from heavy-duty diesel vehicles if ultra-low sulfur fuel not used.</td>
<td>Federal: Attainment State: Attainment</td>
</tr>
<tr>
<td></td>
<td>3 hours</td>
<td>---</td>
<td>0.5 ppm₈</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>0.04 ppm</td>
<td></td>
<td></td>
<td></td>
<td>Federal: Attainment State: Attainment</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>Monthly Rolling 3-month average</td>
<td>1.5 μg/m³</td>
<td>---</td>
<td>Disturbs gastrointestinal system. Causes anemia, kidney disease, and neuromuscular and neurological dysfunction. Also a toxic air contaminant and water pollutant.</td>
<td>Lead-based industrial processes like battery production and smelters. Lead paint, leaded gasoline. Aerially deposited lead from older gasoline use may exist in soils along major roads.</td>
<td>Federal: Unclassified State: Attainment¹¹</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>0.15 μg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>24 hours</td>
<td>25 μg/m³</td>
<td></td>
<td>Premature mortality and respiratory effects. Contributes to acid rain. Some toxic air contaminants attach to sulfate aerosol particles.</td>
<td>Industrial processes, refineries and oil fields, mines, natural sources like volcanic areas, salt-covered dry lakes, and large sulfide rock areas.</td>
<td>Federal: n/a State: Attainment¹¹</td>
</tr>
</tbody>
</table>
### Table 2-35: State and Federal Criteria Air Pollutant Standards, Effects, and Sources

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>State Standard</th>
<th>Federal Standard</th>
<th>Principal Health and Atmospheric Effects</th>
<th>Typical Sources</th>
<th>Project Area Attainment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Sulfide (H₂S)</td>
<td>1 hour</td>
<td>0.03 ppm</td>
<td>---</td>
<td>Colorless, flammable, poisonous. Respiratory irritant. Neurological damage and premature death. Headache, nausea. Strong odor.</td>
<td>Industrial processes such as: refineries and oil fields, asphalt plants, livestock operations, sewage treatment plants, and mines. Some natural sources like volcanic areas and hot springs.</td>
<td>Federal: Attainment State: Unclassified</td>
</tr>
<tr>
<td>Visibility-Reducing Particles (VRP)</td>
<td>8 hours</td>
<td>Visibility of 10 miles or more (Tahoe: 30 miles) at relative humidity less than 70%</td>
<td>---</td>
<td>Reduces visibility. Produces haze. Note: Not directly related to the Regional Haze program under the Federal Clean Air Act, which is oriented primarily toward visibility issues in National Parks and other “Class I” areas. However, some issues and measurement methods are similar.</td>
<td>See particulate matter above. May be related more to aerosols than to solid particles.</td>
<td>Federal: n/a State: Unclassified</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>24 hours</td>
<td>0.01 ppm</td>
<td>---</td>
<td>Neurological effects, liver damage, cancer. Also considered a toxic air contaminant.</td>
<td>Industrial processes</td>
<td>Federal: n/a State: Attainment</td>
</tr>
</tbody>
</table>

Adapted from City of Bakersfield 24th Street Improvement Project Draft EIR and California ARB Air Quality Standards chart (http://www.arb.ca.gov/research/aaqs/aaqs2.pdf).

Notes: ppm = parts per million; μg/m³ = micrograms per cubic meter; ppb=parts per billion (thousand million); Greenhouse Gases and Climate Change: Greenhouse gases do not have concentration standards for that purpose. Conformity requirements do not apply to greenhouse gases.

1. State standards are “not to exceed” or “not to be equaled or exceeded” unless stated otherwise. Federal standards are “not to exceed more than once a year” or as described above.
2. Annual \( PM_{10} \) NAAQS revoked October 2006; was 50 μg/m³. 24-hr. \( PM_{2.5} \) NAAQS tightened October 2006; was 65 μg/m³. Annual \( PM_{2.5} \) NAAQS tightened from 15 μg/m³ to 12 μg/m³ December 2012 and secondary annual standard set at 15 μg/m³.
3. Prior to 6/2005, the 1-hour ozone NAAQS was 0.12 ppm. Emission budgets for 1-hour ozone are still in use in some areas where 8-hour ozone emission budgets have not been developed, such as the S.F. Bay Area.
4. Rounding to an integer value is not allowed for the State 8-hour CO standard. A violation occurs at or above 9.05 ppm.
5. The 65 μg/m³ \( PM_{2.5} \) (24-hr) NAAQS was not revoked when the 35 μg/m³ NAAQS was promulgated in 2006. The 15 μg/m³ annual \( PM_{2.5} \) standard was not revoked when the 12 μg/m³ standard was promulgated in 2012. The 0.08 ppm 1997 ozone standard is revoked FOR CONFORMITY.
PURPOSES ONLY when area designations for the 2008 0.75 ppm standard become effective for conformity use (7/20/2013). Conformity requirements apply for all NAAQS, including revoked NAAQS, until emission budgets for newer NAAQS are found adequate. SIP amendments for the newer NAAQS are approved with a emission budget, EPA specifically revokes conformity requirements for an older standard, or the area becomes attainment/unclassified. SIP-approved emission budgets remain in force indefinitely unless explicitly replaced or eliminated by a subsequent approved SIP amendment. During the “Interim” period prior to availability of emission budgets, conformity tests may include some combination of build vs. no build, build vs. baseline, or compliance with prior emission budgets for the same pollutant.


7 EPA finalized a 1-hour SO₂ standard of 75 ppb in June 2010. Nonattainment areas have not yet been designated as of 9/2012.

8 Secondary standard, set to protect public welfare rather than health. Conformity and environmental analysis address both primary and secondary NAAQS.

9 The ARB has identified vinyl chloride and the particulate matter fraction of diesel exhaust as toxic air contaminants. Diesel exhaust particulate matter is part of PM₁₀ and, in larger proportion, PM₂.₅. Both the ARB and U.S. EPA have identified lead and various organic compounds that are precursors to ozone and PM₂.₅ as toxic air contaminants. There are no exposure criteria for adverse health effect due to toxic air contaminants, and control requirements may apply at ambient concentrations below any criteria levels specified above for these pollutants or the general categories of pollutants to which they belong.

10 Lead NAAQS are not considered in Transportation Conformity analysis.

11 Source: http://www.valleyair.org/aqinfo/attainment.htm

In accordance with the U.S. Environmental Protection Agency’s 2010 guidance, a PM₁₀ and PM₂.₅ hot-spot analysis is necessary to show that the project conforms to the state implementation plan and would not cause or contribute to new air quality violations, worsen existing violations, or delay timely attainment of National Ambient Air Quality Standards for the criteria pollutants. The state implementation plan is comprised of the 2007 PM₁₀ Maintenance Plan and Request for Redesignation, adopted by the Air Pollution Control District on September 20, 2007, the 2008 PM₂.₅ Plan to address attainment of the PM₂.₅ annual standard, adopted in April 2008, and the 2012 PM₂.₅ Plan concerning attainment of the PM₂.₅ 24-hour standard, adopted in December 2012. The U.S. Environmental Protection Agency approved the PM₁₀ redesignation of the San Joaquin Air Basin portion of the Air Pollution Control District, which includes the project study area, on November 12, 2008.

The California Air Resource Board and the U.S. Environmental Protection Agency maintain and operate various monitoring stations to measure ambient air quality. The air quality monitoring station nearest the project study area is the California Air Resource Board’s Modesto-14th Street monitoring station at 814 14th Street in Modesto. The station monitors for ozone, carbon monoxide, PM₁₀, and PM₂.₅. Table 2-36 lists the air quality monitoring data for pollutants over the last four-year period (2011 to 2014). An asterisk notes a value where data was insufficient to determine a
value; however, a minimum of three years of complete data for each pollutant is reported over this period.

Table 2-36: Ambient Air Quality Monitoring Data Measured at the Modesto 14th Street Monitoring Station

<table>
<thead>
<tr>
<th>Standards</th>
<th>Year Monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
</tr>
<tr>
<td><strong>1-HOUR OZONE</strong></td>
<td></td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>0.091</td>
</tr>
<tr>
<td>1-hour California designation value</td>
<td>0.090</td>
</tr>
<tr>
<td>1-hour expected peak day concentration</td>
<td>0.101</td>
</tr>
<tr>
<td>Number of Days Standard Exceeded&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>CAAQS 1-hour (&gt;0.09 ppm)</td>
<td>0</td>
</tr>
<tr>
<td><strong>8-HOUR OZONE</strong></td>
<td></td>
</tr>
<tr>
<td>National maximum 8-hour concentration (ppm)</td>
<td>0.078</td>
</tr>
<tr>
<td>National second-highest 8-hour concentration (ppm)</td>
<td>0.077</td>
</tr>
<tr>
<td>National fourth-highest 8-hour concentration (ppm)</td>
<td>0.074</td>
</tr>
<tr>
<td>California maximum 8-hour concentration (ppm)</td>
<td>0.078</td>
</tr>
<tr>
<td>California second-highest 8-hour concentration (ppm)</td>
<td>0.078</td>
</tr>
<tr>
<td>8-hour National design value</td>
<td>0.075</td>
</tr>
<tr>
<td>8-hour California designation value</td>
<td>0.082</td>
</tr>
<tr>
<td>8-hour California expected peak day concentration</td>
<td>0.087</td>
</tr>
<tr>
<td>Number of Days Standard Exceeded&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>NAAQS 8-hour (&gt;0.075 ppm)</td>
<td>3</td>
</tr>
<tr>
<td>CAAQS 8-hour (&gt;0.070 ppm)</td>
<td>7</td>
</tr>
<tr>
<td><strong>CARBON MONOXIDE (CO)</strong></td>
<td></td>
</tr>
<tr>
<td>National maximum 1-hour concentration (ppm)</td>
<td>2.9</td>
</tr>
<tr>
<td>National second-highest 1-hour concentration (ppm)</td>
<td>2.9</td>
</tr>
<tr>
<td>National&lt;sup&gt;b&lt;/sup&gt; maximum 8-hour concentration (ppm)</td>
<td>2.71</td>
</tr>
<tr>
<td>National&lt;sup&gt;b&lt;/sup&gt; second-highest 8-hour concentration (ppm)</td>
<td>2.15</td>
</tr>
<tr>
<td>California&lt;sup&gt;a&lt;/sup&gt; maximum 8-hour concentration (ppm)</td>
<td>2.71</td>
</tr>
<tr>
<td>California&lt;sup&gt;a&lt;/sup&gt; second-highest 8-hour concentration (ppm)</td>
<td>2.15</td>
</tr>
<tr>
<td>Number of Days Standard Exceeded&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>NAAQS 1-hour (&gt;35 ppm)</td>
<td>0</td>
</tr>
<tr>
<td>CAAQS 1-hour (&gt;20 ppm)</td>
<td>0</td>
</tr>
<tr>
<td>NAAQS 8-hour (&gt;9 ppm)</td>
<td>0</td>
</tr>
<tr>
<td>CAAQS 8-hour (&gt;9.0 ppm)</td>
<td>0</td>
</tr>
<tr>
<td><strong>PARTICULATE MATTER (PM10)</strong></td>
<td></td>
</tr>
<tr>
<td>National annual average concentrations (µg/m³)</td>
<td>25.5</td>
</tr>
<tr>
<td>National 3-year average concentration (µg/m³)</td>
<td>24</td>
</tr>
<tr>
<td>California annual average concentration (µg/m³)&lt;sup&gt;e&lt;/sup&gt;</td>
<td>*</td>
</tr>
<tr>
<td>California 3-year annual average concentration (µg/m³)</td>
<td>27</td>
</tr>
<tr>
<td>National&lt;sup&gt;b&lt;/sup&gt; maximum 24-hour concentration (µg/m³)</td>
<td>69.4</td>
</tr>
<tr>
<td>National&lt;sup&gt;b&lt;/sup&gt; second-highest 24-hour concentration (µg/m³)</td>
<td>63.1</td>
</tr>
<tr>
<td>California&lt;sup&gt;a&lt;/sup&gt; maximum 24-hour concentration (µg/m³)</td>
<td>73.5</td>
</tr>
<tr>
<td>California&lt;sup&gt;a&lt;/sup&gt; second-highest 24-hour concentration (µg/m³)</td>
<td>68.6</td>
</tr>
</tbody>
</table>
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-36: Ambient Air Quality Monitoring Data Measured at the Modesto 14th Street Monitoring Station

<table>
<thead>
<tr>
<th>Standards</th>
<th>Year Monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Number of Days Standard Exceeded&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.0</td>
</tr>
<tr>
<td>NAAQS 24-hour (&gt;150 µg/m&lt;sup&gt;3&lt;/sup&gt;)&lt;sup&gt;f&lt;/sup&gt;</td>
<td>0.0</td>
</tr>
<tr>
<td>CAAQS 24-hour (&gt;50 µg/m&lt;sup&gt;3&lt;/sup&gt;)&lt;sup&gt;f&lt;/sup&gt;</td>
<td>*</td>
</tr>
<tr>
<td><strong>PARTICULATE MATTER (PM2.5)</strong></td>
<td></td>
</tr>
<tr>
<td>National annual average concentration (µg/m&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>14.7</td>
</tr>
<tr>
<td>California annual average concentration (µg/m&lt;sup&gt;3&lt;/sup&gt;)&lt;sup&gt;e&lt;/sup&gt;</td>
<td>14.7</td>
</tr>
<tr>
<td>National annual design value (µg/m&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>13.3</td>
</tr>
<tr>
<td>California annual designation value (µg/m&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>15</td>
</tr>
<tr>
<td>National&lt;sup&gt;b&lt;/sup&gt; maximum 24-hour concentration (µg/m&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>71.7</td>
</tr>
<tr>
<td>National&lt;sup&gt;b&lt;/sup&gt; second-highest 24-hour concentration (µg/m&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>70.2</td>
</tr>
<tr>
<td>National 3-year Average 24-hour 98&lt;sup&gt;th&lt;/sup&gt; Percentile</td>
<td>54.7</td>
</tr>
<tr>
<td>National 24-hour design value</td>
<td>49</td>
</tr>
<tr>
<td>California&lt;sup&gt;c&lt;/sup&gt; maximum 24-hour concentration (µg/m&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>71.7</td>
</tr>
<tr>
<td>California&lt;sup&gt;c&lt;/sup&gt; second-highest 24-hour concentration (µg/m&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>70.2</td>
</tr>
<tr>
<td>Number of Days Standard Exceeded&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>NAAQS annual (&gt;12 µg/m&lt;sup&gt;3&lt;/sup&gt;)&lt;sup&gt;f&lt;/sup&gt;</td>
<td>25</td>
</tr>
</tbody>
</table>

Notes: CAAQS = California ambient air quality standards; NAAQS = national ambient air quality standards.
<sup>a</sup> = insufficient data available to determine the value.
<sup>b</sup> = An exceedance is not necessarily a violation.
<sup>c</sup> = National statistics are based on standard conditions data. Also, national statistics are based on samplers using federal reference or equivalent methods.
<sup>d</sup> = State statistics are based on local conditions data, except in the South Coast Air Basin, for which statistics are based on standard conditions data. In addition, State statistics are based on California-approved samplers.
<sup>e</sup> = Measurements usually are collected every 6 days.
<sup>f</sup> = State criteria for ensuring that data are sufficiently complete for calculating valid annual averages are more stringent than the national criteria.

Bold, <i>italics</i> and <u>underlined</u> values exceed the national, <i>state</i> and <u>revoked</u> standards, accordingly.

<i>Sources:</i> California Air Resources Board 2015; U.S. Environmental Protection Agency 2015.

Environmental Consequences

Regional Conformity

The proposed project is listed in StanCOG’s financially constrained 2014 Regional Transportation Plan/Sustainable Communities Strategy, which was adopted and found to regionally conform by StanCOG via Resolution 13-46 on June 18, 2014 and by the Federal Highway Administration and the Federal Transit Administration on December 15, 2014. The proposed project is also included in StanCOG’s financially constrained 2015 Federal Transportation Improvement Program, page A-14. The
2015 FTIP was adopted by StanCOG and a conformity determination via Resolution 13-49 was made on June 18, 2014. The Federal Highway Administration and Federal Transit Administration reviewed the StanCOG conformity determination and, after consultation with Environmental Protection Agency Region IX, made a conformity determination on December 15, 2014. The design concept and scope of the proposed project are consistent with the project description in the 2014 Regional Transportation Program/Sustainable Communities Strategy, 2015 Federal Transportation Improvement Program, and the “open to traffic” assumptions of StanCOG’s regional emissions analysis.

**Project-level Conformity**

Project-level conformity is demonstrated by showing that a project would not cause or contribute to a localized exceedance of National Ambient Air Quality Standards in a nonattainment or maintenance area and that it would not interfere with “timely implementation” of transportation control measures identified in the state implementation plan.

**Carbon Monoxide Hot-Spot Analysis**

The effects of localized carbon monoxide hot spots were evaluated through carbon monoxide dispersion modeling consistent with the Transportation Project-Level Carbon Monoxide Protocol. Carbon monoxide hot spots were evaluated at intersections within the project study area for the No-Build Alternative at the completion of Phase 1 in 2020. Analysis was also done for the No-Build Alternative and two build alternatives at the completion of the ultimate build-out in 2028 and the No-Build Alternative and two build alternatives for the 2048 design year. These years were selected to evaluate the combined effect of increasing traffic volumes and improving vehicle emissions for carbon monoxide concentrations in the project study area.

Carbon monoxide modeling was conducted at the four most-congested intersections in the project study area:

- Existing SR 132 (Maze Boulevard) and Carpenter Road
- Kansas Avenue and North Carpenter Road
- North Carpenter Road and the southbound SR 99 on- and off-ramps
- North Carpenter Road and the northbound SR 99 on- and off-ramps
Carbon monoxide concentrations were estimated at eight receptor locations (32 total receptors) at the approximate beginning and end of each turning queue for each of the four intersections. Figure 2-19 shows the intersection and receptor locations. The air quality study limits also included the existing SR 132 (Maze Boulevard) corridor from Dakota Avenue to SR 99. Additional details on the modeling approach and assumptions per U.S. Environmental Protection Agency and California Air Resource Board guidelines are presented in the *Air Quality Study Report*.

**Modeling Results:** Tables 2-37 through 2-39 list the results for the two build alternatives and the No-Build Alternative. Carbon monoxide concentrations are not anticipated to exceed the 1- or 8-hour National Ambient Air Quality Standards, 35 parts per million (ppm) and 9 ppm (respectively), under the two build alternatives or the No-Build Alternative. The maximum predicted concentrations for the 2020 No-Build and Phase 1 scenarios are 4.5 ppm (1-hour) and 3.3 ppm (8-hour). The maximum predicted concentrations for the 2028 No-Build Alternative and both build alternatives is 2.8 ppm (1-hour) and 2.0 ppm (8-hour). For the 2048 scenario, the maximum predicted concentrations for the No-Build and build alternatives are 2.6 ppm (1-hour) and 1.9 (8-hour).

The proposed project is, therefore, not expected to cause or contribute to new or worsened violations of the National Ambient Air Quality Standards, and project-level carbon monoxide conformity determination requirements are satisfied. In addition, the predicted maximum concentrations are below the 1-hour (20 ppm) and 8-hour (9 ppm) California ambient air quality standards, satisfying CEQA.
Figure 2-19: Carbon Monoxide Hot-Spot Analysis Intersection and Receptor Locations
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-37: Modeled Carbon Monoxide Levels at Receptors for the No-Build Alternative and Two Build Alternatives (Phase 1 - 2020)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Receptora</th>
<th>2020 No-Build</th>
<th>2020 Phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-hrb</td>
<td>8-hrb</td>
</tr>
<tr>
<td>Existing SR 132 (Maze Boulevard) and Carpenter Road</td>
<td>1</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.9 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.1 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.1 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.9 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.1 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td>Kansas Avenue and North Carpenter Road</td>
<td>1</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.2 ppm</td>
<td>2.4 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.1 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.1 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.1 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.2 ppm</td>
<td>2.4 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td>North Carpenter Road and the Southbound SR 99 on- and off-ramps</td>
<td>1</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.5 ppm</td>
<td>2.6 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.6 ppm</td>
<td>2.6 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.6 ppm</td>
<td>3.3 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.6 ppm</td>
<td>2.6 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.9 ppm</td>
<td>2.8 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.0 ppm</td>
<td>2.9 ppm</td>
</tr>
<tr>
<td>North Carpenter Road and the Northbound SR 99 on- and off-ramps</td>
<td>1</td>
<td>3.4 ppm</td>
<td>2.5 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.1 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.1 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.1 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.4 ppm</td>
<td>2.5 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.0 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.2 ppm</td>
<td>2.4 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.3 ppm</td>
<td>2.4 ppm</td>
</tr>
</tbody>
</table>

Notes: For the purposes of evaluating impacts, Phase 1 represents both build alternatives for traffic conditions in 2020. ppm = parts per million.
a Receptors were approx. 10 feet from the outer edge of adjacent lanes at the boundary of the mixing zone and at the estimated beginning and end of right-turn movements on each leg of the intersection.
b Background concentrations of 2.7 ppm and 2.0 ppm were added to the modeling 1-hour and 8-hour results, respectively, based on the second maximum background concentration in each of the last 2 years extrapolated to the 2020 traffic year. The federal and state 1-hour standards are 35 and 20 ppm, respectively. The federal and state 8-hour standards are 9 ppm.
Source: Air Quality Study Report (May 2016)
### Table 2-38: Modeled Carbon Monoxide Levels at Receptors for the No-Build and Build Alternatives (Phase 2 - 2028)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Receptor</th>
<th>No-Build</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-hr&lt;sup&gt;b&lt;/sup&gt;</td>
<td>8-hr&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1-hr&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Existing SR 132 (Maze Boulevard)</td>
<td>1</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td>and Carpenter Road</td>
<td>2</td>
<td>2.0 ppm</td>
<td>1.5 ppm</td>
<td>1.9 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.0 ppm</td>
<td>1.5 ppm</td>
<td>1.9 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td>Kansas Avenue and North Carpenter Road</td>
<td>1</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.0 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.0 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td>North Carpenter Road and the Southbound SR 99 on- and off-ramps</td>
<td>1</td>
<td>2.7 ppm</td>
<td>2.0 ppm</td>
<td>2.7 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2 ppm</td>
<td>1.7 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.8 ppm</td>
<td>2.0 ppm</td>
<td>2.8 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.4 ppm</td>
<td>1.8 ppm</td>
<td>2.4 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.5 ppm</td>
<td>1.9 ppm</td>
<td>2.5 ppm</td>
</tr>
<tr>
<td>North Carpenter Road and the Northbound SR 99 on- and off-ramps</td>
<td>1</td>
<td>2.6 ppm</td>
<td>1.9 ppm</td>
<td>2.6 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.7 ppm</td>
<td>2.0 ppm</td>
<td>2.7 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.5 ppm</td>
<td>1.9 ppm</td>
<td>2.5 ppm</td>
</tr>
</tbody>
</table>

**Notes:** ppm = parts per million.

- **a** Receptors were approx. 10 feet from the outer edge of adjacent lanes at the boundary of the mixing zone and at the estimated beginning and end of right-turn movements on each leg of the intersection.

- **b** Background concentrations of 1.7 ppm and 1.3 ppm were added to the modeling 1-hour and 8-hour results, respectively, based on the second maximum background concentration in each of the last 2 years extrapolated to the 2028 traffic year. The federal and state 1-hour standards are 35 and 20 ppm, respectively. The federal and state 8-hour standards are 9 ppm.

**Source:** Air Quality Study Report (May 2016)
### Table 2-39: Modeled Carbon Monoxide Levels at Receptors for the No-Build and Build Alternatives (Design Year 2048)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Receptor&lt;sup&gt;a&lt;/sup&gt;</th>
<th>No-Build</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-hr&lt;sup&gt;b&lt;/sup&gt;</td>
<td>8-hr&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1-hr&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Existing SR 132 (Maze Boulevard) and Carpenter Road</td>
<td>1</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.0 ppm</td>
<td>1.5 ppm</td>
<td>1.9 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.0 ppm</td>
<td>1.5 ppm</td>
<td>1.8 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td>Kansas Avenue and North Carpenter Road</td>
<td>1</td>
<td>2.0 ppm</td>
<td>1.5 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.0 ppm</td>
<td>1.5 ppm</td>
<td>2.0 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.0 ppm</td>
<td>1.5 ppm</td>
<td>1.9 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.0 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>1.9 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td>North Carpenter Road and the Southbound SR 99 on- and off-ramps</td>
<td>1</td>
<td>2.5 ppm</td>
<td>1.8 ppm</td>
<td>2.5 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.5 ppm</td>
<td>1.8 ppm</td>
<td>2.5 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.3 ppm</td>
<td>1.7 ppm</td>
<td>2.3 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.4 ppm</td>
<td>1.9 ppm</td>
<td>2.4 ppm</td>
</tr>
<tr>
<td>North Carpenter Road and the Northbound SR 99 on- and off-ramps</td>
<td>1</td>
<td>2.5 ppm</td>
<td>1.8 ppm</td>
<td>2.5 ppm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.1 ppm</td>
<td>1.6 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.6 ppm</td>
<td>1.9 ppm</td>
<td>2.6 ppm</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.2 ppm</td>
<td>1.6 ppm</td>
<td>2.2 ppm</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.4 ppm</td>
<td>1.9 ppm</td>
<td>2.4 ppm</td>
</tr>
</tbody>
</table>

**Notes:** ppm = parts per million.

<sup>a</sup> Receptors were approx. 10 feet from the outer edge of adjacent lanes at the boundary of the mixing zone and at the estimated beginning and end of right-turn movements on each leg of the intersection.

<sup>b</sup> Background concentrations of 1.6 ppm and 1.2 ppm were added to the modeling 1-hour and 8-hour results, respectively, based on the second maximum background concentration in each of the last 2 years extrapolated to the 2048 traffic year. The federal and state 1-hour standards are 35 and 20 ppm, respectively. The federal and state 8-hour standards are 9 ppm.

*Source: Air Quality Study Report (May 2016)*
PM$_{10}$/PM$_{2.5}$ Hot-Spot Analyses

On March 10, 2006, the U.S. Environmental Protection Agency published a final rule that requires particulate matter hot-spot analyses to be performed for any project of air quality concern or any other project identified by the PM$_{10}$ and/or PM$_{2.5}$ state implementation plan(s) as a localized air quality concern. The Federal Highway Administration and the U.S. Environmental Protection Agency’s *Transportation Conformity Guidance for Quantitative Hot-Spot Analyses in PM$_{2.5}$ and PM$_{10}$ Nonattainment and Maintenance Areas* further defines a project of air quality concern as certain highway and transit projects that involve significant levels of diesel traffic or any other project identified in the state implementation plan as a localized air quality concern.

The *Air Quality Study Report* presents a comparison of the traffic operations of the No-Build Alternative and the two build alternatives for Phase 1 (2020), Phase 2 (2028), and the design year (2048) under the five criteria provided in 40 Code of Federal Regulations 93.123(b)(1) for defining a project of air quality concern. The criteria are listed below.

1. New or expanded highway projects that have a significant number of or significant increase in diesel vehicles, such as facilities with greater than 125,000 average daily traffic, where 8% or more is diesel truck traffic;

2. Projects affecting intersections that are at a level of service D, E, F, with a significant number of diesel vehicles, or that would change to level of service D, E, or F because of increased traffic volumes from a significant number of diesel vehicles related to the project;

3. New bus and rail terminals and transfer points that have a significant number of diesel vehicles congregating at a single location;

4. Expanded bus and rail terminals and transfer points that significantly increase the number of diesel vehicles congregating at a single location; or

5. Projects in or affecting locations, areas, or categories of sites which are identified in the PM$_{10}$ or PM$_{2.5}$ implementation plan or implementation plan submission, as appropriate, as sites of possible violation.

An analysis was completed to compare the two build alternatives to the 40 CFR 93.123(b)(1) criteria for a project of air quality concern. Based on anticipated change
in traffic volumes and truck percentages from the no build condition, the two build alternatives are not considered a project of air quality concern. Categories 3 and 4, listed above, do not apply to the project. Relative to Category 5, the project site is not in or affecting an area or location identified in the San Joaquin Valley Air Pollution Control District’s 2012 PM2.5 Plan, the 2008 PM2.5 Plan or the 2007 PM10 Maintenance Plan and Request for Redesignation as in violation or possible violation.

Provided below is a summary of the results of the analysis completed for the first two categories.

Diesel vehicles, including trucks, are predicted to decrease on the existing highway (Maze Boulevard) from a maximum 3,234 vehicles per day in 2020 to a minimum 2,331 vehicles per day in 2048. In addition, average daily traffic and truck traffic on SR 99 is expected to decrease under both build alternatives. These reduced truck volumes, and a reduction in overall congestion, would reduce localized PM10/PM2.5 concentrations over this period along the existing highway. The proposed projected maximum increase in diesel truck traffic on SR 132 in Phase 1 (2020) is 1,827 vehicles per day in comparison to the no-build scenario. Similarly, the maximum increase in diesel truck traffic on SR 132 in Phase 2 (2028) and the design year (2048) is 2,499 and 3,507 vehicles per day in comparison to the no-build scenario. These increases would not be considered significant per the 40 Code of Federal Regulations 93.123(b)(1) guidelines.

Implementation of the two build alternatives would reduce the number of intersections operating at an unacceptable level of service. Nineteen intersections are expected to operate at level of service D, E, or F under 2048 no-build conditions for either the AM or PM peak hour, whereas only 8 of those intersections would continue to operate at unacceptable levels of service under Alternative 2. The two build alternatives would reduce overall vehicle delay, relative to no-build conditions. Accordingly, the proposed project is not expected to cause a deterioration of future traffic conditions. Rather, it would alleviate overall congestion, including diesel vehicles, in the project area, serving to reduce localized particulate concentrations at surrounding land uses.

Stanislaus County is designated by the U.S. Environmental Protection Agency as a serious maintenance area for the federal PM10 standard and a nonattainment area for the federal PM2.5 standard. In accordance with the U.S. Environmental Protection Agency’s 2010 guidance, a PM10 and PM2.5 hot-spot analysis would be necessary to
show that the project conforms to the state implementation plan and would not cause or contribute to new air quality violations, worsen existing violations, or delay timely attainment of the national ambient air quality standards for these criteria pollutants. Because of its location in a designated nonattainment area and maintenance area for the federal PM$_{2.5}$ and PM$_{10}$ standards, respectively, a determination must be made as to whether the proposed project qualifies as a project of air quality concern.

The proposed project has undergone interagency consultation initiated through StanCOG. A technical memorandum summarizing the Air Quality Study Report findings was circulated on April 1, 2016. Concurrence was received from the U.S. Environmental Protection Agency Region 9 on April 25, 2016 and the Federal Highway Administration on April 26, 2016, concluding that the proposed project is not a project of air quality concern (see Appendix I).

Because the proposed project is not considered a project of air quality concern, a detailed particulate matter hot-spot analysis is not required to demonstrate that the proposed project would not create any new local violations or increase the severity of any existing violations of the National Ambient Air Quality Standards per 40 Code of Federal Regulations 93.116.

**Criteria Pollutants**

Federal and state governments have established ambient air quality standards for six criteria pollutants: carbon monoxide (CO), ozone (O$_3$), particulate matter, nitrogen dioxide (NO$_2$), sulfur dioxide (SO$_2$), and lead (Pb). Ozone and particulate matter are generally seen as regional pollutants because they or their precursors affect air quality across a region. Pollutants such as carbon monoxide, nitrogen dioxide, sulfur dioxide, and lead are local pollutants in that they tend to accumulate in the air locally. In addition to being a regional pollutant, particulate matter is also considered a local pollutant. In the area of the proposed project site, particulate matter, ozone precursors, and carbon monoxide are of particular concern.

Long-term air quality impacts of the project are those associated with motor vehicles operating on the roadway network affected by the project, mainly within the project vicinity.

Emissions of ozone precursors (reactive organic gases and nitrogen oxides), carbon monoxide, PM$_{10}$, and PM$_{2.5}$ for 2020 (when Phase 1 would be completed), 2028 (when Phase 2 would be completed), and 2048 (the design year) with and without the
project were evaluated through modeling conducted using vehicle activity traffic data. Analysis of existing conditions was not performed because existing vehicle miles traveled was not available. Table 2-40 shows projections of annual vehicle miles traveled by 5 miles per hour speed increments (or speed bins). For the purposes of evaluating impacts, Phase 1 represents both build alternatives for traffic conditions in 2020.

**Alternative 1**

Table 2-41 lists the annual tons of emissions in 2020, 2028, and 2048 for ozone precursors (reactive organic gases and nitrogen oxides), carbon monoxide, and particulate matter under Alternative 1. Alternative 1 would result in a decrease of every pollutant relative to the No-Build Alternative except for an increase in reactive organic gases in 2020. The increase is due to emissions from vehicles operating at speeds above 30 miles per hour.
### Table 2-40: Annual Vehicle Miles Traveled Projections for 2020, 2028, and 2048

<table>
<thead>
<tr>
<th>Speed Bin</th>
<th>2020</th>
<th></th>
<th>2028</th>
<th></th>
<th>2048</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VMT</td>
<td>%</td>
<td>VMT</td>
<td>%</td>
<td>VMT</td>
<td>%</td>
</tr>
<tr>
<td>5</td>
<td>496,985</td>
<td>0</td>
<td>497,970</td>
<td>0</td>
<td>621,231</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>925,781</td>
<td>0</td>
<td>768,139</td>
<td>0</td>
<td>1,157,226</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>6,006,013</td>
<td>2</td>
<td>5,116,380</td>
<td>1</td>
<td>7,507,517</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>16,876,116</td>
<td>5</td>
<td>13,274,249</td>
<td>4</td>
<td>21,095,145</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>104,691,537</td>
<td>29</td>
<td>99,627,432</td>
<td>28</td>
<td>130,864,421</td>
<td>29</td>
</tr>
<tr>
<td>35</td>
<td>70,219,585</td>
<td>20</td>
<td>74,482,226</td>
<td>21</td>
<td>87,774,481</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>39,579,432</td>
<td>11</td>
<td>41,999,721</td>
<td>12</td>
<td>49,474,290</td>
<td>11</td>
</tr>
<tr>
<td>45</td>
<td>23,642,061</td>
<td>7</td>
<td>21,269,628</td>
<td>6</td>
<td>29,552,576</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>10,072,537</td>
<td>3</td>
<td>13,185,071</td>
<td>4</td>
<td>12,590,671</td>
<td>3</td>
</tr>
<tr>
<td>55</td>
<td>1,308,631</td>
<td>0</td>
<td>6,070,248</td>
<td>2</td>
<td>1,635,789</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>357,138,931</td>
<td>100</td>
<td>356,252,583</td>
<td>100</td>
<td>446,423,664</td>
<td>100</td>
</tr>
</tbody>
</table>

**Note:** VMT = vehicle miles traveled.

*The percentile represents the percentage of vehicles traveling in the 5-miles-per-hour speed increment (or speed bin).*

*Source: Air Quality Study Report (May 2016)*
Table 2-41: Operational Criteria Pollutant Emissions (tons per year)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020 No-Build Alternative</td>
<td>34.0</td>
<td>272.7</td>
<td>553.2</td>
<td>3.8</td>
<td>3.5</td>
</tr>
<tr>
<td>2020 Phase 1</td>
<td>32.4</td>
<td>265.5</td>
<td>541.3</td>
<td>3.8</td>
<td>3.5</td>
</tr>
<tr>
<td>2028 No-Build Alternative</td>
<td>26.9</td>
<td>184.7</td>
<td>468.2</td>
<td>4.1</td>
<td>3.8</td>
</tr>
<tr>
<td>2028 Alternative 1</td>
<td>26.7</td>
<td>183.2</td>
<td>465.6</td>
<td>4.1</td>
<td>3.8</td>
</tr>
<tr>
<td>2028 Alternative 2</td>
<td>26.4</td>
<td>181.6</td>
<td>461.9</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>2048 No-Build Alternative</td>
<td>37.4</td>
<td>250.8</td>
<td>611.7</td>
<td>6.1</td>
<td>5.6</td>
</tr>
<tr>
<td>2048 Alternative 1</td>
<td>36.3</td>
<td>243.6</td>
<td>586.9</td>
<td>5.9</td>
<td>5.4</td>
</tr>
<tr>
<td>2048 Alternative 2</td>
<td>36.2</td>
<td>242.9</td>
<td>594.7</td>
<td>5.9</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Comparison of Build Alternatives to the No-Build Alternative

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020 Phase 1 Build to 2020 No-Build Alternative</td>
<td>-1.6</td>
<td>-7.2</td>
<td>-11.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2028 Alternative 1 to 2028 No-Build Alternative</td>
<td>-0.2</td>
<td>-1.5</td>
<td>-2.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2028 Alternative 2 to 2028 No-Build Alternative</td>
<td>-0.5</td>
<td>-3.1</td>
<td>-6.3</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>2048 Alternative 1 to 2048 No-Build Alternative</td>
<td>-1.1</td>
<td>-7.2</td>
<td>-24.8</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>2048 Alternative 2 to 2048 No-Build Alternative</td>
<td>-1.2</td>
<td>-7.9</td>
<td>-17.0</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Notes: CO = carbon monoxide; NO$_x$ = nitrogen oxides; PM$_{10}$ = particulates less than 10 micrometers in diameter or less; PM$_{2.5}$ = particulate matter that is 2.5 micrometers in diameter or less; ROG = reactive organic gases.

Source: Air Quality Study Report (May 2016)

Although operation of Alternative 1 would generate emissions of carbon monoxide, ozone precursors (reactive organic gases and nitrogen oxides) and particulates (PM$_{10}$ and PM$_{2.5}$), emissions would be less than if the project were not completed (except for reactive organic gases in 2020).

Conformity demonstrations indicate that the build alternative would not cause, contribute to, or worsen any new localized violation of the National Ambient Air Quality Standards or California ambient air quality standards for carbon monoxide and particulates (PM$_{10}$ and PM$_{2.5}$). In addition, California ambient air quality standards would be met for these pollutants, satisfying CEQA.
Alternative 2
As shown in Table 2-41, Alternative 2 would result in a decrease of every pollutant relative to the No-Build Alternative conditions except for an increase in reactive organic gases in 2020. Conformity demonstrations indicate that the build alternative would not cause, contribute to, or worsen any new localized violation of the National Ambient Air Quality Standards for carbon monoxide and particulates (PM\textsubscript{10} and PM\textsubscript{2.5}). In addition, California ambient air quality standards would be met for these pollutants, satisfying CEQA.

Construction Impacts
Construction activities would not last for more than five years at one general location, so construction-related emissions do not need to be included in regional and project-level conformity analysis (40 CFR 93.123(c)(5)). Construction activity is a source of dust and exhaust emissions that can have substantial temporary impacts on local air quality (exceeding state air quality standards for ozone, carbon monoxide, NO\textsubscript{x}, PM\textsubscript{10}, and PM\textsubscript{2.5}). Such emissions would result from earthmoving and the use of heavy equipment, as well as land clearing, ground excavation, cut-and-fill operations, and the construction of roadways. A major portion of dust emissions for the proposed project would likely be caused by construction traffic in construction areas. Dust generated during stockpile excavation would be monitored consistent with an air monitoring plan approved by the Department of Toxic Substances Control.

The Sacramento Metropolitan Air Quality Management District’s Road Construction Emissions Model (Version 7.1.2) was used to estimate emissions of reactive organic gases, nitrogen oxides, carbon monoxide, PM\textsubscript{10}, and PM\textsubscript{2.5}. The model estimates emissions for load hauling (on-road heavy-duty vehicle trips), worker commute trips, construction site fugitive dust (PM\textsubscript{10} and PM\textsubscript{2.5}), and off-road construction vehicles. Dust estimates do not account for control measures required by the San Joaquin Air Pollution Control District. Analysis requirements for construction-related (and operations-related) pollutant emissions are outlined in the district’s Guide for Assessing and Mitigating Air Quality Impacts.

Phase 1 is anticipated to begin in 2018 and be completed within 12 to 15 months. Phase 2 would last 21 months and be completed by 2028. The proposed project footprint for Alternative 1 would be approximately 232 acres with an estimated maximum temporary disturbance of 0.8 acre and 1,240 cubic yards of soil exported.
per construction day for the entire construction period. The proposed project footprint for Alternative 2 would be approximately 233 acres with an estimated maximum temporary disturbance of 0.7 acre and 1,652 cubic yards of soil exported per construction day for the entire construction period.

**Phase 1 Impacts:** Table 2-42 shows the results of the modeled emissions estimates for Phase 1 for both build alternatives. Construction activities were divided into distinct sub-phases (Year 1: grubbing/land clearing, grading/excavation, drainage/utilities/ sub-grade; Year 2: paving) and analyzed separately with no construction overlap of the sub-phases. Phase 1 would trigger the need for mitigation offsets through the requirements of the Air Pollution Control District’s Rule 9510, as estimated construction emissions of nitrogen oxides are in excess of 2 tons per year in 2018 for both build alternatives.

**Phase 2 Impacts:** Assuming a 21-month construction duration and the same sub-phasing as Phase 1, Phase 2 would also trigger the need for the Air Pollution Control District’s Rule 9510 mitigation offsets, as estimated construction emissions of nitrogen oxides are in excess of 2 tons per year in 2026 for both build alternatives (see Table 2-43). Table 2-44 summarizes the estimated mitigation requirements pursuant to Rule 9510, and even after compliance with Rule 9510, nitrogen oxide emissions generated by both alternatives would still exceed the Air Pollution Control District’s threshold because of Phase 2 in 2026.

<table>
<thead>
<tr>
<th>Table 2-42: Criteria Pollutant Emissions from Phase 1 (tons per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Phase</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phase 1 (2018)</td>
</tr>
<tr>
<td>Alternative 1</td>
</tr>
<tr>
<td>Alternative 2</td>
</tr>
<tr>
<td>Phase 1 (2019)</td>
</tr>
<tr>
<td>Alternative 1</td>
</tr>
<tr>
<td>Alternative 2</td>
</tr>
</tbody>
</table>

*Notes:* CO = carbon monoxide; NO<sub>x</sub> = nitrogen oxides; PM<sub>10</sub> = particulate matter that is 10 micrometers in diameter or less; PM<sub>2.5</sub> = particulate matter that is 2.5 micrometers in diameter or less; ROG = reactive organic gases.

*Source:* Air Quality Study Report (May 2016)
Table 2-43: Criteria Pollutant Emissions from Phase 2 (tons per year)

<table>
<thead>
<tr>
<th>Phase</th>
<th>ROG</th>
<th>CO</th>
<th>NOx</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>Exhaust</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dust</td>
<td>Total</td>
</tr>
<tr>
<td>Phase 2 (2026)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 1</td>
<td>0.9</td>
<td>8.3</td>
<td>3.9</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>0.9</td>
<td>7.9</td>
<td>3.6</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Phase 2 (2027)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 1</td>
<td>0.2</td>
<td>1.1</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>0.2</td>
<td>1.1</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: CO = carbon monoxide; NO$_x$ = nitrogen oxides; PM$_{10}$ = particulate matter that is 10 micrometers in diameter or less; PM$_{2.5}$ = particulate matter that is 2.5 micrometers in diameter or less; ROG = reactive organic gases.

Source: Air Quality Study Report (May 2016)

Table 2-44: Estimated NO$_x$ and PM$_{10}$ Reductions Associated with Rule 9510 (tons per year)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Years</th>
<th>Unmitigated Emissions$^a$</th>
<th>Required Reductions$^c$</th>
<th>Mitigated Emissions$^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO$_x$</td>
<td>PM$_{10}$$^b$</td>
<td>NO$_x$</td>
<td>PM$_{10}$$^b$</td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 1</td>
<td>2018 + 2019</td>
<td>9.8</td>
<td>1.7</td>
<td>0.77</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>2018 + 2019</td>
<td>10.1</td>
<td>1.7</td>
<td>2.02</td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 1</td>
<td>2026 + 2027</td>
<td>4.8</td>
<td>1.8</td>
<td>0.96</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>2026 + 2027</td>
<td>4.5</td>
<td>0.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Notes: NO$_x$ = nitrogen oxides; PM$_{10}$ = particulate matter that is 10 micrometers in diameter or less.

$^a$ This represents total construction emissions over the 2-year period.

$^b$ PM$_{10}$ exhaust.

$^c$ Per the requirements of Rule 9510, nitrogen oxide emissions would be reduced by 20 percent. PM$_{10}$ exhaust emissions would be reduced by 45 percent.

Source: Air Quality Study Report (May 2016)

The district considers PM$_{10}$ to be the primary pollutant of concern from construction activities, and compliance with the district’s Regulation VIII constitutes sufficient mitigation to reduce PM$_{10}$ emissions to less-than-significant levels. All construction projects must abide by Regulation VIII. Since the publication of its guidance, the district has revised some of the rules for Regulation VIII. Guidance from district staff stated that implementation of a dust control plan would satisfy all of the requirements of Regulation VIII. Although no explicit thresholds for construction-related emissions
of ozone precursors are found in the 2002 guide, the district considers a significant impact to occur when construction emissions of nitrogen oxides exceed 2 tons per year, reactive organic gases exceed 10 tons per year, or PM$_{10}$ or PM$_{2.5}$ exceed 15 tons per year. The proposed project would exceed two tons per year of nitrogen dioxide, but would be below the limits for reactive organic gases and particulate matter.

In addition to compliance with Regulation VIII, the proposed project would also be subject to Rule 9510, Indirect Source Review. Rule 9510 fulfills the district’s emission reduction commitments through required design features and onsite measures. Transportation or transit projects exceeding the district limits are required to reduce nitrogen oxide emissions by 20 percent and PM$_{10}$ exhaust emissions by 45 percent, compared to the statewide fleet average. Compliance with Rule 9510 is separate from the CEQA process, though the control measures used to comply with the rule may be used to mitigate CEQA impacts. Standard best management practices for construction-related air quality impacts, as described below, would be implemented.

- The contractor would implement the California Department of Transportation’s Standard Specifications control measures Section 14-9.02 (Air Pollution Control) and Section 14-9.03 (Dust Control). The contractor would apply water under Section 17 and dust palliative under Section 18. If ordered, the contractor would apply water, dust palliative, or both to control dust caused by public traffic.

- The contractor would prepare and submit for approval a dust control plan to the San Joaquin Valley Air Pollution Control District at least 30 days prior to any earthmoving or construction activities and implement a plan to control the generation of construction-related PM$_{10}$ emissions to comply with the San Joaquin Valley Air Pollution Control District’s Regulation VIII. Measures that might be included in the dust control plan are listed in the Air Quality Study Report.

- The contractor would implement measures to reduce construction-related exhaust emissions, such as maintaining properly tuned engines, minimizing the idling time of diesel-powered construction equipment to 2 minutes, using alternative-powered construction equipment (i.e., compressed natural gas, biodiesel, electric), using add-on mitigation devices such as diesel oxidation catalysts or particulate filters, using equipment that meets the California Air Resources Board’s most recent certification standard for off-road heavy-duty
diesel engines, phasing project construction, and limiting the operating hours of heavy-duty equipment.

No-Build Alternative
The No-Build Alternative would not result in the construction of any of the proposed improvements. Continued operation of existing SR 132 (Maze Boulevard) would generate carbon monoxide, ozone precursors (reactive organic gases and nitrogen oxides), and particulates (PM_{10} and PM_{2.5}), which are estimated to be higher than if the project were built (except for reactive organic gases in 2020). However, conformity demonstrations indicate that the No-Build Alternative would not cause, contribute to, or worsen any new localized violation of the National Ambient Air Quality Standards or California ambient air quality standards for carbon monoxide and particulates (PM_{10} and PM_{2.5}).

MSAT Emissions
Mobile source air toxics are a subset of the 188 air toxics defined in the Clean Air Act. The toxics are now federally regulated under 40 Code of Federal Regulations 1502.22 by the U.S. Environmental Protection Agency. These substances are also known as hazardous air pollutants. The seven main toxics are acrolein, polycyclic organic matter, diesel particulate matter/diesel exhaust organic gases, benzene, 1-3 butadiene, naphthalene, and formaldehyde.

The Federal Highway Administration issued interim guidance on September 30, 2009 for analysis of mobile source air toxics in NEPA documents, which was updated on December 6, 2012. There are no existing ambient air standards for the seven main air toxics. Currently available technical tools do not enable the prediction of project-specific health impacts, so only a qualitative analysis is conducted. However, Federal Highway Administration has identified the following three levels of analysis:

- Level 1: No analysis for projects with no potential for meaningful mobile source air toxic effects
- Level 2: Qualitative analysis for projects with low potential mobile source air toxic effects. Projects included in this category serve to improve operations of highway, transit, or freight without adding substantial new capacity.
- Level 3: Quantitative analysis for projects with higher potential mobile source air toxic effects. Projects included in this category would create or
significant alter a major intermodal freight facility with the potential to concentrate high levels of diesel particulate matter in a single location, or significantly increase capacity of urban highways with traffic volumes where the annual average daily traffic is projected to be 140,000 or greater by the design year.

A qualitative analysis (level 2) was conducted for the proposed project, which compared the anticipated effect of the project and the no-build alternative on traffic volumes and the associated changes in mobile source air toxic emissions. On the new SR 132 freeway/expressway, the annual average daily traffic would increase for the two build alternatives compared to the No-Build Alternative. Despite these shifts in future annual average daily traffic, overall vehicle miles traveled, which are a proxy for mobile source air toxics emissions, are projected to decrease as a result of the project. Although future SR 99 traffic within the project study area would exceed the 140,000 in annual daily traffic thresholds for a project with a high potential for mobile source air toxic effects, the two build alternatives would reduce the annual average daily traffic on SR 99 compared to the No-Build Alternative. Based on Federal Highway Administration guidance, the proposed project would not generate an appreciable difference in overall mobile source air toxic emissions and is therefore considered a project with low potential for mobile source air toxic effects.

Build Alternatives
The estimated vehicle miles traveled total for Alternative 1 is slightly lower than for the No-Build Alternative (see Table 2-40). The decrease relative to no-build conditions would lead to lower mobile source air toxic emissions under Alternative 1, particularly along existing SR 132 (Maze Boulevard) and SR 99. According to the U.S. Environmental Protection Agency’s model, emissions of every priority mobile source air toxic decrease as speed increases. Emissions would be further reduced under Alternative 1 from decreased delay times and improved level of service.

Emissions in 2020 would likely be lower than present emissions as a result of the U.S. Environmental Protection Agency’s national control programs, which are projected to reduce annual mobile source air toxic emissions. While local conditions may differ from the national projections in terms of fleet mix and turnover, vehicle miles traveled, growth rates, and local control measures, the magnitude of the U.S. Environmental Protection Agency-projected reductions is so great (even after accounting for vehicles miles traveled and growth rates) that mobile source air toxic emissions in the project study area are likely to be lower in the future.
The proposed new alignment would have the effect of moving some traffic closer to nearby homes, schools, and businesses. Therefore, there may be localized areas where ambient concentrations of mobile source air toxics could increase from existing levels under Alternative 1. However, the magnitude and the duration of these potential increases cannot be reliably quantified because of incomplete or unavailable information in forecasting project-specific mobile source air toxic health impacts. Toxics could be lower in other locations when traffic would be shifted away from a given location.

Mobile source air toxic emissions are estimated to be lower overall than if the project were not completed and would likely be lower than present emissions as a result of the U.S. Environmental Protection Agency’s national control programs. Therefore, no direct impacts would result from Alternative 1.

While mobile source air toxic emissions would occur as a result of future increases in vehicles miles traveled (Table 2-40), emissions are estimated to be lower than if the project were not completed and would likely be lower than present emissions as a result of the U.S. Environmental Protection Agency’s national control programs.

**Potential Exposure to Naturally Occurring Asbestos**

According to the California Department of Conservation’s *A General Location Guide for Ultramafic Rock in California*, there are no geologic features normally associated with naturally occurring asbestos (serpentine rock or ultramafic rock near fault zones) in or near the project study area. So, there is no potential for impacts related to naturally occurring asbestos emissions during construction activities. However, construction activities that involve the demolition of any building or structure containing asbestos would be subject to the U.S. Environmental Protection Agency’s National Emissions Standards for Hazardous Air Pollutants and the California Air Resource Board’s Airborne Toxic Control Measures.

**No-Build Alternative**

While mobile source air toxic emissions would occur as a result of future increases in vehicle miles traveled on the existing highway, emissions would be reduced from present levels as a result of the U.S. Environmental Protection Agency’s national control programs. Therefore, no impacts would result from the No-Build Alternative.
Avoidance, Minimization, and/or Mitigation Measures

No substantial air quality effects are anticipated as a result of construction and operation of the proposed project, as such no avoidance, minimization, and/or mitigation measures would be required.

Climate Change

Climate change is analyzed in Chapter 3, California Environmental Quality Act Evaluation. Neither the U.S. Environmental Protection Agency nor the Federal Highway Administration has issued explicit guidance or methods to conduct project-level greenhouse gas analysis. As stated on the Federal Highway Administration’s climate change website, climate change considerations should be integrated throughout the transportation decision-making process, from planning through project development and delivery. Addressing climate change mitigation and adaptation up front in the planning process would aid decision-making and improve efficiency at the program level, and would inform the analysis and stewardship needs of project-level decision-making. Climate change considerations can easily be integrated into many planning factors, such as supporting economic vitality and global efficiency, increasing safety and mobility, enhancing the environment, promoting energy conservation, and improving the quality of life.

Because there have been more requirements set forth in California legislation and executive orders on climate change, the issue is addressed in the CEQA chapter of this document and may be used to inform the NEPA decision. The four strategies set forth by the Federal Highway Administration to lessen climate change impacts correlate with efforts that the State has undertaken and is undertaking to address transportation and climate change; the strategies include improved transportation system efficiency, cleaner fuels, cleaner vehicles, and reduction in the growth of vehicle hours traveled.

2.2.7 Noise

Regulatory Setting

CEQA and NEPA provide the broad basis for analyzing and abating highway traffic noise effects. The intent of these laws is to promote the general welfare and to foster a healthy environment. The requirements for noise analysis and consideration of noise abatement and/or mitigation, however, differ between CEQA and NEPA.
California Environmental Quality Act
CEQA requires a strictly baseline-versus-build analysis to assess whether a proposed project would have a noise impact. If a proposed project is determined to have a significant noise impact under CEQA, then CEQA dictates that mitigation measures must be incorporated into the project unless those measures are not feasible. The rest of this section will focus on the NEPA 23 Code of Federal Regulations Part 772 noise analysis; see Chapter 3, California Environmental Quality Act Evaluation, for further information on noise analysis under CEQA.

National Environmental Policy Act and 23 Code of Federal Regulations 772
For highway transportation projects with Federal Highway Administration (and Caltrans, as assigned) involvement, the Federal-Aid Highway Act of 1970 and the associated implementing regulations (23 Code of Federal Regulations Part 772) govern the analysis and abatement of traffic noise impacts. The regulations require that potential noise impacts in areas of frequent human use be identified during the planning and design of a highway project. The regulations include noise abatement criteria that are used to determine when a noise impact would occur. The noise abatement criteria differ depending on the type of land use under analysis. For example, the noise abatement criterion for residences (67 A-weighted decibels) is lower than the noise abatement criterion for commercial areas (72 A-weighted decibels). Table 2-45 lists the noise abatement criteria for use in the NEPA 23 Code of Federal Regulations Part 772 analysis.
### Table 2-45: Noise Abatement Criteria

<table>
<thead>
<tr>
<th>Activity Category</th>
<th>Noise Abatement Criteria, Hourly A-Weighted Noise Level, Decibels $L_{eq}(h)$</th>
<th>Description of Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57 (Exterior)</td>
<td>Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.</td>
</tr>
<tr>
<td>B$^1$</td>
<td>67 (Exterior)</td>
<td>Residential.</td>
</tr>
<tr>
<td>C$^1$</td>
<td>67 (Exterior)</td>
<td>Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.</td>
</tr>
<tr>
<td>D</td>
<td>52 (Interior)</td>
<td>Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.</td>
</tr>
<tr>
<td>E$^1$</td>
<td>72 (Exterior)</td>
<td>Hotels, motels, offices, restaurants/bars, and other developed lands, properties, or activities not included in A to D or F.</td>
</tr>
<tr>
<td>F</td>
<td>No noise abatement criteria—reporting only</td>
<td>Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical, etc.), and warehousing.</td>
</tr>
<tr>
<td>G</td>
<td>No noise abatement criteria—reporting only</td>
<td>Undeveloped lands that are not permitted.</td>
</tr>
</tbody>
</table>

$^1$ Includes undeveloped lands permitted for this activity category.

*Source:* Noise Study Report (January 2016)

Figure 2-20 lists the noise levels of common activities to enable readers to compare the actual and predicted highway noise-levels discussed in this section with common activities.
According to Caltrans’ Traffic Noise Analysis Protocol for New Highway Construction and Reconstruction Projects, May 2011, a noise impact occurs when the predicted future noise level with the project substantially exceeds the existing noise level (defined as an increase of 12 A-weighted decibels or more) or when the future noise level with the project approaches or exceeds the noise abatement criteria. Approaching the noise abatement criteria is defined as coming within 1 A-weighted decibel of the noise abatement criteria. (A-weighted decibels are adjusted to approximate the way humans perceive sound.)

If it is determined that the proposed project would have noise impacts, then potential abatement measures must be considered. Noise abatement measures that are determined to be reasonable and feasible at the time of final design are incorporated.
into the project plans and specifications. This document discusses noise abatement measures that would likely be incorporated into the project.

Caltrans *Traffic Noise Analysis Protocol* sets forth the criteria for determining when an abatement measure is reasonable and feasible. Feasibility of noise abatement is basically an engineering concern. A minimum reduction of 7 A-weighted decibels in the future noise level must be achieved for at least one benefited receiver for an abatement measure to be considered feasible. Other considerations include topography, access requirements, other noise sources, and safety considerations. The reasonableness determination is basically a cost-benefit analysis. Factors used in determining whether a proposed noise abatement measure is reasonable include the residents’ acceptance and the cost per benefited residence.

**Affected Environment**


As shown in Figure 2-21, land uses in the project study area were grouped into numbered noise analysis areas. The noise analysis areas are based on land use density, with larger areas representing only a few land uses and smaller areas representing a higher number of land uses. Existing noise levels were documented through short- and long-term measurements at representative sites in the project area. Table 2-46 shows the nine noise analysis areas in terms of noise abatement criteria activity category and existing noise levels. The *State Route 132 Noise Study Report* provides more detailed information.
Page Intentionally Left Blank
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Figure 2-21: Noise Analysis Areas
### Table 2-46: Noise Analysis Areas

<table>
<thead>
<tr>
<th>Noise Analysis Area</th>
<th>Description of Noise Abatement Criteria Activity Category (Activity Category)</th>
<th>Existing Noise Walls/Berms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1</td>
<td>Single-family residences (B) and agricultural land uses (F)</td>
<td>None</td>
</tr>
<tr>
<td>Area 2</td>
<td>Single-family residences (B) and mix of agricultural land and commercial uses (F)</td>
<td>None</td>
</tr>
<tr>
<td>Area 3</td>
<td>Single-family and multi-family residential (B) and commercial retail (F)</td>
<td>Existing privacy walls approximately 6 feet in height</td>
</tr>
<tr>
<td>Area 4</td>
<td>High-density, single-family residential community (B) with associated schools, parks, and places of worship (C) and commercial and retail uses (F)</td>
<td>Existing noise barrier approximately 13 feet in height and existing earthen berm approximately 14 feet in height</td>
</tr>
<tr>
<td>Area 5</td>
<td>Single-family residences (B) and commercial and retail land uses (F)</td>
<td>None</td>
</tr>
<tr>
<td>Area 6</td>
<td>A hotel (E) and commercial and retail land uses (F)</td>
<td>None</td>
</tr>
<tr>
<td>Area 7</td>
<td>Single-family residences (B), restaurants (E), and commercial and industrial land uses (F)</td>
<td>None</td>
</tr>
<tr>
<td>Area 8</td>
<td>Single-family residences (B) and commercial and retail land uses (F)</td>
<td>None</td>
</tr>
<tr>
<td>Area 9</td>
<td>Single-family residences (B), playgrounds associated with schools and places of worship (C), and commercial uses (F)</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: Noise Study Report (January 2016)

### Environmental Consequences

Because the proposed project would result in a new highway on a new alignment and increase the number of through-traffic lanes, the proposed project would be considered a Type 1 project by the Federal Highway Administration. All Type 1 projects require noise impact analysis. For the proposed project, that applies to both build alternatives.

Short-term (15 minutes) and long-term (24 hours) noise measurements were conducted. Short-term monitoring was performed at 33 locations and results ranged from 45.0 Leq (equivalent sound level) to 76.1 Leq. Long-term monitoring was performed at three locations and results ranged from 49.7 to 68.2 Leq.
Traffic noise levels were modeled using Federal Highway Administration-approved Traffic Noise Model Version 2.5 software. Peak hour traffic volumes were used to model and compare baseline conditions in 2009 and design year (2048) conditions with and without the project. A traffic noise impact would occur when there is a 12 A-weighted decibel or more increase over baseline conditions or when noise levels would approach or exceed the noise abatement criteria.

Because the proposed project would be constructed on a new alignment where no highway currently exists, numerous receivers (locations representing land uses where frequent human activity occurs, such as residences) are predicted to be impacted. West of SR 99, the proposed new alignment would be close to receivers, resulting in higher traffic noise levels for nearby receivers (see Figures 2-22a through 2-22c). The State Route 132 Noise Study Report provides further detailed information, including results for each receiver evaluated.
Figure 2-22a: Receiver and Modeled Noise Barrier Locations (Western Portion of the Study Area)
Figure 2-22b: Receiver and Modeled Noise Barrier Locations (Central Portion of the Study Area)
Figure 2-22c: Receiver and Modeled Noise Barrier Locations (Eastern Portion of the Study Area)
Alternative 1
Table 2-47 shows the modeling results with predicted design year traffic noise levels for Alternative 1, which would result in noise impacts to 260 noise-sensitive receivers. Note that the “Both” category in the table lists instances when a substantial increase would occur and when levels would approach or exceed the noise abatement criteria. If a receiver falls within this category, it is counted only in the “Both” column.

Table 2-47: Predicted Future (2048) Noise Impacts of Alternative 1

<table>
<thead>
<tr>
<th>Area</th>
<th>Receiver Impact Counts</th>
<th>Total Receivers Impacted by Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approach or Exceed Noise Abatement Criteria&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Substantial Increase&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>91</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>221</td>
<td>9</td>
</tr>
</tbody>
</table>

<sup>a</sup> Approaching or exceeding the noise abatement criteria is defined as exceeding or coming within 1 A-weighted decibel of the noise abatement criteria.

<sup>b</sup> A substantial increase impact occurs when the predicted future noise level with the project substantially exceeds the existing noise level (defined as a 12 A-weighted decibel or more increase).

<sup>c</sup> The “Both” category notes when a substantial increase would occur and when levels would approach or exceed the noise abatement criteria. If a receiver falls within this category, it is counted only in the “Both” column.

Source: Noise Study Report (January 2016)

Alternative 2
Table 2-48 shows the modeling results with predicted design year traffic noise levels for Alternative 2, which would result in noise impacts to 276 noise-sensitive receivers.
Table 2-48: Predicted Future (2048) Noise Impacts of Alternative 2

<table>
<thead>
<tr>
<th>Area</th>
<th>Total Receivers Impacted by Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
</tr>
</tbody>
</table>

**Approach or Exceed Noise Abatement Criteria**

<table>
<thead>
<tr>
<th>Area</th>
<th>10</th>
<th>0</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>233</td>
<td>9</td>
<td>34</td>
</tr>
</tbody>
</table>

**Substantial Increase**

<table>
<thead>
<tr>
<th>Area</th>
<th>0</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

**Both**

<table>
<thead>
<tr>
<th>Area</th>
<th>0</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

**Source:** Noise Study Report (January 2016)

**No-Build Alternative**

The No-Build Alternative would not result in the construction of any of the proposed improvements, but there would still be noise impacts even without the project. Modeling results indicate that predicted traffic noise levels along existing SR 132 (Maze Boulevard) for the No-Build Alternative in 2048 would result in impacts to 162 noise-sensitive receivers (see the State Route 132 Noise Study Report, Appendix B for details). All noise impacts would be because of noise levels approaching or exceeding the noise abatement criteria.

**Noise Abatement Considered**

Noise barriers are the most common noise abatement measure. Each noise barrier considered (in this case, a soundwall) has been evaluated for feasibility based on constructability and an achievable noise reduction of at least 5 A-weighted decibels. For each noise barrier found to be acoustically feasible, the noise barriers were evaluated for reasonableness based on cost allowances and the noise reduction design goal of 7 A-weighted decibels at one or more benefitted receivers. At each location, barriers were modeled up to 16 feet tall. Table 2-49 provides the noise barrier analysis results for each build alternative.
### Table 2-49: Summary of Noise Barrier Analysis

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Location</th>
<th>Length (feet)</th>
<th>Height (feet)</th>
<th>Acoustically Feasible?</th>
<th>Noise Reduction Range</th>
<th>Number of Benefited Receivers</th>
<th>Total Reasonable Allowance</th>
<th>Estimated Construction Cost</th>
<th>Cost Less than Allowance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Alts 1 &amp; 2)</td>
<td>Existing SR 132 (Maze Blvd) West of Garrison Ave and area West of N Dakota Ave</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B (Alts 1 &amp; 2)</td>
<td>South of New SR 132, between N Dakota Ave and N Carpenter Road</td>
<td>3,921</td>
<td>16</td>
<td>No</td>
<td>0.2 – 5.1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C (Alts 1 &amp; 2)</td>
<td>North of New SR 132, between N Dakota Ave and N Carpenter Rd</td>
<td>8,591</td>
<td>16</td>
<td>Yes</td>
<td>0 – 6.1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D (Alt 1)</td>
<td>South of New SR 132, east of N Carpenter Rd, and West of SR 99, North of L St</td>
<td>6,390</td>
<td></td>
<td>Yes</td>
<td>0.3 – 8.1</td>
<td>29</td>
<td>$1,595,000</td>
<td>$3,711,312</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0.5 – 10.2</td>
<td>62</td>
<td>$3,410,000</td>
<td>$4,639,140</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0.5 – 11.4</td>
<td>90</td>
<td>$4,950,000</td>
<td>$5,566,968</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0.6 – 12.7</td>
<td>121</td>
<td>$6,655,000</td>
<td>$6,494,796</td>
<td>No</td>
</tr>
<tr>
<td>D (Alt 2)</td>
<td>South of New SR 132, east of N Carpenter Rd, and West of SR 99, North of L St</td>
<td>7,760</td>
<td></td>
<td>Yes</td>
<td>0.3 – 7.5</td>
<td>31</td>
<td>$1,705,000</td>
<td>$4,882,592</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0.4 – 13.2</td>
<td>77</td>
<td>$4,235,000</td>
<td>$6,103,240</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0.7 – 15.6</td>
<td>127</td>
<td>$6,985,000</td>
<td>$7,323,888</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>0.8 – 17.2</td>
<td>171</td>
<td>$9,405,000</td>
<td>$8,544,536</td>
<td>Yes</td>
</tr>
<tr>
<td>E (Alts 1 &amp; 2)</td>
<td>North of New SR 132, between N Carpenter Rd and N Emerald Ave</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>F (Alt 1)</td>
<td>North of New SR 132, between N Emerald Ave and SR 99</td>
<td>888</td>
<td>16</td>
<td>No</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>F (Alt 2)</td>
<td>North of New SR 132, between N Emerald Ave and SR 99</td>
<td>595</td>
<td>16</td>
<td>No</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>G (Alts 1 &amp; 2)</td>
<td>East of SR 99, between northern project terminus and L St</td>
<td>1,103</td>
<td>16</td>
<td>No</td>
<td>1.3 – 4.9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes: Alt = Alternative; N/A = not applicable as the noise barrier would not be feasible because of access requirements. **Bolded text** signifies the noise barriers considered reasonable and feasible for traffic noise abatement and, therefore, these barriers are recommended.

a The range is in A-weighted decibels.

b In Phase 1, a portion of Noise Barrier D would be constructed from Carpenter Road to SR 99 under either build alternative. The other section would be constructed in Phase 2 along SR 99. There is an existing noise barrier along SR 99 that would tie into the proposed noise barrier along the new alignment in Phase 2.

Source: Noise Study Report (January 2016)
In Noise Analysis Areas 1, 2, 5, 8, and 9, impacted receivers would require driveway access to local roadways. Openings in noise barriers for driveways or intersecting streets reduce the effectiveness of barriers, making the noise barriers acoustically infeasible. In addition, for Noise Analysis Areas 3, 6, 7, the noise barriers do not meet the minimum 5 dB of noise reduction. Therefore, noise barriers are not considered to be feasible noise abatement options for receivers in these areas.

Because of the configuration and location of the project, noise barriers were the only feasible measure considered. Noise barrier reasonableness was determined by comparing the estimated cost of building the noise barrier against the total reasonable allowance. The engineer’s cost estimate includes costs required to construct the noise barrier, including the materials for the wall in addition to the foundation (safety barrier or piles) on which the noise barriers would be constructed. Wall construction costs were based on masonry construction, in accordance with Caltrans’ standard specifications.

The design of the noise barriers presented is only preliminary and has been conducted at a level appropriate for environmental review, but not for final design of the project. The opinions expressed by affected residents during the environmental review process would be a major consideration in reaching a final decision on the reasonableness of abatement measures to be provided.

Approximately 295 receptors within Area 4 represent noise sensitive receptors located north of L Street, east of North Carpenter Road, south of the proposed SR 132 expressway alignment, and west of SR 99 in Stanislaus County. Measurements taken in Area 4 show that the existing noise levels range from 46 decibels to 67 decibels. The future noise levels in Area 4 with the project are predicted to range from 57 decibels to 80 decibels for both Alternatives 1 and 2. Because the predicted future noise level exceeds the NAC for residential uses (67 decibels), approximately 123 and 139 noise sensitive receptors (out of a total of 295 receptors) represented in Area 4 would be adversely affected by noise as a result of Alternatives 1 and 2, respectively. To achieve a 5 decibels reduction and a design goal of 7 decibels for at least 1 receptor, a 14 foot noise wall would be needed. If the total cost of the wall at this location is less than the total cost allowance, then the wall would likely be incorporated into the project. The total cost allowance, calculated as directed by Caltrans Traffic Noise Analysis Protocol, is $175,000. The current estimated cost of the wall is $6,494,796 for Alternative 1 and $8,544,536 for Alternative 2. Based on the studies completed to date, Caltrans intends to incorporate noise abatement in the form of a barrier (i.e., Noise Barrier D) on the south side of the proposed new alignment and east of North
Carpenter Road continuing on the west side of the frontage road along SR 99 between the proposed SR 132/SR 99 interchange and the L Street crossing (see Figures 2-22b and 2-22c).

The barrier for Alternative 1 would be approximately 6,390 feet long with an average height of 14 feet. Calculations based on preliminary design data show that the barrier would reduce noise levels by 5 to 13 decibels (7 decibels for at least one receptor) for 121 residences at a cost of $6,494,796. The barrier for Alternative 2 would be approximately 7,760 feet long with an average height of 14 feet. Calculations based on preliminary design data show that the barrier would reduce noise levels by 5 to 17 decibels (7 decibels for at least one receptor) for 171 residences at a cost of $8,544,536.

In Phase 1, a portion of Noise Barrier D would be constructed along the proposed new alignment under either build alternative. The other section of the proposed barrier would be constructed in Phase 2 along SR 99. There is an existing noise barrier along SR 99 that would tie into the proposed noise barrier along the new alignment in Phase 2. Therefore, the noise barriers would provide attenuation in the interim between Phase 1 and Phase 2.

If during final design conditions have substantially changed, noise abatement may not be necessary. The final decision on noise abatement would be made upon completion of the project design and the public involvement processes.

Construction Impacts

Noise from construction activities may be short term and temporarily dominate the noise environment in the immediate area of construction. Construction noise is regulated by Caltrans Standard Specifications Section 14-8, “Sound Control Requirements,” which states that noise levels generated during construction must comply with applicable local, state, and federal regulations and that all equipment must be fitted with adequate mufflers according to the manufacturers’ specifications.

Noise levels from demolition and construction activities would vary depending on the activity periods, location of activities, and the number and types of equipment used. Construction activities would generate noise from diesel-powered earthmoving equipment, such as dump trucks and bulldozers, back-up alarms on certain equipment, and pile drivers.

Table 2-50 shows the noise levels produced by construction equipment commonly used on roadway construction projects. Construction equipment is expected to generate noise levels ranging from 70 to 101 decibels at a distance of 50 feet, and noise produced by construction equipment would be reduced over distance at a rate of about 6 decibels per doubling of distance.
Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-50: Construction Equipment Noise Levels

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Maximum Noise Level (A-weighted decibels at 50 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrapers</td>
<td>84</td>
</tr>
<tr>
<td>Bulldozers</td>
<td>82</td>
</tr>
<tr>
<td>Dump Truck</td>
<td>76</td>
</tr>
<tr>
<td>Backhoe</td>
<td>78</td>
</tr>
<tr>
<td>Pneumatic Tools</td>
<td>85</td>
</tr>
<tr>
<td>Concrete Pump Truck</td>
<td>81</td>
</tr>
<tr>
<td>Compactor</td>
<td>83</td>
</tr>
<tr>
<td>Concrete Batch Plant</td>
<td>83</td>
</tr>
<tr>
<td>Crane</td>
<td>81</td>
</tr>
<tr>
<td>Excavator</td>
<td>81</td>
</tr>
<tr>
<td>Front End Loader</td>
<td>79</td>
</tr>
<tr>
<td>Jack Hammer</td>
<td>89</td>
</tr>
<tr>
<td>Grader</td>
<td>85</td>
</tr>
<tr>
<td>Hydraulic Brake Ram</td>
<td>90</td>
</tr>
<tr>
<td>Impact Pile Driver</td>
<td>95</td>
</tr>
<tr>
<td>Pile Driving</td>
<td>101</td>
</tr>
</tbody>
</table>

Source: Noise Study Report (January 2016)

Construction noise at offsite receptor locations would depend on the loudest piece of equipment operating at the moment. Most noise sensitive receptors identified for the project and those most affected by construction noise sit north of the new SR 132 alignment and Kansas Avenue between Morse Road and North Carpenter Road, south of the proposed new SR 132 alignment between Carpenter Road and SR 99, and west of SR 99. However, for the receptors west of SR 99, construction noise is anticipated to be overshadowed by SR 99 traffic noise.

Construction is expected to last about 24 to 30 months. Construction activities would be temporary and occur mostly during normal daytime hours. Stanislaus County’s noise ordinance exempts construction activities during the hours of 7:00 a.m. to 7:00 p.m. with a sound level threshold not to exceed 75 dB. If construction activities exceed the sound level threshold specified in the noise ordinance, coordination with the County would be required, including potential measures to reduce noise levels to maximum thresholds. Some construction activities may require limited work during nighttime hours. A variance or waiver would be required from the County before starting construction activities during nighttime hours.

Standard best management practices to be implemented during construction include:
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

- The contractor would ensure that all construction equipment would have sound-control devices that are no less effective than those provided on the original equipment. No equipment would have an un-muffled exhaust.

- The contractor would implement appropriate additional noise control measures, where feasible, including changing the location of stationary construction equipment away from noise-sensitive receivers, turning off idling equipment, scheduling construction activity to workday hours, notifying adjacent residents in advance of construction work, and installing noise blankets or other muffling devices on stationary construction noise sources.

The noise levels presented represent maximum noise levels adjusted for time-usage factors and would not be experienced as continuous noise emissions. Construction equipment use would be intermittent throughout a normal workday. Therefore, noise levels generated from construction equipment would not be cumulative.

No adverse noise impacts from construction are anticipated because construction would be conducted in accordance with Caltrans Standard Specifications Section 14-8 and applicable local noise standards.

Avoidance, Minimization, and/or Abatement Measures
No substantial noise effects are anticipated as a result of construction and operation of the proposed project, as such no avoidance, minimization, and/or mitigation measures would be required.

2.2.8 Energy

Regulatory Setting
NEPA (42 U.S. Code 4332) requires the identification of all potentially significant impacts to the environment, including energy impacts.

CEQA Guidelines, Appendix F, Energy Conservation, state that EIRs are required to include a discussion of the potential energy impacts of proposed projects, with particular emphasis on avoiding or reducing inefficient, wasteful, and unnecessary consumption of energy.

Affected Environment
Establishing the affected environment for energy involves presenting general statewide energy trends and how the project study area is currently used as a transportation corridor.
In 2012, Californians consumed approximately 43 percent less energy per person than the average person in the U.S. and California’s per person energy consumption is the second lowest in the country. However, while per capita consumption is low, the state’s overall consumption of energy (in the form of electricity, coal, natural gas, and petroleum) is the second highest in the U.S. because of California’s population and economy.

Because California is one of the top oil-producing states in the U.S., the state has historically met a large portion of its internal energy demands through its in-state sources. However, demand for resources has risen steadily over the past decades, while production capacity and extraction volume have decreased. The declining supply of in-state petroleum products, coupled with increasing demand, has resulted in an increased need for imported oil resources. According to the California Energy Commission, California’s reliance on crude oil imports would increase from 405 million barrels in 2005 to between 585 million (low forecast) and 685 million (high forecast) barrels in 2025.

Within the project study area, existing SR 132 (Maze Boulevard) is part of the regional expressway system and is the main east-west corridor in Stanislaus County. The existing highway and the SR 132/SR 99 connection under evaluation are of particular importance to regional and interregional circulation because of the extensive farm-to-market, recreational, and other commerce-related travel on the highway daily. The current average daily traffic volumes for this segment of SR 132 (Maze Boulevard) range between 10,230 and 12,400 vehicles, of which 21 percent of the total traffic is trucks. (Section 2.1.6, Traffic and Transportation/Pedestrian and Bicycle Facilities, provides further information on the traffic data for the study area.)

**Environmental Consequences**

Impacts to energy use were evaluated based on traffic operations (such as vehicle hours of travel and vehicle hours of delay), local roadway and freeway/highway congestion, vehicle miles of travel, and construction and future maintenance activities.

**Build Alternatives**

The two build alternatives would improve travel conditions and reduce energy use through capacity and operational improvements in 2020 (completion of Phase 1) and 2028 (completion of Phase 2). The number of intersections projected to operate at level of service D or worse compared to the No-Build Alternative conditions would be reduced by more than half, with speeds and energy efficiency increasing during the peak periods on local roadways throughout the study area. Both build alternatives would also improve average travel speeds,
which would reduce travel times during the peak periods and increase energy efficiency on area roadways.

As shown in Table 2-51, when compared to the No-Build Alternative, the two build alternatives would cut total vehicle travel times between 450 and 640 hours, or 0.98 and 1.40 percent for the central Modesto area in 2028. By 2048 (the design year), total vehicle travel time would be reduced by 1,970 hours or 2.84 percent for both build alternatives compared to the No-Build Alternative.

Table 2-51: Vehicle Hours of Travel and Delay by Alternative for the Central Modesto Areaa

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Daily Vehicle Hours of Travel</th>
<th>Daily Vehicle Hours of Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2028</td>
<td>2048</td>
</tr>
<tr>
<td>No-Build Alternative</td>
<td>45,830</td>
<td>69,450</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>45,380</td>
<td>67,480</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>45,190</td>
<td>67,480</td>
</tr>
</tbody>
</table>

a This section of Modesto extends from just north of Kiernan Avenue to Whitmore Avenue and from Claus Road on the east to Hart Road on the west. Source: Final Traffic Operations Analysis Report (July 2012)

Similarly, total vehicle delay would decrease between 150 and 160 hours, or 2.35 and 2.51 percent, in 2028. By 2048, total vehicle delay would be cut by 260 to 500 hours, or 1.91 and 3.67 percent, when compared to the No-Build Alternative.

The two build alternatives would also improve traffic operations, thereby easing congestion at some of the bottleneck areas along Carpenter Road at existing SR 132 (Maze Boulevard), Kansas Avenue, and SR 99. Both build alternatives would also improve traffic operations by encouraging motorists to use the new alignment for east-west travel, leaving local roads for short trips and allowing SR 99 to accommodate long-distance travel. Improvements associated with both build alternatives would allow traffic on the regional roadway network to travel faster, thereby reducing energy consumption.

Energy in the form of fuel consumed by a vehicle is directly proportional to the number of miles a vehicle travels. Table 2-52 shows that in 2028 the total vehicle miles traveled in the study area would decrease slightly (between 9,080 and 16,270 total miles, or 0.71 and 1.28 percent) for the two build alternatives compared to the No-Build Alternative. Larger decreases (between 46,500 and 61,260 total miles per day, or 2.58 and 3.42 percent) are predicted in 2048.
As shown, when balancing energy used against energy saved by relieving congestion and other transportation inefficiencies, neither build alternative would have substantial operational energy impacts.

Energy would also be needed for construction in the form of raw materials and equipment used to build the new highway. The build alternatives would require energy for onsite construction work, such as grading and bridge construction, and for offsite manufacturing of pavement and bridge components. Roadway maintenance (such as resurfacing and patching) would also require energy. The additional energy use would be consumed in the short term by construction equipment required to build the project and by added congestion caused by construction-related traffic delays.

Energy consumption during construction would be mainly from petroleum fuels and electricity use. Fuel would be needed for vehicles and construction equipment, as well as to run electrical generators for lighting, welding machines, and power tools. Fuel would also be consumed during the production and transport of raw materials. Therefore, construction-related activities would result in a permanent consumption of finite energy resources. However, construction would consist of temporary activities that would not result in long-term demand for energy. The following standard best management practices would be employed to minimize energy usage:

- The contractor would consolidate material delivery whenever possible to promote efficient vehicle and energy use. The contractor would schedule material deliveries during non-rush hours to minimize fuel lost during traffic congestion.

- The contractor would maintain equipment and machinery in good working condition and inspect it regularly. Inspection records would be maintained by the contractor.
• Operators would avoid leaving equipment and vehicles idling when parked or not in use.

• Equipment found operating on the project that has not been inspected or has oil leaks would be shut down and subject to citation.

• The contractor would implement, to the extent feasible, the following measures to reduce greenhouse gas emissions from construction equipment:
  o Use alternative-fueled (e.g., biodiesel and electric) construction vehicles/equipment, comprising at least 15 percent of the fleet
  o Use at least 10 percent local building materials during construction
  o Recycle at least 50 percent of construction waste or demolition materials

Overall, when balancing energy used during construction against energy saved by relieving congestion and other transportation inefficiencies, neither build alternative would have substantial construction-related energy impacts.

**No-Build Alternative**
Because total vehicle hours, total vehicle delay, and total vehicle miles traveled in the Modesto area would be greater under the No-Build Alternative, there would be a direct impact on energy use as a result of future traffic operations. The excessive volume of traffic that existing SR 132 (Maze Boulevard) would not be able to accommodate would be diverted onto other local roadways, such as Kansas Avenue and Carpenter Road. This would result in unacceptable operations on those roadways and an increased use of energy due to inefficient travel. The No-Build Alternative would not result in the construction of any of the proposed improvements that would relieve congestion or other transportation inefficiencies. Therefore, there would be adverse impacts related to energy consumption under the No-Build Alternative.

**Avoidance, Minimization, and/or Mitigation Measures**
Construction and operation of the proposed project is not anticipated to result in a substantial increase in energy usage; as such no avoidance, minimization, and/or mitigation measures would be required.
2.3 Biological Environment

2.3.1 Wetlands and Other Waters

Regulatory Setting
Wetlands and other waters are protected under a number of laws and regulations. At the federal level, the Federal Water Pollution Control Act, more commonly referred to as the Clean Water Act (33 U.S. Code 1344), is the main law regulating wetlands and surface waters. One purpose of the Clean Water Act is to regulate the discharge of dredged or fill material into waters of the U.S., including wetlands. Waters of the U.S. include navigable waters, interstate waters, territorial seas and other waters that may be used in interstate or foreign commerce. To classify wetlands for the purposes of the Clean Water Act, a three-parameter approach is used that includes the presence of: hydrophytic (water-loving) vegetation, wetland hydrology, and hydric soils (soils formed during saturation/inundation). All three parameters must be present, under normal circumstances, for an area to be designated as a jurisdictional wetland under the Clean Water Act.

Section 404 of the Clean Water Act establishes a regulatory program that provides that discharge of dredged or fill material cannot be permitted if a practicable alternative exists that is less damaging to the aquatic environment or if the nation’s waters would be significantly degraded. The Section 404 permit program is run by the U.S. Army Corps of Engineers with oversight by the U.S. Environmental Protection Agency.

The U.S. Army Corps of Engineers issues two types of 404 permits: General and Standard permits. There are two types of General permits: Regional permits and Nationwide permits. Regional permits are issued for a general category of activities when they are similar in nature and cause minimal environmental effect. Nationwide permits are issued to allow a variety of minor project activities with no more than minimal effects.

Ordinarily, projects that do not meet the criteria for a Nationwide Permit may be permitted under one of U.S. Army Corps of Engineers’ Standard permits. There are two types of Standard permits: Individual permits and Letters of Permission. For Standard permits, the U.S. Army Corps of Engineers decision to approve is based on compliance with U.S. Environmental Protection Agency’s Section 404(b)(1) Guidelines (Environmental Protection Agency 40 Code of Federal Regulations Part 230), and whether permit approval is in the public interest. The 404 (b)(1) Guidelines (guidelines) were developed by the U.S. Environmental Protection Agency in conjunction with the U.S. Army Corps of Engineers and allow the discharge of dredged or fill material into the aquatic system (waters of the U.S.) only if there is no practicable alternative that would have less adverse effects. The guidelines
state that the U.S. Army Corps of Engineers may not issue a permit if there is a least environmentally damaging practicable alternative to the proposed discharge that would have lesser effects on waters of the U.S. and not have any other significant adverse environmental consequences.

The Executive Order for the Protection of Wetlands (Executive Order 11990) also regulates the activities of federal agencies with regard to wetlands. Essentially, this order states that a federal agency, such as the Federal Highway Administration and/or Caltrans, as assigned, cannot undertake or provide assistance for new construction located in wetlands unless the head of the agency finds: 1) that there is no practicable alternative to the construction and 2) the proposed project includes all practicable measures to minimize harm.

At the state level, wetlands and waters are regulated mainly by the State Water Resources Control Board, the Regional Water Quality Control Board, and the California Department of Fish and Wildlife. In certain circumstances, the Coastal Commission (or Bay Conservation and Development Commission or the Tahoe Regional Planning Agency) may also be involved. Sections 1600-1607 of the California Fish and Game Code require any agency that proposes a project that would substantially divert or obstruct the natural flow of or substantially change the bed or bank of a river, stream, or lake to notify the California Department of Fish and Wildlife before beginning construction. If the California Department of Fish and Wildlife determines that the project may substantially and adversely affect fish or wildlife resources, a Lake or Streambed Alteration Agreement would be required. The California Department of Fish and Wildlife jurisdictional limits are usually defined by the tops of the stream or lake banks, or the outer edge of riparian vegetation, whichever is wider. Wetlands under jurisdiction of the U.S. Army Corps of Engineers may or may not be included in the area covered by a Streambed Alteration Agreement obtained from the California Department of Fish and Wildlife.

The Regional Water Quality Control Boards were established under the Porter-Cologne Water Quality Control Act to oversee water quality. Discharges under the Porter-Cologne Act are permitted by Waste Discharge Requirements and may be required even when the discharge is already permitted or exempt under the Clean Water Act. In compliance with Section 401 of the Clean Water Act, the Regional Water Quality Control Boards also issue water quality certifications for activities that may result in a discharge to waters of the U.S. This is most frequently required in tandem with a Section 404 permit request. See Section 2.2.2, Water Quality, for more details.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

**Affected Environment**

The following section is based on the *State Route 132 West Freeway/Expressway Natural Environment Study*, completed in October 2016 and a Wetlands Determination and Delineation of Waters of the U.S. Report was completed in May 2011, which is included in the Natural Environment Study. A re-verification of the jurisdictional determination was issued by the US Army Corps of Engineers on May 26, 2015.

As shown in Figure 2-23, the project study area includes two wetland features (labeled as Seasonal Wetlands 1 and 2) and one irrigation canal (Modesto Irrigation District’s Lateral Canal No. 4). Seasonal Wetlands 1 and 2 are wet pastures that do not meet the definition of a water of the U.S. because each is isolated, is solely supported by human-made hydrology, and/or does not contain hydric soils. However, Seasonal Wetlands 1 and 2 may be waters of the state under the jurisdiction of the Central Valley Regional Water Quality Control Board.

Seasonal Wetlands 1 and 2 have hydrology supported by flood irrigation pipes and are found in grazed pastures leased in the Caltrans right-of-way west of North Carpenter Road; they provide low-quality habitat for wildlife because each wetland is highly disturbed from flood irrigation and grazing. In sum, the seasonal wetland features total 0.65 acre.

The canal was verified as a jurisdictional water of the U.S. The canal is a 50-foot-wide, concrete-lined irrigation canal that flows mostly southwest to northeast outside of the study area. The canal bisects the study area north of the Martin Luther King Drive and Laurel Avenue intersection and extends under SR 99 for approximately 500 feet, until it reaches the eastern side of SR 99, south of the Needham Street overcrossing. The canal functions to provide irrigation water to agricultural land and eventually discharges into the Stanislaus River west of the project study area.
Environmental Consequences

Build Alternatives

Construction of the proposed project would directly impact the seasonal wetlands, which may be regulated by the Central Valley Regional Water Quality Control Board, as non-waters of the U.S. This would be determined by the Central Valley Regional Water Quality Control Board during the final design and permitting phase. Both build alternatives would have the same impacts because the project’s design would be the same throughout the portion of the study area where the two seasonal wetlands are located. Removal or disturbance of the wetland features is not anticipated to result in a reduction in wildlife habitat quality within the study area because of the poor condition of the wetlands. Both build alternatives would result in permanent and direct impacts to 0.65 acre of seasonal wetlands, or non-waters of the U.S.; however, no indirect or direct impacts to wetlands or “other waters”, pursuant to the jurisdiction of the U.S. Army Corps of Engineers, would occur under either build alternative (Table 2-53).
No temporary or indirect impacts are anticipated to non-waters of the U.S. or waters of the U.S., as no other seasonal wetlands were identified within the study area.

<table>
<thead>
<tr>
<th>Build Alternative</th>
<th>Wetland Feature</th>
<th>Season Wetland 1(^a)</th>
<th>Season Wetland 2(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1</td>
<td></td>
<td>0.17 acre</td>
<td>0.48 acre</td>
</tr>
<tr>
<td>Alternative 2</td>
<td></td>
<td>0.17 acre</td>
<td>0.48 acre</td>
</tr>
</tbody>
</table>

\(^a\) Under the potential jurisdiction of the Regional Water Quality Control Board.

*Notes:* There are no indirect impacts to wetlands or direct impacts to “other waters” in the project study area.
*Source:* Natural Environment Study (October 2016)

Neither build alternative would directly or indirectly impact the canal. The proposed project would result in the removal and replacement of an existing detention basin, which is connected to the canal. The new detention facility, which would consist of three connected basins, would be constructed northwest of the canal. The new basins would serve to retain the stormwater runoff that would infiltrate into the ground, and the basins would not discharge into the canal. No adverse impacts to the canal are anticipated as a result of the new basins. An approved jurisdictional determination was issued by the U.S. Army Corps of Engineers on July 29, 2011 (402 permit file number SPK-2010-01481), and a re-verification of the jurisdictional determination was issued on May 26, 2015 to confirm the U.S. Army Corps of Engineers’ agreement with Caltrans removal of SW4X as a wetland. The feature was delineated in 2011; however, during surveys conducted in 2015, the feature was observed as regraded and filled and thus was no longer subject to Army Corps of Engineers’ jurisdiction.

*No-Build Alternative*

The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not contribute to direct or indirect impacts related to wetlands or “other” waters.

*Agency Coordination and Permits*

Caltrans staff coordinated with U.S. Army Corps of Engineers staff in January 2011 to conduct field verification in support of a jurisdictional determination. Additional data was requested by the U.S. Army Corps of Engineers and was provided on May 5, 2011 and June 21, 2011. The jurisdictional determination was verified on July 29, 2011 and again on May 26, 2015 in response to a change in field conditions in which a seasonal wetland had been...
removed and was no longer present. To date, no consultation with the California Department of Fish and Wildlife has occurred.

**Clean Water Act, Section 404**
The proposed project would not result in the deposition of dredge or fill material within waters of the U.S. Therefore, no Clean Water Act Section 404 permit would be required.

**Clean Water Act, Section 401**
The proposed project would not result in the deposition of dredge or fill material within waters of the U.S. Therefore, no Clean Water Act Section 401 permit would be required.

**Porter-Cologne Water Quality Control Act**
The two seasonal wetlands may be considered waters of the state and protected under the Porter-Cologne Water Quality Control Act. If it is determined that these features are waters of the state, then a Regional Water Quality Control Board permit would be required to authorize the discharge of fill material to these seasonal wetlands.

**Avoidance, Minimization, and/or Mitigation Measures**
In order to minimize erosion and the resulting influx of fine sediments into the canal, Standard best management practices described in Section 2.2.2, Water Quality shall be implemented, which would include the preparation of a Stormwater Pollution Prevention Plan.

Implementation of the following measures would mitigate direct impacts on non-waters of the U.S. should the seasonal wetlands be determined to be waters of the State:

**WET-1** Caltrans will consult with the Central Valley Regional Water Quality Board during the final design and permitting phase. If the seasonal wetland features are determined to be waters of the State, Caltrans will mitigate for their discharge and fill as directed by the Central Valley Regional Water Quality Board under the Porter Cologne Water Quality Control Act.

### 2.3.2 Animal Species

**Regulatory Setting**
Many state and federal laws regulate impacts to wildlife. The U.S. Fish and Wildlife Service and the California Department of Fish and Wildlife are responsible for implementing these laws. This section discusses potential impacts and permit requirements associated with animals not listed or proposed for listing under the federal or state Endangered Species Act.
Species listed or proposed for listing as threatened or endangered are discussed in Section 2.3.3, Threatened and Endangered Species. All other special-status animal species are discussed here, including California Department of Fish and Wildlife fully protected species and species of special concern, and U.S. Fish and Wildlife Service candidate species.

Federal laws and regulations relevant to wildlife include the following:

- NEPA
- Migratory Bird Treaty Act
- Fish and Wildlife Coordination Act

State laws and regulations relevant to wildlife include the following:

- CEQA
- Sections 1600–1603 of the California Fish and Game Code
- Sections 4150–4152 of the California Fish and Game Code

**Affected Environment**

The following section is based on the State Route 132 West Freeway/Expressway Natural Environment Study, completed in October 2016.

The proposed project study area is extremely disturbed because of agricultural practices, land development, and previous construction activities. There are no remnant natural communities in the study area, and most of the study area consists of agricultural lands, residential and commercial development, and highly disturbed ruderal vegetated sites.

Although the vegetated areas in the project study area are highly disturbed and frequently manipulated, common animal and wildlife species were observed. Mammals including ground squirrels and raccoons were identified in the disturbed/ruderal areas and along the edges of the orchards in the study area. Bird species observed during the field surveys included the red-tailed hawk, Cooper’s hawk, western bluebird, killdeer, house finch, robin, Audubon’s warbler, western kingbird, and lesser yellow legs.

Data from the California Department of Fish and Wildlife’s California Natural Diversity Database (CNDDB) were reviewed to identify all special-status animal species that occur or have the potential to occur in the study area (see Figure 2-24). Table 2-54 shows the status and general habitat requirements of the special-status animal species identified.
Chapter 2 • Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures

Table 2-54: Special-Status Animal Species with Potential to Occur in the Study Area

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common Name</th>
<th>Status(^a)</th>
<th>Habitat</th>
<th>Habitat Present/(^b)</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Athene cunicularia</em></td>
<td>Burrowing owl</td>
<td>SC</td>
<td>Open, dry annual or perennial grasslands, deserts, and scrublands</td>
<td>Present</td>
<td>Marginal suitable habitat is present in the study area. Species not observed during burrow survey.</td>
</tr>
<tr>
<td>Migratory Birds</td>
<td>MBTA</td>
<td>Various</td>
<td>Present</td>
<td></td>
<td>Migratory birds were observed, including: red-tailed hawk, Cooper’s hawk, western bluebird, killdeer, house finch, American robin, yellow-rumped warbler, western kingbird, lesser yellow legs.</td>
</tr>
</tbody>
</table>

\(^a\) Status Codes: SC = State species of concern (California Department of Fish and Wildlife), MBTA = Migratory Bird Treaty Act.

\(^b\) Present: Habitat is, or may be, present. The species may be present.

*Source: Natural Environment Study (October 2016)*

After analysis of the identified special-status species’ habitat requirements and completion of field reconnaissance surveys, it was determined that the only special-status species with a potential to occur in the study area are the burrowing owl and migratory birds.

**Burrowing Owl**

Burrowing owls (*Athene cunicularia*) are listed as a California Species of Special Concern. Burrowing owl nesting habitat consists of open areas with mammal burrows and includes dry open rolling hills, grasslands, fallow fields, sparsely vegetated desert scrub with gullies, washes, arroyos, and edges of human-disturbed lands. Burrowing owls typically inhabit golf courses, airports, cemeteries, vacant lots, and road embankments where there is non-compacted soil for a nesting burrow. Threats to burrowing owls include habitat loss and degradation from rapid urbanization of farmland, extermination of ground squirrels that create the burrows that the burrowing owls occupy, dissection of farmland, and road and ditch maintenance.

A burrowing owl habitat assessment (Phase I) and burrow survey (Phase II) were conducted within the proposed project limits on February 9 and 14, and March 30, 2011 as well as on February 12, 2014 by Misha Seguin and Phillip Peters, Environmental Scientists with Jacobs. No burrowing owl or any signs of burrowing owls (such as whitewash and feathers) were observed during the surveys, nor were any burrowing owls observed during previous biological surveys conducted in the spring, summer, and fall of 2010.
Because of the presence of mammal burrows in low-growing vegetated areas or in bare ground, and because one burrowing owl occurrence has been recorded within a 5-mile radius of the study area, there is potential habitat in the study area. Several mammal burrows were identified during the burrowing owl survey.

Burrows (potential habitat) were found in the following land cover types: non-native grassland, short ruderal vegetation, bare ground, agricultural access roads, levees, and crop and pasture lands. Land cover types that were considered to be unsuitable habitat and where no burrows were identified include tall disturbed ruderal vegetation, established orchards, landscaped roadsides found along SR 99, roadways, and developed areas. These land cover types were determined to be unsuitable because of the presence of dense and tall vegetation, observation of dogs and feral cats, pesticide/herbicide use, and/or the proximity to SR 99 shoulders that are actively mowed and managed.
Figure 2-24: Threatened, Endangered, and Other Special-status Species’ Occurrences Reported within a 5-mile Radius of the Study Area
Potential habitat was mapped and calculated by drawing a 300-foot-radius buffer zone, equal to 6.5 acres of foraging habitat, around each identified burrow found within the study area. Burrows were mapped in the larger burrowing owl study area; however, only burrows and foraging habitat within the construction footprint were included in determining the potential habitat impacts. As a result, approximately 21.8 acres of suitable habitat were identified in the study area. The potential habitat is fragmented throughout the study area.

**Migratory Birds**

The study area contains 713 trees that may provide potential nesting habitat for birds protected under the Migratory Bird Treaty Act. The following bird species protected under the Migratory Bird Treaty Act were observed during field surveys conducted in 2010 and 2014.

- red-tailed hawk (*Buteo jamaicensis*)
- Cooper’s hawk (*Accipter cooperii*)
- western bluebird (*Sialia mexicana*)
- killdeer (*Charadrius vociferous*)
- house finch (*Haemorhous mexicanus*)
- American robin (*Turdus migratorius*)
- yellow-rumped warbler (*Setophaga coronata*)
- western kingbird (*Tyrannus verticalis*)
- lesser yellow legs (*Tringa flavipes*)

These birds may forage and/or nest in non-native grassland or other vegetation communities within or next to the study area.

**Environmental Consequences**

**Build Alternatives: Burrowing Owls**

Both build alternatives have the potential to directly and permanently affect up to 20.8 acres and temporarily affect up to 0.2 acre of burrowing owl habitat. Construction of the proposed new alignment would include grading and ground compaction and construction-related activities (noise, disturbance, ground vibrations, and dust) that may directly affect burrowing owls because of the removal of potential nesting and foraging habitat and because of an increase in human-related disturbance in the study area. Continued human-related disturbances, including noise and an increase in traffic after construction, may indirectly affect burrowing owls as well.
Highway operations would be a permanent impact, while disruptions from construction activities would be temporary. Implementation of measure AS-1 (explained below) would minimize potential impacts to burrowing owls during construction.

Protocol-level (Phase III) burrowing owl census surveys were not conducted as part of the Natural Environment Study but will be conducted preceding the initiation of construction (i.e., the nesting and winter season before construction begins). A negative finding for burrowing owl after protocol level surveys would negate the current assumption that burrowing owl habitat is present in the biological study area. If burrowing owls are identified during surveys, the habitat area would be refined, and therefore, the total acreage of impacts to burrowing owl may change substantially. If impacts to burrows are unavoidable, a burrow exclusion plan would be prepared and submitted to CDFW per the 2012 Staff Report on Burrowing Owl Mitigation. Burrowing owls would be excluded from their burrows once owlets have fledged and per approved burrow exclusion methods. Implementation of measure AS-1 (explained below) would minimize permanent impacts to burrowing owls.

**Build Alternatives: Migratory Birds**

Removal of trees, shrubs and other vegetation, operation of the roadway, and construction-related activities (noise, disturbance, ground vibrations, and dust) may directly affect migratory birds because of the possible loss of nests and associated eggs and/or nestlings and because of an increase in human-related disturbance in the study area. Continued human-related disturbances, including noise and an increase in traffic after completion of construction, may also indirectly affect migratory birds. Tree removal and roadway operations would be a permanent impact; disruptions from construction activities would be temporary.

There are 713 trees within the project study area, of which 151 are native to California. Many were planted as landscaped ornamental plants. Trees native to the state include valley oak, coast live oak, interior live oak, Modesto ash, cottonwood, western sycamore, and coast redwood. Approximately 92 street trees are located within City of Modesto right-of-way, and some of the trees are part of orchards. Alternative 1 may impact up to 591 trees, including 35 street trees. Alternative 2 may impact up to 589 trees, including 33 street trees. However, because Modesto has approximately 110,000 street trees and numerous surrounding orchards, impacts to trees for migratory birds would be negligible.
Implementation of measures AS-2, AS-3, and AS-4 (explained below) would minimize temporary impacts to Migratory Bird Treaty Act-protected species during construction. Because of the degraded quality of the habitat, any permanent reduction of habitat or long-term increases in disturbance would not be considered substantial. This conclusion would be reconfirmed or amended after protocol surveys are completed in the year prior to construction.

**No-Build Alternative**

The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not directly or indirectly impact potential burrowing owl or migratory bird habitat.

**Avoidance, Minimization, and/or Mitigation Measures**

Implementation of the following measures would reduce impacts on special-status animal species:

**AS-1** Burrowing owl surveys would be conducted following the guidelines outlined in the California Department of Fish and Wildlife’s 2012 Staff Report on Burrowing Owl Mitigation during the year prior to the initiation of construction. If burrowing owls are detected within the biological study area, the California Department of Fish and Wildlife would be consulted to determine specific avoidance and minimization measures appropriate for the site. Likely avoidance and minimization measures may include preconstruction surveys prior to ground disturbance, establishment of no-work buffer, and/or having a qualified biologist present to monitor an active nest during construction activities to ensure that no interference with the burrowing owl breeding activities would occur. Additional avoidance and minimization for permanent impacts to burrowing owl habitat could also include the preservation of surrounding foraging habitat, passive relocations, and off-site mitigation. Mitigation of nesting burrows and associated burrowing owl habitat may involve purchasing mitigation lands adjacent to the project or purchasing burrowing owl mitigation credits at an approved conservation bank in the region.

**AS-2** Shrub and tree trimming and/or tree removal for the proposed project would be conducted outside the nesting season (generally between February 1 and August 31). If shrub and tree removal is scheduled to occur during the nesting season, a qualified wildlife biologist, familiar with the species and habitats in
the study area, would conduct preconstruction surveys for nesting birds within suitable nesting habitat in the study area as described in AS-3.

**AS-3** Nesting bird surveys would be conducted prior to initiation of construction activities. If no active nests are detected during surveys, construction may proceed. If active nests are detected, then AS-4 would be implemented.

**AS-4** A no-work buffer would be established around nests identified during preconstruction surveys. A 100-ft buffer would be established for migratory birds and a 300-ft buffer would be established for most raptors. In the case of burrowing owl nests and Swainson’s hawk see AS-1 and TES-1 respectively. The extent of the no-work buffers would be determined by a wildlife biologist in consultation with California Department of Fish and Wildlife and would depend on the level of noise or construction disturbance, line of sight between the nest and the disturbance, ambient levels of noise and other disturbances, and other topographic or artificial barriers. The purpose of the buffer is to avoid disturbance or destruction of the nest until after the breeding season, or until a wildlife biologist determines that the young have fledged.

**AS-5** The City of Modesto Street Tree Ordinance stipulates that trees removed within the City’s right-of-way would be replaced in kind if appropriate. Contractor work would conform to local tree ordinances for construction projects. The ratios and location of replacement would be determined in coordination with the City of Modesto. The specific replacement would be determined during the permit review process.

### 2.3.3 Threatened and Endangered Species

**Regulatory Setting**

The primary federal law protecting threatened and endangered species is the Federal Endangered Species Act, 16 U.S. Code Section 1531, et seq. See also 50 Code of Federal Regulations Part 402. This act and later amendments provide for the conservation of endangered and threatened species and the ecosystems upon which they depend. Under Section 7 of this act, federal agencies, such as the Federal Highway Administration, are required to consult with the U.S. Fish and Wildlife Service and the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service to ensure that they are not undertaking, funding, permitting, or authorizing actions likely to jeopardize the continued existence of listed species or
destroy or adversely modify designated critical habitat. Critical habitat is defined as geographic locations critical to the existence of a threatened or endangered species. The outcome of consultation under Section 7 may include a Biological Opinion with an Incidental Take statement, a Letter of Concurrence and/or documentation of a No Effect finding. Section 3 of the Federal Endangered Species Act defines take as “harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect or any attempt at such conduct.”

California has enacted a similar law at the state level, the California Endangered Species Act, California Fish and Game Code Section 2050, et seq. The California Endangered Species Act emphasizes early consultation to avoid potential impacts to rare, endangered, and threatened species and to develop appropriate planning to offset project-caused losses of listed species populations and their essential habitats. The California Department of Fish and Wildlife is the agency responsible for implementing the California Endangered Species Act. Section 2081 of the Fish and Game Code prohibits “take” of any species determined to be an endangered species or a threatened species. Take is defined in Section 86 of the Fish and Game Code as “hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill.” The California Endangered Species Act allows for take incidental to otherwise lawful development projects; for these actions, an incidental take permit is issued by the California Department of Fish and Wildlife. For species listed under both the Federal Endangered Species Act and the California Endangered Species Act requiring a Biological Opinion under Section 7 of the Federal Endangered Species Act, the California Department of Fish and Wildlife may also authorize impacts to California Endangered Species Act species by issuing a Consistency Determination under Section 2080.1 of the Fish and Game Code.

Another federal law, the Magnuson-Stevens Fishery Conservation and Management Act of 1976, was established to conserve and manage fishery resources found off the coast, as well as anadromous species and Continental Shelf fishery resources of the United States, by exercising (A) sovereign rights for the purposes of exploring, exploiting, conserving, and managing all fish within the exclusive economic zone established by Presidential Proclamation 5030, dated March 10, 1983, and (B) exclusive fishery management authority beyond the exclusive economic zone over such anadromous species, Continental Shelf fishery resources, and fishery resources in special areas.
Affected Environment
The following section is based on the State Route 132 West Freeway/Expressway Natural Environment Study, completed in October 2016.

The proposed project study area was surveyed and evaluated for the potential to support threatened and endangered plant and wildlife species. Data from the U.S. Fish and Wildlife Service, California Natural Diversity Database (CNDDB), and the California Native Plant Society were reviewed to identify threatened or endangered species that occur or have the potential to occur in the study area. Table 2-55 shows the status and general habitat requirements of the threatened or endangered animal species identified.

Table 2-55: Threatened or Endangered Animal Species with Potential to Occur in the Study Area

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Statusa</th>
<th>Habitat</th>
<th>Habitat Present/Absent</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buteo swainsoni</td>
<td>Swainson's hawk</td>
<td>ST</td>
<td>Breeds in grasslands with scattered trees, juniper-sage flats, riparian areas, savannahs, and agricultural or ranch habitats.</td>
<td>Present</td>
<td>Marginal suitable foraging and nesting habitat present in the biological study area. Species not observed during field surveys.</td>
</tr>
</tbody>
</table>

a Status Codes: ST = State Threatened (California Department of Fish and Wildlife).
b Present: Habitat is, or may be, present. The species may be present.
Source: Natural Environment Study (October 2016)

After analysis of the threatened and endangered species’ habitat requirements and completion of floristic and wildlife field reconnaissance surveys, it was determined that only the Swainson’s hawk (a state-threatened species) has the potential to occur in the study area. No federally listed species and no other state-threatened or endangered species have a potential to occur in the study area due to the lack of suitable habitat.

Swainson’s Hawk
The Swainson’s hawk occurs throughout much of the western U.S., Canada, and northern Mexico. In California, breeding populations occur in desert, shrub-steppe, grassland, and agricultural habitats. However, most of the breeding sites are in two distinct populations. The largest population is in the midsection of the Central Valley.
between Sacramento and Modesto and in the northern San Joaquin Valley. Most Swainson’s hawks are migratory birds that arrive in the Central Valley in March to nest and breed, and then migrate south in October.

Breeding Swainson’s hawks have three general habitat requirements: 1) suitable foraging habitat, 2) nest sites, and 3) isolation from disturbances that may disrupt breeding activities. Nest trees are typically found on the edges between woodland and either grass or shrubland habitat, or in isolated trees or clumps of trees in open terrain. The Swainson’s hawks have also been recorded nesting in urban landscapes in the Central Valley. The birds have adapted to hunting in open grasslands and shrublands and are more abundant in areas of moderate agricultural development. Agricultural fields, such as irrigated pasture, row crops, and alfalfa fields, provide them with foraging habitat. Orchards, vineyards, rice, and cotton fields are generally not suitable foraging habitat. Habitat loss through development and incompatible agricultural crops represent the largest threat to the Swainson’s hawk.

Formal surveys for this species have not yet been conducted, but would be conducted during the breeding season preceding the beginning of construction to accurately assess their presence or absence. However, the site was visited by biologists in 2010 during the spring (April 23-24), summer (August 12), and fall (October 6), and no Swainson’s hawks were observed during any of the field site visits.

The study area is composed entirely of highly disturbed areas within and next to the City of Modesto. Approximately 33 percent is composed of agricultural fields, most of which consists of orchards that are not considered to be a compatible crop for foraging Swainson’s hawks. Although no Swainson’s hawks were observed during the field reconnaissance surveys, it was determined that the study area may contain potentially suitable nesting and foraging habitat.

**Environmental Consequences**

*Build Alternatives: Swainson’s Hawks*

The proposed project would not affect any federally listed species, and no consultation under the Federal Endangered Species Act would be needed. Section 2080 of the Fish and Game Code prohibits the taking, possession, purchase, sale, and import or export of endangered, threatened, or candidate species, unless otherwise authorized by permit or in the regulations. Consultation with the California Department of Fish and Wildlife would occur prior to initiation of the project if either the nesting Swainson’s hawk or western burrowing owl is observed during the
preconstruction surveys. (Section 2.3.2, Animal Species, analyzes impacts related to the burrowing owl.) No consultation with the California Department of Fish and Wildlife has occurred to date.

Removal of trees, shrubs, and other vegetation, other construction-related activities (noise, disturbance, ground vibrations, and dust), and operation of the new highway may directly impact the Swainson’s hawk because of the removal of potential nesting and foraging habitat and because of an increase in human-related disturbance in the study area. Continued human-related disturbances from noise and an increase in traffic after construction may also indirectly affect the Swainson’s hawk. Tree removal and highway operations would be a permanent impact; disruptions from construction activities would be temporary. Implementation of TES-1, discussed below, would minimize temporary impacts to the Swainson’s hawk during construction.

Potential direct and permanent project-related impacts to Swainson’s hawk habitat would be the permanent removal of up to 70 acres and temporary impacts to one acre of marginal foraging and/or poor quality nesting habitat and the removal of 414 trees with a low potential to support nests or roosting hawks. Also, the precise number of impacted trees supporting the birds would be verified by protocol surveys preceding construction.

The tree impact calculation for hawks included valley oaks, cottonwoods, willows, sycamore, walnuts, Modesto ash, eucalyptus, pines, and redwoods. The calculation did not account for other factors including location or height of trees.

Both build alternatives would result in temporary impacts of up to 1 acre of marginal foraging and/or poor quality nesting habitat. Although low in quality, the permanent removal of up to 70 acres of potential foraging habitat would cumulatively impact this species’ available habitat. However, despite the relatively large amount of acreage that would be impacted, the impact is not detrimental to the species as a whole because the potential habitat is highly degraded and of poor quality. In addition, the study area is bordered by higher quality habitat that is relatively close to existing riparian corridors (of the Tuolumne, San Joaquin, and Stanislaus rivers) to the south, west, and north, respectively. The California Natural Diversity Database reported occurrences along the Tuolumne, San Joaquin, and Stanislaus rivers. Therefore, because of the degraded quality of the habitat, any permanent habitat reduction or long-term increase in disturbance is not considered substantial. This
conclusion would be confirmed or amended after protocol surveys are completed the year prior to construction.

With the implementation of TES-1, take of Swainson’s hawk is not anticipated to occur.

No-Build Alternative
The No-Build Alternative would not result in the construction of any of the proposed improvements and therefore would not contribute to direct or indirect impacts to potential and existing Swainson’s hawk habitat or any other threatened and endangered species.

Avoidance, Minimization, and/or Mitigation Measures
Implementation of the following measure would reduce project-related impacts to the state-threatened Swainson’s hawk under the California Endangered Species Act:

TES-1 Protocol-level surveys will be conducted within a 0.5-mile radius around the biological study area preceding the initiation of construction and would follow the Swainson’s Hawk Technical Advisory Committee’s 2000 Recommended Timing and Methodology for Swainson's Hawk Nesting Surveys in California's Central Valley. If an active Swainson's hawk nest is detected, minimization efforts would be coordinated with the California Department of Fish and Wildlife. Potential minimization measures would include establishing a 600 foot no-work buffer zone around an active nest, and/or having a qualified biologist present to monitor an active nest during construction activities to ensure that no interference with the hawks breeding activities would occur.

2.3.4 Invasive Species

Regulatory Setting
On February 3, 1999, President Bill Clinton signed Executive Order 13112 requiring federal agencies to combat the introduction or spread of invasive species in the U.S. The order defines invasive species as “any species, including its seeds, eggs, spores, or other biological material capable of propagating that species, that is not native to that ecosystem whose introduction does or is likely to cause economic or environmental harm or harm to human health.” The Federal Highway Administration guidance issued August 10, 1999 directs the use of the State’s invasive species list,
maintained by the California Invasive Species Council to define the invasive species that must be considered as part of NEPA analysis for a proposed project.

**Affected Environment**

The following section is based on the *State Route 132 West Freeway/Expressway Natural Environment Study*, completed in October 2016.

The proposed project study area is highly disturbed from agricultural practices and land development and infrastructure, and provides an environment for the spread of invasive plant species. Botanical surveys and field studies from 2007 to 2014 identified invasive plant species in the project study area. The species ranked as the highest priority are yellow starthistle (*Centaurea solstitialis*), fennel (*Foeniculum vulgare*), and English ivy (*Hedera helix*).

**Environmental Consequences**

**Build Alternatives**

Non-native invasive plant species currently impact the study area. Sections of the study area that are not used for agriculture are typically dominated entirely by invasive plant species, particularly mustards and non-native grasses, which are not currently managed to control their spread or growth. Therefore, both build alternatives have the potential to positively impact the existing cover of weeds by reducing their spread through the elimination of large areas of uncontrolled sources of their seed by converting the unmanaged land to paved roadway.

Construction-related activities and soil disturbance from both build alternatives could result in the introduction and spread of noxious weeds and other invasive plants. Invasive plant species could also be spread through inappropriate erosion control measures. Erosion control measures, such as use of straw bales and seed, could result in the inadvertent introduction of invasive plant species into the project study area. In compliance with the Executive Order 13112, Invasive Species, and subsequent guidance from the Federal Highway Administration, landscaping and erosion control elements of the proposed project would not use plant species listed on the California Invasive Species List as noxious weeds. In areas of particular sensitivity, extra precautions would be taken if invasive species are found in or adjacent to the construction areas. These include the inspection and cleaning of construction equipment and eradication strategies to be implemented should an invasive species be found. Also, the measures described below are proposed to reduce construction-
related impacts from the project regarding the introduction and spread of noxious weeds and other invasive plants.

With the incorporation of the avoidance, minimization, and mitigation measures listed below, no adverse direct impacts would occur regarding the spread of invasive weeds under either build alternative.

**No-Build Alternative**

The No-Build Alternative would not result in the construction of any of the proposed improvements, and the study area would remain undeveloped and in its current state relative to the presence of invasive plant species. Therefore, the study area would continue to have large areas that allow unrestricted growth and spread of invasive weeds.

**Avoidance, Minimization, and/or Mitigation Measures**

Implementation of the following measures would reduce impacts by invasive species:

IS-1 To minimize the risk of introducing additional non-native species into the area, weed-free erosion control applications would be used. No dry-farmed straw would be used, and certified weed-free straw would be required where erosion control straw is to be used. In addition, hydro-seed mulch or any other erosion control application must also be certified weed-free. Any revegetation seed mix to be used would also be certified weed-free and contain native species appropriate for the project area.

IS-2 All off-road construction equipment would be inspected and cleaned of potential noxious weed sources (e.g., mud and vegetation) before entry into the project area to prevent noxious weed introduction. The contractor would employ cleaning methods (typically with the use of a high-pressure water hose) to ensure that equipment is free of noxious weeds.

### 2.4 Cumulative Impacts

**Regulatory Setting**
Cumulative impacts are those that result from past, present, and reasonably foreseeable future actions, combined with the potential impacts of a proposed project. A cumulative effect assessment looks at the collective impacts posed by individual land use plans and projects. Cumulative impacts can result from individually minor but collectively substantial impacts taking place over a period of time.
Cumulative impacts to resources in the project area may result from residential, commercial, industrial, and highway development, as well as from agricultural development and the conversion to more intensive agricultural cultivation. These land use activities can degrade habitat and species diversity through consequences such as displacement and fragmentation of habitats and populations, alteration of hydrology, contamination, erosion, sedimentation, disruption to migration corridors, changes in water quality, and introduction or promotion of predators. Such developments can collectively contribute to potential community impacts, such as changes in community character, traffic patterns, housing availability, and employment.

CEQA Guidelines Section 15130 describes when a cumulative impact analysis is necessary and what elements are to be discussed. The definition of cumulative impacts under CEQA can be found in Section 15355 of the CEQA Guidelines. A definition of cumulative impacts, under NEPA, can be found in 40 Code of Federal Regulations Part 1508.7 of the Council on Environmental Quality regulations.

Per Caltrans guidance, a cumulative impact analysis assesses only the net impact (i.e., impact minus avoidance, minimization, and/or mitigation) on a resource. If there is no impact on a resource or if the impact is fully offset by avoidance, minimization, and/or mitigation measures, there would be no contribution to cumulative impacts. Caltrans identifies the following steps to serve as guidelines for identifying and assessing cumulative impacts:

**Step 1: Identify Resources to Consider in the Impact Analysis**
Chapter 2, Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures has evaluated project-specific impacts to human, physical, and biological resources within and around the project study area. Based on the evaluation, the following resources may be cumulatively affected by the project.

- Agriculture (Farmlands)
- Visual/Aesthetics
- Noise

**Step 2: Define the Study Area for Each Resource**
Table 2-56 defines the resource-specific study areas applied to analyze potential cumulative impacts.
Table 2-56: Resource Study Areas Considered for the Cumulative Impact Analysis

<table>
<thead>
<tr>
<th>Resource</th>
<th>Area Studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>The proposed new alignment of SR 132 extending from Modesto Irrigation District’s Lateral Canal No. 3 to the north, the Tuolumne River to the south, SR 99 to the east, and the San Joaquin River to the west.</td>
</tr>
<tr>
<td>Visual/Aesthetics</td>
<td>The proposed new alignment of SR 132 extending from West Briggsmore Avenue to the north, Tuolumne Boulevard to the south, 9th Street to the east, and Stone Avenue to the west.</td>
</tr>
<tr>
<td>Noise</td>
<td>The proposed new alignment of SR 132 extending from existing SR 132 (Maze Boulevard) and Dakota Avenue to SR 99, and SR 99 between Kansas Avenue and I Street.</td>
</tr>
</tbody>
</table>

The three resource study areas were selected to analyze the health of the resource and offer a proper perspective to assess potential cumulative impacts. The agriculture resource study area represents land use patterns in the area bounded by two geographical features (two rivers) a long-established community (Modesto), and a canal that supports irrigation to the resource study area (Modesto Irrigation District’s Lateral Canal No. 3). The visual/aesthetics resource study area represents the “commute shed” evaluated for the project’s traffic analysis, which focuses on the more traveled and viewed areas by travelers and residents. The noise study area represents noise-sensitive receivers within the project limits, including residences, schools, playgrounds, places of worship, and public parks.

**Step 3: Describe the Current Health and Historical Context for Each Resource**

**Agriculture (Farmlands)**

Based on historical mapping, urban development has not substantially encroached on the resource study area over the last 45 years. Figure 2-25 shows the approximate resource study area in 1970, and Figure 2-26 shows the current resource study area.
Figure 2-25: Agriculture (Farmlands) Resource Study Area circa 1970
Figure 2-26: Agriculture (Farmlands) Resource Study Area circa 2014
As shown in the two figures above, residential, commercial and some industrial development has extended west of SR 99 to South Carpenter Road (south of existing SR 132 [Maze Boulevard]) and to Morse Road (north of Kansas Avenue). All of the development has occurred within Modesto’s city limits and sphere of influence. However, the overall health of agriculture within the resource study area has remained relatively fixed since 1970 because of conversion restrictions within agricultural zones and on Williamson Act contract lands.

**Visual/Aesthetics and Noise**

Figure 2-27 shows an overview map of the approximate visual/aesthetics and noise resource study area in 1969.

![Figure 2-27: Visual/Aesthetics and Noise Resource Study Area circa 1969](image)
Development has occurred in Modesto’s city limits and sphere of influence throughout the visual/aesthetics and noise resource study area. This includes an increase in single-family residential units east of Morse Road and South Carpenter Road, an increase in the amount of commercial development along Kansas Avenue and, to a lesser extent, along existing SR 132 (Maze Boulevard), and further industrial development north of Kansas Avenue. While changes to the urban landscape on the west and east of SR 99 south of the existing highway to Tuolumne Boulevard have also occurred, the overall residential, commercial, and industrial makeup of the area has not changed much beyond what it was in 1969 (see Figure 2-27).

In all, the overall health of visual/aesthetic resources within the resource study area has slightly declined since 1969 because of increased residential and industrial development in the area. Ambient noise levels have also increased over time because of the development in the area, as well as increasing traffic volumes with expanding population and commerce, both locally and regionally.

**Step 4: Identify Direct and Indirect Impacts of the Project**

Table 2-57 shows the direct and indirect impacts of both build alternatives on both agriculture and visual/aesthetic resources.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Direct and Indirect Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>Both build alternatives would result in the direct conversion of 64.8 acres of prime and unique farmland and 3.51 acres of Williamson Act contract lands. Although existing agricultural operations may be altered from modified access for farmers and livestock, access would be maintained throughout the project.</td>
</tr>
<tr>
<td>Visual/Aesthetics</td>
<td>Structures (notably, the proposed SR 132/SR 99 direct-connector flyover ramp) would degrade the visual quality of some residential areas to moderately low, causing a high visual impact. New highway lighting and signs would be introduced, and most trees in the project study area would be impacted.</td>
</tr>
<tr>
<td>Noise</td>
<td>Because the proposed project would be constructed on a new alignment where no highway currently exists, numerous receivers (land uses where frequent human activity occurs, such as residences) would be impacted. West of SR 99, the proposed new alignment would be close to receivers, resulting in higher traffic noise levels. Up to 276 receivers would be affected by increased noise. One noise barrier (a soundwall) has been recommended.</td>
</tr>
</tbody>
</table>
Step 5: Identify Other Reasonably Foreseeable Actions

As described in Section 2.1.2, Growth, the eastern, more urbanized portion of the project study area is already fully developed, and no reasonably foreseeable actions would alter agricultural land or the visual/aesthetic makeup of the area. As for the western portion of the study area, Stanislaus County has only two foreseeable projects/developments (two conservation easements) proposed at this time. Within Modesto, no formal development plans for either comprehensive planning district have been created; the proposed Kansas-Woodland Business Park is currently on hold, and no developments are planned within the Redevelopment Planning District.

Within the three larger resource study areas, there are seven Tier I and five Tier II actions per StanCOG’s 2014 Regional Transportation Plan/Sustainable Communities Strategy. Per the plan, Tier I actions represent projects expected to be fully funded; while many Tier II actions are not funded, the projects represent the “long-term” desires within the region. The following describes the seven Tier I actions, including a reference to the applicable resource based on where the action would occur in respect to each resource study area:

- Street improvements are planned along Brink Avenue in Modesto, paralleling SR 99 (Agriculture and Visual/Aesthetics).
- Street improvements are planned along South Carpenter Road in Modesto from existing SR 132 (Maze Boulevard) to Paradise Road (Agriculture, Visual/Aesthetics, and Noise).
- Reconstruction of the interchange on SR 99 at Briggsmore Avenue is planned in Modesto (Agriculture, Visual/Aesthetics, and Noise).
- Further extension of SR 132 West as a new two-lane highway from Dakota Avenue to Gates Road is planned in Stanislaus County (Agriculture, Visual/Aesthetics, and Noise).
- Construction of Class I trails is planned along Modesto Irrigation District’s Lateral Canal No. 3, No. 4, and No. 7 (Agriculture).
- The Tuolumne River Restoration Project plans to improve trails from Mitchell Road to South Carpenter Road (Agriculture).
- Construction of a Class I bicycle trail is planned to extend the Virginia Corridor Trailway west of SR 99 (Agriculture).
The following describes the five Tier II actions:

- SR 99 is planned to be widened to eight lanes from North Carpenter Road to Tuolumne Boulevard (Visual/Aesthetics and Noise).
- Blue Gum Avenue is planned to be widened to four lanes from Poust Road to North Rosemore Avenue in Modesto (Agriculture, Visual/Aesthetics, and Noise).
- Existing SR 132 (Maze Boulevard) is planned to be widened to four lanes from SR 99 to Carpenter Road in Modesto (Visual/Aesthetics and Noise).
- Paradise Road is planned to be widened to four lanes from Sutter Avenue to South Carpenter Road in Modesto (Agriculture, Visual/Aesthetics, and Noise).
- Woodland/Coldwell Avenue is planned to be widened to four lanes from Kearney Avenue to North Carpenter Road in Modesto (Agriculture, Visual/Aesthetics, and Noise).

**Steps 6 and 7: Assess Potential Cumulative Impacts and Report Results**

**Agriculture (Farmlands)**

When you compare Figure 2-25 to Figure 2-26, development has occurred since 1970, but it has not extended beyond Modesto’s city limits or sphere of influence and has not encroached further onto agriculture land in the western portion of the resource study area. Since 1970, the western portion of the resource study area has remained dedicated to agricultural uses. The Stanislaus County General Plan protects agricultural land (particularly prime and statewide important farmland), only allowing conversion for exceptional needs. The only foreseeable action in an area not already developed would be the realignment of SR 132 and construction of a new two-lane facility from Dakota Avenue to Gates Road in Stanislaus County. The action would occur in a heavily farmed portion of the resource study area. Though the corridor for the realignment has not been identified, future infrastructure projects would be reviewed and managed for compliance with applicable policies concerning the conversion of farmland. Natural Resources Conservation Service coordination to determine potential impacts to prime and unique farmland would also be conducted. Based on this analysis, the build alternative would contribute to a cumulative impact to agriculture.

**Visual/Aesthetics**

Structures for the proposed new alignment (notably, the proposed SR 132/SR 99 direct-connector flyover ramp) would degrade the visual quality of Elm Street
neighborhood to moderately low, causing a high visual impact for the local residents and travelers. However, neither build alternative would alter and, in the case of two views, improve the visual quality of the other views throughout the project study area.

The proposed Kansas-Woodland Business Park would have been the only foreseeable action that could have led to further degrading of the resource study area’s visual/aesthetic quality. But, the action is currently on hold, with no foreseeable start-up date. The remainder of the Tier I and Tier II actions listed above are expected to cause only minor visual changes to the resource study area because the projects would be at grade and in already developed areas or areas with an existing highway/roadway. None of the projects would construct intrusive visual structures or completely reconfigure the area’s landscape units. But, incremental alterations could lead to a cumulative impact on visual/aesthetic resources if avoidance, minimization, or mitigation measures similar to those outlined in this document (VA-1 through VA-8) are not incorporated. If proposed, these measures would reduce and, in some cases, improve the visual quality for local residents and the traveling public.

**Noise**
Traffic is the main noise source affecting noise-sensitive land uses in the study area. The proposed project would have the greatest noise impacts in two areas: 1) the residential area south of Berryessa Drive and west of North Carpenter Road, and 2) the residential area on the west side of SR 99 and north of Elm Avenue. Other reasonably foreseeable actions that could lead to a cumulative impact on noise-sensitive land uses in the study area are the Tier I and Tier II arterial improvements, freeway interchange reconstruction, and the future widening of SR 99. However, depending on the location, these projects would be subject to City of Modesto, Stanislaus County or Caltrans noise control requirements for both design and construction. If best management practices relative to noise impacts similar to those outlined in this document (inclusion of noise barriers in project design and implementation of construction noise controls) are incorporated into these other projects, these measures would minimize and, in some cases, reduce noise levels experienced by local residents.

**Step 8: Assess the Need for Mitigation**
Stanislaus County has an adopted farmland mitigation program, though it is presently applicable only to the conversion of farmland to a residential use. While conversion of farmland is controlled by Stanislaus County and impacts to existing farmland can be reduced, there are no feasible measures that can fully mitigate the loss of farmland.
The replacement impacted farmland using off-site mitigation is cost prohibitive and the productivity of off-site mitigation may not be equivalent to the level provided within the project area.
Chapter 3 California Environmental Quality Act Evaluation

3.1 Determining Significance under the California Environmental Quality Act

The proposed project is a joint project by Caltrans and the Federal Highway Administration and is subject to state and federal environmental review requirements. Project documentation, therefore, has been prepared in compliance with both CEQA and NEPA. The Federal Highway Administration’s responsibility for environmental review, consultation, and any other action required in accordance with NEPA and other applicable federal laws for the proposed project is being, or has been, carried out by Caltrans under its assumption of responsibility pursuant to 23 U.S. Code 327. Caltrans is the lead agency under CEQA and NEPA.

One of the main differences between NEPA and CEQA is the way significance is determined. Under NEPA, significance is used to determine whether an Environmental Impact Statement, or a lower level of documentation, would be required. NEPA requires that an Environmental Impact Statement (EIS) be prepared when the proposed federal action (project) as a whole has the potential to “significantly affect the quality of the human environment.” The determination of significance is based on context and intensity. Some impacts determined to be significant under CEQA may not be of sufficient magnitude to be determined significant under NEPA. Under NEPA, once a decision is made regarding the need for an EIS, it is the magnitude of the impact that is evaluated and no judgment of its individual significance is deemed important for the text. NEPA does not require that a determination of significant impacts be stated in the environmental documents.

CEQA, on the other hand, does require Caltrans to identify each “significant effect on the environment” resulting from the project and ways to mitigate each significant effect. If the project may have a significant effect on any environmental resource, then an Environmental Impact Report (EIR) must be prepared. Every significant effect on the environment must be disclosed in the EIR and mitigated if feasible. In addition, the CEQA guidelines list a number of mandatory findings of significance, which also require the preparation of an EIR. There are no types of actions under NEPA that parallel the mandatory findings of significance of CEQA. This chapter discusses the effects of the project and CEQA significance. A summary of the CEQA Checklist completed for the proposed project is provided in Appendix A of this
document. The CEQA impact levels include “potentially significant impact,” “less than significant impact with mitigation,” “less than significant impact,” and “no impact.” CEQA impact findings for the proposed project are provided below in Section 3.2, Discussion of Significant Impacts.

3.2 Discussion of Significant Impacts

3.2.1 No Effects from the Proposed Project
As discussed at the beginning of Chapter 2, the following environmental issues were considered, but no adverse impacts were identified:

- Coastal Zones: The proposed project study area is not near any coastal zones.
- Forested Resources (Timberlands): No timberlands are in or near the project study area (Community Impacts Assessment, April 2016).
- Mineral Resources: The proposed project would not impact any known mineral resources in the project study area (Geotechnical/Geologic Summary Report, October 2010).
- Sensitive Natural Communities: No sensitive natural communities are in the project study area. The State Route 132 West Freeway/Expressway Natural Environment Study (October 2016) provides more details.
- Special-Status Plant Species: No special-status plant species were identified in the project study area. The State Route 132 West Freeway/Expressway Natural Environment Study (October 2016) provides more details.
- Wetlands: The proposed project will have no effect on federally protected wetlands (waters of the U.S.) as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means.
- Wild and Scenic Rivers: No wild and scenic rivers are in or near the project study area.

3.2.2 Less-than-Significant Effects of the Proposed Project
Pursuant to CEQA, the following resources would be anticipated to experience less than significant impacts (Chapter 2, Affected Environment, Environmental Consequences, and Avoidance, Minimization, and/or Mitigation Measures provides further information on each of the listed resources):
• Agricultural Resources (see Section 2.1.3, Farmlands): Both build alternatives would result in the conversion of 64.8 acres of prime and unique farmland, 3.51 acres of which are encumbered under a Williamson Act contract. This represents a 0.016 percent and 0.0005 percent decrease in County wide totals of prime and unique farmland and Williamson Act contract lands, respectively. Given the total acreage of prime and unique farmlands and William Act contract lands and the farmland impact rating score of 160 for both build alternatives, this is a minimal impact within Stanislaus County.

• Air Quality (see Section 2.2.6, Air Quality): Implementation of the proposed project may result in a cumulatively considerable net increase of criteria pollutants for which the project region is in non-attainment under an applicable federal or state ambient air quality standard. A temporary increase in precursor and criteria pollutants would occur during construction; however, with the implementation of standard best management practice, as described in Section 2.2.6, Air Quality, the impact would be less than significant. These best management practices would include the submittal of a dust control plan to San Joaquin Valley Air Pollution Control District prior to earthmoving, the implementation of dust control measures, and the control of construction-related PM10 and exhaust emissions. Measures would include maintaining properly tuned engines, minimizing the idling time of diesel-powered construction equipment to 2 minutes, using alternative-powered construction equipment (i.e., compressed natural gas, biodiesel, electric), using add-on mitigation devices such as diesel oxidation catalysts or particulate filters, using equipment that meets the California Air Resources Board’s most recent certification standard for off-road heavy-duty diesel engines, phasing project construction, and limiting the operating hours of heavy-duty equipment.

• Cultural Resources (see Section 2.1.8, Cultural Resources): Pending the results of an additional archaeological survey of currently inaccessible parcels and geoarchaeological investigations, after the preferred alternative is selected, Caltrans would submit a Section 106 finding of effect. The finding of effect would include the 3530 Maze Boulevard property and any additional properties identified in the additional surveys conducted after the preferred alternative is selected. The Final EIR/EA would include avoidance, minimization and mitigation measures for affected properties identified in the future investigations conducted after selection of the preferred alternative. The potential discovery of buried cultural resources, including human remains, during construction grading and excavation could be considered a significant impact pursuant to CEQA; however, avoidance and
minimization measures identified in Section 2.1.8, Cultural Resources would minimize adverse impacts to unknown buried cultural resources. These measures would be employed during construction in the event that unknown buried cultural resources are encountered. If previously recorded cultural materials are discovered during construction, all earthmoving activity within and around the immediate discovery area would be stopped until a qualified archaeologist could assess the nature and significance of the find. If human remains are discovered, State Health and Safety Code Section 7050.5 states that further disturbances and activities must cease in any area or nearby area suspected to overlie remains and the county coroner contacted. Pursuant to Public Resources Code Section 5097.98, if the remains are thought to be Native American, the coroner would notify the Native American Heritage Commission, who would then notify the Most Likely Descendent. At this time, the person who discovered the remains would contact the California Department of Transportation’s District 10 Native American Coordinator so that he or she may work with the Most Likely Descendent on the respectful treatment and disposition of the remains. Further provisions of Public Resources Code 5097.98 are to be followed as applicable.

- Geology and Soils (see Section 2.2.3, Geology/Soils/Seismic/Topography): According to geologic data for the project area, there is a low potential for strong seismic ground shaking, liquefaction and soil erosion. Also, embankments constructed for the project may have a low potential for soil instability issues, such as landslide and subsidence.

- Land Use and Planning (see Section 2.1.1, Land Use): Both build alternatives would convert existing mostly agricultural and scattered Urban Transition uses in Stanislaus County and mostly vacant land (designated for redevelopment planning) in Modesto to a transportation use. The build alternatives would not be consistent with two Stanislaus County General Plan policies related to the conversion of agricultural land and one Modesto General Plan policy concerning Transportation Demand Management measures.

- Population and Housing (see Section 2.1.4.1, Community Character and Cohesion): Both build alternatives would result in minimal growth-related impacts beyond what has already been planned in Stanislaus County and Modesto.

- Public Services (see Section 2.1.5, Utilities/Emergency Services): Impacts to emergency services would be the same for both build alternatives. While the proposed project would not create long-term access impacts for emergency vehicles,
temporary, construction-related impacts would include use of local roads by
construction vehicles, lane closures, and detours.

- Transportation/Traffic (see Section 2.1.6, Traffic and Transportation/Pedestrian
  and Bicycle Facilities): The build alternatives would not be consistent with a
  Modesto General Plan Policy V-B.6(c) concerning the application of Transportation
  Demand Management measures, which can directly affect trip makers’ choice of
  travel mode and the routes and time of day for trips.

- Utilities and Service Systems (see Section 2.1.5, Utilities/Emergency Services):
  Neither build alternative would result in long-term impacts to utilities and
  emergency services. But, construction-related impacts are anticipated. As described
  in Section 2.1.6, Traffic and Transportation/Pedestrian and Bicycle Facilities,
  implementation of a traffic management plan would include advance notification for
  emergency service personnel of any expected delay or detour thereby minimizing
  temporary, construction-related impacts to emergency service providers.

3.2.3 Significant Environmental Effects of the Proposed Project

The proposed project could have significant effects on the following environmental
resources. However, with implementation of measures identified below, these
impacts would be reduced to less-than-significant levels. The determination of level
of significance is based on the CEQA Checklist, provided in Appendix A of this
document. Please refer to Chapter 2, Affected Environment, Environmental
Consequences, and Avoidance, Minimization, and/or Mitigation Measures for further
information, including a description of the mitigation measures.

- Agricultural Resources: During construction of the proposed project, temporary
  impacts related to access and irrigation ditches are anticipated. Implementation of
  mitigation measures FARM-1 through FARM-4 would compensate for temporary
  impacts to farmland, which may occur during construction. These measures include
  Caltrans’ coordination with property owners and agricultural operators during final
  design to incorporate design features to maintain property access and operation and
  restricting the contractor to staging all construction materials, tools, and vehicles
  within the right-of-way for the project, reconstructing irrigation ditches and
  installing irrigation pipelines damaged during construction, compensating for the
  loss or damage to crops resulting from construction activities.

- Biological Resources: Both build alternatives have the potential to directly and
  permanently affect up to 20.8 acres and temporarily affect up to 0.2 acre of
  burrowing owl habitat. This conclusion would be confirmed or amended after
protocol surveys are completed the year before construction (see Section 2.3.2, Animal Species). If burrowing owls are detected within the biological study area, the California Department of Fish and Wildlife would be consulted to determine specific avoidance and minimization measures appropriate for the site. Implementation of mitigation measure AS-1 would compensate for the loss of nesting burrows and associated burrowing owl habitat and may involve purchasing mitigation lands adjacent to the project or purchasing burrowing owl mitigation credits at an approved conservation bank in the region. This measure would reduce the impacts to burrowing owl to a less than significant level.

Both build alternatives would result in a total loss of 0.65 acre of seasonal wetlands considered to be waters of the state. As described in mitigation measure WET-1, Caltrans will consult with the Central Valley Regional Water Quality Board during the final design and permitting phase. If the seasonal wetland features are determined to be waters of the State, Caltrans will mitigate for their discharge and fill as directed by the Central Valley Regional Water Quality Board under the Porter Cologne Water Quality Control Act. Implementation of mitigation measure WET-1 would reduce this impact to a less than significant level.

Also, project-related impacts to Swainson’s hawk habitat would include the removal of up to 70 acres of marginal foraging and/or poor quality nesting habitat and the removal of 414 trees with a low potential to support nests or roosting hawks. Implementation of mitigation measure TES-1 would compensate for project impacts to Swainson’s hawk habitat through the completion of protocol-level surveys and adherence to minimization measures coordinated with the California Department of Fish and Wildlife. Potential minimization measures would include establishing a 600 foot no-work buffer zone around an active nest, and/or having a qualified biologist present to monitor an active nest during construction activities to ensure that no interference with the hawks breeding activities would occur. Implementation of mitigation measure TES-1 would reduce this impact to a less than significant level.

- Hazards and Hazardous Materials: Potential impacts from the accidental release of hazardous materials into the environment would be less than significant with implementation of mitigation measures HAZ-1 through HAZ-14, described in Section 2.2.5, Hazardous Waste/Materials. These measures include numerous routine hazardous materials management practices such as the preparation of sampling and analysis plans, materials management plans, health and safety plans, and spill prevention plans, and the proper removal and disposal of asbestos-
containing material, lead based paint, and other hazardous building materials in accordance with applicable regulations.

- Caltrans Modesto Soils Stockpiles: While there may be potential impacts from the presence of barium contaminants in three soil stockpiles, containment of the three soil stockpiles through use as construction materials for the new proposed highway, as described in the Draft Final Remedial Action Plan and in Section 2.2.5.1, and implementation of mitigation measures SHAZ-1 through SHAZ-10 would mitigate impacts to less than significant levels. These measures include the preparation of safety and management plans along with a land use covenant to restrict the types of land use allowed on the site. The plans would address containment assessment, management, and reporting to ensure the ongoing integrity of the containment feature for the protection of human health and the environment. Additional measures include the disposal of waste in accordance with applicable regulations, the minimization of soil stockpile reconfiguration, and conducting perimeter air quality monitoring and groundwater and storm water quality monitoring during construction to minimize hazardous materials impacts related to the soil stockpiles to less than significant levels.

- Hydrology and Water Quality: Alternative 1 would increase impervious surface by 55.8 acres, and Alternative 2 would increase impervious surface by 57.5 acres. The addition of impervious surface could affect the area’s watershed through increasing the flow and volume of stormwater runoff entering the watershed. If left untreated, the increase in flow and runoff could negatively affect the water quality of receiving water bodies. Caltrans would create a detailed project drainage plan, identifying storm drain features to address the impact of increasing impervious surfaces areas within the project area. Caltrans would comply with applicable Central Valley Regional Water Quality Control Board and Stanislaus County requirements for dewatering and discharge of non-stormwater. In addition, the contractor would conduct groundwater and stormwater monitoring on and adjacent to the soil stockpiles until the proposed project is complete or the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board indicate that it is no longer necessary. Implementation of mitigation measure HY-1, as described in Section 2.2.1, Hydrology and Floodplain, and mitigation measures WQ-1 through WQ-2 in Section 2.2.2, Water Quality and Storm Water Runoff, would reduce this impact to a less than significant level.

- Noise: Construction of the proposed project would result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above
levels existing without the project; however, implementation of standard best management practices as described in Section 2.2.7, Noise would reduce this impact to a less than significant level. These practices include the use of sound-control devices on construction equipment, the requirement that all equipment include muffled exhaust systems, turning off idling equipment, scheduling construction activity to workday hours, notifying adjacent residents in advance of construction work, and moving stationary construction equipment away from noise-sensitive receivers.

- Paleontological Resources: Excavation for both Alternatives 1 and 2 would impact the Modesto Formation, thereby having an impact on paleontological resources throughout the study area. Implementation of mitigation measures PR-1 through PR-15 described in Section 2.2.4, Paleontology, would reduce impacts to less than significant levels. These measures would include the preparation of a Paleontological Mitigation Plan prior to construction, the designation of a paleontological monitor to be present during qualifying earthmoving activities, as described in the Paleontological Evaluation Report and Preliminary Paleontological Mitigation Plan, and providing a paleontological awareness training session to contractors. The paleontological monitor would halt work within a 60-foot radius of paleontological resources discovered during earthmoving activities. Resources would be prepared for identification, proper documentation, collection and storage in a recognized repository institution. The paleontological monitor would also collect and analyze samples for microfossils. Lastly, a Paleontological Mitigation Report would be prepared by the project paleontologist and filed with the repository institution.

3.2.4 Mandatory Findings of Significance

The proposed project would not substantially degrade the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory.

The proposed project would cause significant cumulative impacts to agricultural (farmlands), visual resources, and noise as described in Section 2.4.
The proposed project would cause substantial adverse effects on human beings through the reduction in farmland (see Section 2.1.3), degradation of visual quality (see Section 2.1.7), and noise impacts (see Section 2.2.8).

### 3.2.5 Unavoidable Significant Environmental Effects

The proposed project would have an unavoidable significant impact relative to the following environmental factors:

**Noise**

Significant noise impacts under CEQA are determined by comparing the predicted noise levels of baseline conditions and the build alternatives. CEQA noise analysis is completely independent of the NEPA analysis discussed in Section 2.2.7, Noise, which centers on the noise abatement criteria. Under CEQA, the noise assessment looks at the setting of the noise impact and then how large or perceptible any noise increase would be in a given area. Key considerations include the uniqueness of the setting, sensitive nature of the noise receivers, magnitude of the noise increase, number of residences affected, and absolute noise level. The noise analysis for the project was prepared in accordance with the Caltrans’ *Traffic Noise Analysis Protocol for New Highway Construction and Reconstruction Projects*.

Under Alternative 1, noise levels at 251 receivers would approach or exceed 66 A-weighted decibels, and noise levels at 267 receivers would approach or exceed 66 A-weighted decibels under Alternative 2. In accordance with the *Traffic Noise Protocol*, noise levels over 65 A-weighted decibels generally interfere with normal speech. A 3 A-weighted decibel increase between existing noise levels and the build alternatives would be barely perceptible to the human ear.

Tables 3-1 and 3-2 show the range of noise levels for both existing and future conditions. The tables also list noise level increases with the project compared to baseline conditions and the number of receivers that would experience a noticeable increase or a doubling of loudness in each noise analysis area. The *State Route 132 Noise Study Report* includes a detailed summary of the noise analysis results.
Table 3-1: Alternative 1 Noise Levels and Impacts

<table>
<thead>
<tr>
<th>Noise Analysis Area</th>
<th>Total Receivers</th>
<th>Existing Noise Level (dBA)</th>
<th>Alternative 1 Noise Level (dBA)</th>
<th>Increase over Existing (dBA)</th>
<th>Distinctly Noticeable Increasea</th>
<th>Doubling of Loudnessb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>43.2 – 68.1</td>
<td>51.6 – 73.4</td>
<td>-3.0 – 12.5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>46.0 – 61.8</td>
<td>54.9 – 69.4</td>
<td>7.6 – 15.6</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>238</td>
<td>45.5 – 70.6</td>
<td>56.0 – 71.1</td>
<td>3.0 – 11.2</td>
<td>139</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>295</td>
<td>49.8 – 68.9</td>
<td>58.0 – 79.5</td>
<td>3.8 – 15.9</td>
<td>217</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>61.4 – 66.3</td>
<td>65.0 – 70.2</td>
<td>1.9 – 3.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>72.8</td>
<td>75.6</td>
<td>2.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>64.9 – 76.9</td>
<td>66.1 – 74.4</td>
<td>1.2 – 3.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>61.3 – 73.7</td>
<td>64.7 – 76.4</td>
<td>2.5 – 4.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>63.8 – 72.1</td>
<td>66.3 – 75.8</td>
<td>2.5 – 4.6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: dBA = A-weighted decibels.

a Number of receivers with distinctly noticeable increase (5 dBA or more).
b Number of receivers with doubling of loudness (increase of 10 dBA or more).

Source: Noise Study Report (January 2016)

Table 3-2: Alternative 2 Noise Levels and Impacts

<table>
<thead>
<tr>
<th>Noise Analysis Area</th>
<th>Total Receivers</th>
<th>Existing Noise Level (dBA)</th>
<th>Alternative 1 Noise Level (dBA)</th>
<th>Increase over Existing (dBA)</th>
<th>Distinctly Noticeable Increasea</th>
<th>Doubling of Loudnessb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>43.2 – 68.1</td>
<td>51.6 – 73.4</td>
<td>-3.0 – 12.5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>46.0 – 61.8</td>
<td>54.9 – 69.4</td>
<td>7.6 – 15.6</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>238</td>
<td>45.5 – 70.6</td>
<td>56.0 – 71.1</td>
<td>3.0 – 11.2</td>
<td>139</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>295</td>
<td>49.8 – 68.9</td>
<td>57.0 – 80.2</td>
<td>5.8 – 15.9</td>
<td>225</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>61.4 – 66.3</td>
<td>65.0 – 70.3</td>
<td>1.9 – 4.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>72.8</td>
<td>78.1</td>
<td>5.3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>64.9 – 76.9</td>
<td>66.1 – 74.4</td>
<td>1.2 – 3.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>61.3 – 73.7</td>
<td>64.7 – 76.4</td>
<td>2.4 – 4.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>63.8 – 72.1</td>
<td>66.3 – 75.8</td>
<td>2.5 – 4.6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: dBA = A-weighted decibels.

a Number of receivers with distinctly noticeable increase (5 dBA or more).
b Number of receivers with doubling of loudness (increase of 10 dBA or more).

Source: Noise Study Report (January 2016)

Of the impacted receivers, Noise Analysis Areas 3 and 4 were identified as having the largest number of absolute noise impacts (65 A-weighted decibels or more) and increases over existing noise levels (5 A-weighted decibels or more). Noise levels at a majority (50 percent or more) of the receivers in Noise Analysis Areas 3 and 4 were predicted to have a distinctly noticeable increase (5 A-weighted decibels or more)
over baseline conditions, while only 15 to 20 percent of the total receivers would experience a substantial (doubling of loudness) increase (10 A-weighted decibels or more) over baseline conditions.

Noise abatement was considered for all impacted receivers. But, as described in Section 2.2.7, Noise, only one noise barrier (Noise Barrier D) would be recommended in Noise Analysis Area 4. Affected residences in other areas all would require driveway access to local roadways, be partially shielded by retaining walls, or be already impacted by ambient (existing) traffic noise. Openings in noise barriers for driveways connecting or intersecting streets reduce the effectiveness of barriers. Therefore, those residences would experience a significant and unavoidable increase in noise levels from the proposed new highway.

The viewpoints of benefited receivers would be considered during the environmental review process in reaching a final decision on the reasonableness of the abatement measures. Benefited receivers are surveyed via registered mail. Property owners get one vote, while renters and owners of non-owner occupied dwellings get 10 percent of one vote and 90 percent of one vote, respectively. If more than 50 percent of the benefited receivers oppose the abatement, the abatement would not be considered reasonable and would not be constructed.

The final decision on noise abatement would be made on completion of the project design and the public involvement process. If during final design conditions have substantially changed, noise abatement may not be necessary.

Section 2.2.7, Noise, provides more information on this resource.

**Visual/Aesthetics**

Both build alternatives would remove existing trees at the North Dakota and Kansas Avenue intersection and on the north side of Elm Avenue within the Elm Tract neighborhood. While tree removal would create temporary visual impacts, the temporary impacts would be reduced to less-than-significant levels with implementation of measures VA-4 and VA-5.

For the Elm Tract neighborhood, construction of the proposed SR 132/SR 99 direct-connector flyover ramp would require removal of up to six homes and 16 additional trees from the north side of Elm Avenue. The flyover structure would be incompatible with the existing residential setting, as the structure and associated noise barriers would block residents’ views of a distant water tower and would degrade the visual quality from moderately high to moderately low. Even with application of aesthetic
treatments (VA-1), the flyover structure and ground-level noise barrier would have a significant and unavoidable visual impact.

Lighting from the new alignment would produce glare and reduce sky visibility for adjacent residential neighborhoods. However, impacts would be reduced to less-than-significant levels with implementation of measures VA-7 and VA-8.

Section 2.1.7, Visual/Aesthetics, provides more information on this resource.

3.2.6 Climate Change
Climate change refers to long-term changes in temperature, precipitation, wind patterns, and other elements of the earth’s climate system. An ever-increasing body of scientific research attributes these climatological changes to greenhouse gas emissions, particularly those generated from the production and use of fossil fuels.

While climate change has been a concern for several decades, the establishment of the Intergovernmental Panel on Climate Change by the United Nations and World Meteorological Organization in 1988 has led to increased efforts devoted to greenhouse gas emissions reduction and climate change research and policy. These efforts are concerned mainly with the emissions of greenhouse gases generated by human activity, including carbon dioxide, methane, nitrous oxide, tetrafluoromethane, hexafluoroethane, sulfur hexafluoride, HFC-23 (fluoroform), HFC-134a (s, s, s, 2-tetrafluoroethane), and HFC-152a (difluoroethane).

In the U.S., the main source of greenhouse gas emissions is electricity generation, followed by transportation. In California, however, transportation sources (including passenger cars, light-duty trucks, other trucks, buses, and motorcycles) make up the largest source of greenhouse gas-emitting sources. The dominant greenhouse gas emitted is carbon dioxide, mostly from fossil fuel combustion.

There are two terms used when discussing the impacts of climate change: “Greenhouse Gas Mitigation” and “Adaptation.” “Greenhouse Gas Mitigation” is a term for reducing greenhouse gas emissions to reduce or “mitigate” the impacts of climate change. “Adaptation” refers to the effort of planning for and adapting to impacts resulting from climate change (such as adjusting transportation design standards to withstand more intense storms and higher sea levels)³.

³ http://climatechange.transportation.org/ghg_mitigation/
The four main strategies for reducing greenhouse gas emissions from transportation sources are: 1) improving the transportation system and operational efficiencies, 2) reducing travel activity, 3) transitioning to lower greenhouse gas-emitting fuels, and 4) improving vehicle technologies/efficiency. To be most effective, all four strategies should be pursued cooperatively.4

**Regulatory Setting**

**State**

With passage of several pieces of legislation including State Senate and Assembly bills and Executive Orders, California launched an innovative and proactive approach to dealing with greenhouse gas emissions and climate change.

Assembly Bill 1493, Pavley, Vehicular Emissions: Greenhouse Gases, 2002: This bill requires the California Air Resources Board to develop and implement regulations to reduce automobile and light truck greenhouse gas emissions. These stricter emissions standards were designed to apply to automobiles and light trucks beginning with the 2009-model year.

Executive Order S-3-05 (June 1, 2005): The goal of this order is to reduce California’s greenhouse gas emissions to: 1) year 2000 levels by 2010, 2) year 1990 levels by the 2020, and 3) 80 percent below the year 1990 levels by 2050. In 2006, this goal was further reinforced with the passage of Assembly Bill 32.

Assembly Bill 32, Núñez and Pavley, The Global Warming Solutions Act of 2006: Assembly Bill 32 sets the same overall greenhouse gas emissions reduction goals as outlined in Executive Order S-3-05, while further mandating that the California Air Resources Board create a scoping plan and implement rules to achieve “real, quantifiable, cost-effective reductions of greenhouse gases.”

Executive Order S-20-06 (October 18, 2006): This order establishes the responsibilities and roles of the Secretary of the California Environmental Protection Agency and state agencies with regard to climate change.

Executive Order S-01-07 (January 18, 2007): This order set forth the low carbon fuel standard for California. Under this order, the carbon intensity of California’s transportation fuels is to be reduced by at least 10 percent by 2020.

---

Senate Bill 97 Chapter 185, 2007, Greenhouse Gas Emissions: This bill required the Governor’s Office of Planning and Research to develop recommended amendments to CEQA guidelines for addressing greenhouse gas emissions. The amendments became effective on March 18, 2010.

Senate Bill 375, Chapter 728, 2008, Sustainable Communities and Climate Protection: This bill requires the California Air Resources Board to set regional emissions reduction targets from passenger vehicles. The metropolitan planning organization for each region must then develop a “Sustainable Communities Strategy” that integrates transportation, land use, and housing policies to plan for the achievement of the emissions target for their region.

Senate Bill 391 Chapter 585, 2009 California Transportation Plan: This bill requires the State’s long-range transportation plan to meet California’s climate change goals under Assembly Bill 32.

**Federal**

Though climate change and greenhouse gas reduction are a concern at the federal level, currently no regulations or legislation have been enacted specifically addressing greenhouse gas emissions reductions and climate change at the project level. Neither the U.S. Environmental Protection Agency nor the Federal Highway Administration (FHWA) has issued explicit guidance or methods to conduct project-level greenhouse gas analysis. The FHWA supports the approach that climate change considerations should be integrated throughout the transportation decision-making process, from planning through project development and delivery. Addressing climate change mitigation and adaptation up front in the planning process would assist in decision-making and improve efficiency at the program level, and would inform the analysis and stewardship needs of project-level decision-making. Climate change considerations can be integrated into many planning factors, such as supporting economic vitality and global efficiency, increasing safety and mobility, enhancing the environment, promoting energy conservation, and improving the quality of life.

The four strategies outlined by the Federal Highway Administration to lessen climate change impacts correlate with efforts that the state is undertaking to deal with transportation and climate change; these strategies include improved transportation system efficiency, cleaner fuels, cleaner vehicles, and a reduction in travel activity.

---

5 To date, no national standards have been established for mobile source greenhouse gases, nor has the U.S. Environmental Protection Agency established any ambient standards, criteria or thresholds for greenhouse gases resulting from mobile sources.
Climate change and its associated effects are being addressed through various efforts at the federal level to improve fuel economy and energy efficiency, such as the “National Clean Car Program” and Executive Order 13514 - Federal Leadership in Environmental, Energy, and Economic Performance.

Executive Order 13514 (October 5, 2009) is focused on reducing greenhouse gases internally in federal agency missions, programs and operations, but also directs federal agencies to participate in the Interagency Climate Change Adaptation Task Force, which is engaged in developing a national strategy for adaptation to climate change.

The U.S. Environmental Protection Agency’s authority to regulate greenhouse gas emissions stems from the U.S. Supreme Court decision in Massachusetts v. EPA (2007). The Supreme Court ruled that greenhouse gases meet the definition of air pollutants under the existing Clean Air Act and must be regulated if these gases could be reasonably anticipated to endanger public health or welfare. Responding to the court’s ruling, the U.S. Environmental Protection Agency finalized an endangerment finding in December 2009. Based on scientific evidence, it found that six greenhouse gases constitute a threat to public health and welfare. So, it is the Supreme Court’s interpretation of the existing act and the U.S. Environmental Protection Agency’s assessment of the scientific evidence that form the basis for the U.S. Environmental Protection Agency’s regulatory actions. The U.S. Environmental Protection Agency in conjunction with National Highway Traffic Safety Administration issued the first of a series of greenhouse gas emission standards for new cars and light-duty vehicles in April 2010.6

The U.S. Environmental Protection Agency and the National Highway Traffic Safety Administration are taking coordinated steps to enable the production of a new generation of clean vehicles with reduced greenhouse gas emissions and improved fuel efficiency from on-road vehicles and engines. These next steps include developing the first-ever greenhouse gas regulations for heavy-duty engines and vehicles, as well as additional light-duty vehicle greenhouse gas regulations.

The final combined standards that made up the first phase of this national program apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016. The standards implemented by this program are expected to reduce greenhouse gas emissions by an estimated 960

---

Chapter 3  •  California Environmental Quality Act Evaluation

million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012-2016).

On August 28, 2012, the U.S. Environmental Protection Agency and National Highway Traffic Safety Administration issued a joint Final Rulemaking to extend the National Program for fuel economy standards to model year 2017 through 2025 passenger vehicles. Over the lifetime of the model year 2017 to 2025 standards, this program is projected to save approximately four billion barrels of oil and two billion metric tons of greenhouse gas emissions.

The complementary U.S. Environmental Protection Agency and National Highway Traffic Safety Administration standards that make up the Heavy-Duty National Program apply to combination tractors (semi-trucks), heavy-duty pickup trucks and vans, and vocational vehicles (including buses and refuse or utility trucks). Together, these standards would cut greenhouse gas emissions and domestic oil use significantly. This program responds to President Barack Obama’s 2010 request to jointly establish greenhouse gas emissions and fuel efficiency standards for the medium- and heavy-duty highway vehicle sector. The agencies estimate that the combined standards would reduce carbon dioxide emissions by about 270 million metric tons and save about 530 million barrels of oil over the life of model year 2014 to 2018 heavy-duty vehicles.

Project Analysis

An individual project does not generate enough greenhouse gas emissions to significantly influence global climate change. Rather, global climate change is a cumulative impact. This means that a project may contribute to a potential impact through its incremental change in emissions when combined with the contributions of all other sources of greenhouse gases. In assessing cumulative impacts, it must be determined if a project’s incremental effect is “cumulatively considerable” (CEQA Guidelines Sections 15064(h)(1) and 15130). For one to make this determination, the incremental impacts of the project must be compared with the effects of past, current, and probable future projects. To gather sufficient information on a global scale of all past, current, and future projects to make this determination is a difficult, if not impossible, task.

7 This approach is supported by the Association of Environmental Professionals: Recommendations by the Association of Environmental Professionals on How to Analyze GHG Emissions and Global Climate Change in CEQA Documents (March 5, 2007), as well as the South Coast Air Quality Management District (Chapter 6: The CEQA Guide, April 2011) and the U.S. Forest Service (Climate Change Considerations in Project Level NEPA Analysis, July 13, 2009).
The Assembly Bill 32 Scoping Plan mandated by Assembly Bill 32 includes the main strategies California would use to reduce greenhouse gas emissions. As part of its supporting documentation for the Draft Scoping Plan, the California Air Resource Board released the greenhouse gas inventory for California (forecast last updated: October 28, 2010). The forecast is an estimate of the emissions expected to occur in 2020 if none of the foreseeable measures included in the Scoping Plan were implemented. The base year used for forecasting emissions is the average of statewide emissions in the greenhouse gas inventory for 2006, 2007, and 2008.

![California Greenhouse Gas Emissions Forecast](http://www.arb.ca.gov/cc/inventory/data/forecast.htm)

**Figure 3-1: California Greenhouse Gas Forecast**

Caltrans and its parent agency, the State Transportation Agency, have taken an active role in addressing greenhouse gas emission reduction and climate change. Recognizing that 98 percent of California’s greenhouse gas emissions are from the burning of fossil fuels and 40 percent of all human-made greenhouse gas emissions are from transportation, Caltrans has created and is implementing the Climate Action Program at Caltrans (published in December 2006).  

**Build Alternatives (Operational Emissions)**

One of the main strategies in Caltrans’ Climate Action Program to reduce greenhouse gas emissions is to make California’s transportation system more efficient. The

---

8 Caltrans Climate Action Program can be found at the following web address: [http://www.dot.ca.gov/hq/tpp/offices/ogm/key_reports_files/State_Wide_Strategy/Caltrans_Climate_Action_Program.pdf](http://www.dot.ca.gov/hq/tpp/offices/ogm/key_reports_files/State_Wide_Strategy/Caltrans_Climate_Action_Program.pdf)
highest levels of carbon dioxide from mobile sources, such as automobiles, occur at stop-and-go speeds (0 to 25 miles per hour) and speeds over 55 miles per hour. The most severe emissions occur from 0 to 25 miles per hour (see Figure 3-2).

![Figure 3-2: Possible Effect of Traffic Operation Strategies in Reducing On-Road Carbon Dioxide Emission](image)

Future-year greenhouse gas emissions associated with the two build alternatives were obtained by comparing emissions with the project in 2020\(^1\) (when Phase 1 would be completed), 2028 (when Phase 2 would be completed), and 2048 (the design year) to emissions without the project; the EMFAC 2011 emissions model was used for the comparison. It is important to note that carbon dioxide emissions are useful only for a comparison between alternatives and are not necessarily an accurate reflection of what the true carbon dioxide emissions would be because carbon dioxide emissions are dependent on factors that are not part of the emissions model, such as the fuel mix, rate of acceleration, and the aerodynamics and efficiency of the vehicles.\(^1\)

Table 3-3 shows the results of the alternatives’ comparison. To satisfy CEQA requirements, the No-Build Alternative scenario for the year when the Notice of Preparation was filed with the California State Clearinghouse, Office of Planning and

---


\(^10\) The traffic analysis for Phase 1 assumed an opening year of 2018, but that is now projected to be 2020.

\(^11\) The EMFAC model emission rates are only for direct engine-out carbon dioxide emissions, not for a full fuel cycle. In addition, fuel cycle emission rates can vary dramatically depending on the amount of additives (e.g., ethanol) and the source of the fuel components.
Research (2010) was considered the baseline condition. Baseline emissions were estimated using the EMFAC 2011 model and annual daily traffic volumes that were extrapolated from 2020 projections from the project’s traffic study and addendum.

Table 3-3: Summary of Operational Greenhouse Gas Emissions (metric tons carbon dioxide per year)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>2010</th>
<th>2020</th>
<th>2028</th>
<th>2048</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Build Alternative</td>
<td>198,932</td>
<td>246,162</td>
<td>294,513</td>
<td>424,066</td>
</tr>
<tr>
<td>Phase 1</td>
<td>–</td>
<td>243,804</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>–</td>
<td>–</td>
<td>293,002</td>
<td>410,192</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>–</td>
<td>–</td>
<td>290,588</td>
<td>412,523</td>
</tr>
</tbody>
</table>

Comparison of Build Alternatives to No-Build Alternative

<table>
<thead>
<tr>
<th>Alternative to No-Build Alternative</th>
<th>2010</th>
<th>2028</th>
<th>2048</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 Build to No-Build Alternative</td>
<td>–</td>
<td>-2,358 (47,230)</td>
<td>–</td>
</tr>
<tr>
<td>Alternative 1 to No-Build Alternative</td>
<td>–</td>
<td>-1,511 (94,070)</td>
<td>-13,875 (211,260)</td>
</tr>
<tr>
<td>Alternative 2 to No-Build Alternative</td>
<td>–</td>
<td>-3,925 (91,656)</td>
<td>-11,543 (213,591)</td>
</tr>
</tbody>
</table>

*a Comparison of the 2010 baseline conditions to the build alternatives.

Source: Air Quality Study Report (May 2016)

As shown in the table, the two build alternatives would result in increased carbon dioxide emissions relative to the baseline condition and decreased carbon dioxide emissions for future conditions when compared to the No-Build Alternative. Although greenhouse gas emissions are anticipated to increase relative to the baseline condition, future congestion associated with the No-Build Alternative would contribute to potentially higher emissions than if either of the build alternatives were constructed. This shows the benefit of one of the main California Action Plan Strategies to reduce greenhouse gas emissions through transportation efficiency.

The two build alternatives would support implementation of Assembly Bill 32 through Senate Bill 375. Based on the emissions results, the two build alternatives would reduce congestion and overall greenhouse gas emissions in the project study area. StanCOG’s 2014 Regional Transportation Plan/Sustainable Communities Strategy identifies the Senate Bill 375 goals for 2020 and 2035, which are a 5 percent and 10 percent reduction in per capita greenhouse gases from 2005 levels. The plan and strategy include a goal to reduce greenhouse gas emissions by 24 percent in 2020 and 21 percent in 2035.
The proposed project is included in a list of Tier I improvements identified in the plan for each transportation mode type, including roadways, transit, bicycle and pedestrian, and aviation. Improvements are intended to implement a balanced multi-modal circulation system and improve air quality by reducing vehicle miles traveled and greenhouse gas emissions, while accommodating anticipated travel demand. Beyond the typical transportation system improvements (widening roadways and adding traffic signals to improve congestion and mobility), StanCOG is committed to analyzing alternative strategies, such as Transportation Systems Management, Transportation Demand Management, and intelligent transportation systems to increase system efficiencies. The alternative strategies would provide increased opportunities for non-auto travel to reduce vehicle miles traveled and improve overall air quality. These alternative strategies, including mass transit, were analyzed as part of the early planning stages for the project. These alternatives were considered and assessed as described in Section 1.6, Alternatives Considered but Eliminated from Further Discussion.

**Construction Emissions**

Greenhouse gas emissions for transportation projects can be divided into those produced during construction and those produced during operations. Construction greenhouse gas emissions include emissions produced as a result of material processing, emissions produced by onsite construction equipment, and emissions arising from traffic delays due to construction. These emissions would be produced at different levels throughout the construction phase; their frequency and occurrence can be reduced through innovations in plans and specifications and by implementing better traffic management during construction phases. In addition, with innovations such as longer pavement lives, improved traffic management plans, and changes in materials, the greenhouse gas emissions produced during construction can be mitigated to some degree by longer intervals between maintenance and rehabilitation events.
Caltrans continues to be involved on the Governor’s Climate Action Team as the California Air Resources Board works to implement Executive Orders S-3-05 and S-01-07 and help achieve the targets set forth in Assembly Bill 32. Many of the strategies Caltrans is using to help meet the targets in Assembly Bill 32 come from then-Governor Arnold Schwarzenegger’s Strategic Growth Plan for California. The Strategic Growth Plan targeted a significant decrease in traffic congestion below 2008 levels and a corresponding reduction in greenhouse gas emissions, while accommodating growth in population and the economy. The Strategic Growth Plan relies on a complete systems approach to attain carbon dioxide reduction goals: system monitoring and evaluation, maintenance and preservation, smart land use and demand management, and operational improvements as shown in Figure 3-3.

Caltrans also supports efforts to reduce vehicle miles traveled by planning and implementing smart land use strategies: job/housing proximity, developing transit-oriented communities, and high-density housing along transit corridors. Caltrans works closely with local jurisdictions on planning activities but does not have local land use planning authority. Caltrans also assists efforts to improve the energy efficiency of the transportation sector by increasing vehicle fuel economy in new cars, light- and heavy-duty trucks. Caltrans is doing this by supporting ongoing research efforts at universities, supporting legislative efforts to increase fuel economy, and participating on the Climate Action Team. It is important to note, however, that control of fuel economy standards is held by the U.S. Environmental Protection Agency and the California Air Resources Board.

Caltrans is also working toward enhancing the State’s transportation planning process to respond to future challenges. Similar to requirements for regional transportation plans under Senate Bill 375 (Steinberg 2008), Senate Bill 391 (Liu 2009) requires the State’s long-range transportation plan to meet California’s climate change goals under Assembly Bill 32.

The California Transportation Plan is a statewide, long-range transportation plan to meet our future mobility needs and reduce greenhouse gas emissions. The plan defines performance-based goals, policies, and strategies to achieve our collective vision for California’s future, statewide, integrated, multimodal transportation system. The purpose of the California Transportation Plan is to provide a common policy framework that would guide transportation investments and decisions by all levels of government, the private sector, and other transportation stakeholders. Through this policy framework, the California Transportation Plan 2040 would identify the
statewide transportation system needed to achieve maximum feasible greenhouse gas emission reductions while meeting the State’s transportation needs. Table 3-4 shows Caltrans and statewide efforts that Caltrans is implementing to reduce greenhouse gas emissions. Detailed information about each strategy is included in the Climate Action Program at Caltrans (December 2006).
## Table 3-4: Climate Change/Carbon Dioxide Reduction Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Program</th>
<th>Partnership</th>
<th>Method/Process</th>
<th>Estimated Carbon Dioxide Savings Million Metric Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lead Agency</td>
<td>2010</td>
<td>2020</td>
</tr>
<tr>
<td><strong>Smart Land Use</strong></td>
<td>Intergovernmental Review</td>
<td>Caltrans</td>
<td>Local governments</td>
<td>Review and seek to mitigate development proposals</td>
</tr>
<tr>
<td></td>
<td>Planning Grants</td>
<td>Caltrans</td>
<td>Local and regional agencies &amp; other stakeholders</td>
<td>Competitive selection process</td>
</tr>
<tr>
<td></td>
<td>Regional Plans and Blueprint Planning</td>
<td>Regional Agencies</td>
<td>Caltrans</td>
<td>Regional plans and application process</td>
</tr>
<tr>
<td><strong>Operational Improvements &amp; Intelligent Transportation System Deployment</strong></td>
<td>Strategic Growth Plan</td>
<td>Caltrans</td>
<td>Regions</td>
<td>State Intelligent Transportation Systems; Congestion Management Plan</td>
</tr>
<tr>
<td><strong>Mainstream Energy &amp; Greenhouse Gas into Plans and Projects</strong></td>
<td>Office of Policy Analysis &amp; Research; Division of Environmental Analysis</td>
<td>Interdepartmental effort</td>
<td>Policy establishment, guidelines, technical assistance</td>
<td>Not Estimated</td>
</tr>
<tr>
<td><strong>Educational &amp; Information Program</strong></td>
<td>Office of Policy Analysis &amp; Research</td>
<td>Interdepartmental, California Environmental Protection Agency, California Air Resource Board, California Energy Commission</td>
<td>Analytical report, data collection, publication, workshops, outreach</td>
<td>Not Estimated</td>
</tr>
<tr>
<td><strong>Fleet Greening &amp; Fuel Diversification</strong></td>
<td>Division of Equipment</td>
<td>Department of General Services</td>
<td>Fleet Replacement B20 B100</td>
<td>0.0045</td>
</tr>
<tr>
<td><strong>Non-vehicular Conservation Measures</strong></td>
<td>Energy Conservation Program</td>
<td>Green Action Team</td>
<td>Energy Conservation Opportunities</td>
<td>0.117</td>
</tr>
<tr>
<td><strong>Portland Cement</strong></td>
<td>Office of Rigid Pavement</td>
<td>Cement and Construction Industries</td>
<td>2.5 % limestone cement mix 25% fly ash cement mix &gt; 50% fly ash/slag mix</td>
<td>1.2</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Caltrans Director’s Policy 30 (DP-30) Climate Change (June 22, 2012) is intended to establish Caltrans policy that would ensure coordinated efforts to incorporate climate change into Caltrans’ decisions and activities.

Caltrans Activities to Address Climate Change (April 2013)\textsuperscript{12} provides a comprehensive overview of activities undertaken by Caltrans statewide to reduce greenhouse gases resulting from agency operations.

The following measures would also be included in the project to reduce the greenhouse gas emissions and potential climate change impacts from the project:

GHG-1 The California Department of Transportation and the California Highway Patrol are working with regional agencies to implement intelligent transportation systems to help manage the efficiency of the existing highway system. Intelligent transportation systems commonly consist of electronics, communications, or information processing used singly or in combination to improve the efficiency or safety of a surface transportation system.

GHG-2 In addition, the Stanislaus Council of Governments would provide Commute Connections, a ridesharing service, and park-and-ride facilities to help manage the growth in demand for highway capacity.

GHG-3 Landscaping reduces surface warming, and through photosynthesis, decreases carbon dioxide. The California Department of Transportation would provide new corridor landscaping that complies with statewide drought restrictions and Modesto’s tree preservation ordinance. The landscaping would help offset any potential carbon dioxide emissions increase.

GHG-4 According to California Department of Transportation’s Standard Specifications, the contractor must comply with all local air pollution control district’s rules, ordinances, and regulations for air quality restrictions, including minimizing idling time for diesel construction equipment per San Joaquin Valley Air Pollution Control District Regulation VIII.

Adaptation Strategies
“Adaptation strategies” refer to how Caltrans and others can plan for the effects of climate change on the state’s transportation infrastructure and strengthen or protect

\textsuperscript{12} \url{http://www.dot.ca.gov/hq/tpp/offices/orip/climate_change/projects_and_studies.shtml}
the facilities from damage. Climate change is expected to produce increased variability in precipitation, rising temperatures, rising sea levels, variability in storm surges and intensity, and the frequency and intensity of wildfires. These changes may affect the transportation infrastructure in various ways, such as damage to roadbeds from longer periods of intense heat; increasing storm damage from flooding and erosion; and inundation from rising sea levels. These effects would vary by location and may, in the most extreme cases, require that a facility be relocated or redesigned. There may also be economic and strategic ramifications as a result of these types of impacts to the transportation infrastructure.

At the federal level, the Climate Change Adaptation Task Force, co-chaired by the Council on Environmental Quality, the Office of Science and Technology Policy, and the National Oceanic and Atmospheric Administration, released its interagency task force progress report on October 28, 2011\(^\text{13}\), outlining the federal government’s progress in expanding and strengthening the U.S.’s capacity to better understand, prepare for, and respond to extreme events and other climate change impacts. The report provides an update on actions in key areas of federal adaptation, including: building resilience in local communities, safeguarding critical natural resources such as freshwater, and providing accessible climate information and tools to help decision-makers manage climate risks.

Climate change adaptation must also involve the natural environment as well. Efforts are underway on a statewide level to develop strategies to cope with impacts to habitat and biodiversity through planning and conservation. The results of these efforts would help California agencies plan and implement mitigation strategies for programs and projects.

On November 14, 2008, then-Governor Arnold Schwarzenegger signed Executive Order S-13-08, which directed a number of state agencies to address California’s vulnerability to sea level rise caused by climate change. This executive order set in motion several agencies and actions to address the concern of sea level rise.

In addition to addressing projected sea level rise, the California Natural Resources Agency (Resources Agency) was directed to coordinate with local, regional, state, and federal public and private entities to develop the California Climate Adaptation Strategy (Dec 2009),\(^\text{14}\) which summarizes the best-known science on climate change

\(^{13}\) [http://www.whitehouse.gov/administration/eop/ceq/initiatives/adaptation](http://www.whitehouse.gov/administration/eop/ceq/initiatives/adaptation)

impacts to California, assesses California’s vulnerability to the identified impacts, and then outlines solutions that can be implemented within and across state agencies to promote resiliency.

The strategy outline is in direct response to Executive Order S-13-08 that specifically asked the Resources Agency to identify how state agencies can respond to rising temperatures, changing precipitation patterns, sea level rise, and extreme natural events. Numerous other state agencies were involved in the creation of the Adaptation Strategy document, including the California Environmental Protection Agency; Business, Transportation and Housing; Health and Human Services; and the Department of Agriculture. The document is broken down into strategies for different sectors that include: public health; biodiversity and habitat; ocean and coastal resources; water management; agriculture; forestry; and transportation and energy infrastructure. As data continues to be developed and collected, the state’s adaptation strategy would be updated to reflect current findings.

The National Academy of Science was directed to prepare a Sea Level Rise Assessment Report\textsuperscript{15} to recommend how California should plan for future sea level rise. The report was released in June 2012 and included the following:

- Relative sea level rise projections for California, Oregon, and Washington, taking into account coastal erosion rates, tidal impacts, El Niño and La Niña events, storm surge and land subsidence rates
- The range of uncertainty in selected sea level rise projections
- A synthesis of existing information on projected sea level rise impacts to state infrastructure (such as roads, public facilities and beaches), natural areas, and coastal and marine ecosystems
- A discussion of future research needs regarding sea level rise

In 2010, interim guidance was released by the Coastal Ocean Climate Action Team as well as Caltrans as a method to initiate action and discussion of potential risks to the state’s infrastructure due to projected sea level rise. Subsequently, the Coastal Ocean Climate Action Team updated the Sea Level Rise guidance to include information presented in the National Academy’s Study.

All state agencies that are planning to construct projects in areas vulnerable to future sea level rise are directed to consider a range of sea level rise scenarios for the years 2050 and 2100 to assess project vulnerability and, to the extent feasible, reduce expected risks and increase resiliency to sea level rise. Sea level rise estimates should also be used in conjunction with information on local uplift and subsidence, coastal erosion rates, predicted higher high water levels, storm surge and storm wave data.

All projects that have filed a Notice of Preparation as of the date of Executive Order S-13-08, and/or are programmed for construction funding through 2013, or are routine maintenance projects may, but are not required to, consider these planning guidelines. A Notice of Preparation for the project was prepared on January 7, 2010. However, the proposed project is outside the coastal zone, and direct impacts to transportation facilities due to projected sea level rise are not expected.

Executive Order S-13-08 also directed the Business, Transportation, and Housing Agency to prepare a report to assess the vulnerability of transportation systems to sea level rise affecting the safety, maintenance, and operational improvements of the system, and the economy of the state. Caltrans continues to work on assessing the transportation system vulnerability to climate change, including the effect of sea level rise.

Currently, Caltrans is working to assess which transportation facilities are at greatest risk from climate change effects. However, without statewide planning scenarios for relative sea level rise and other climate change effects, Caltrans has not been able to determine what change, if any, may be made to its design standards for its transportation facilities. Once statewide planning scenarios become available, Caltrans would be able review its current design standards to determine what changes, if any, may be needed to protect the transportation system from sea level rise.

Climate change adaptation for transportation infrastructure involves long-term planning and risk management to address vulnerabilities in the transportation system from increased precipitation and flooding; the increased frequency and intensity of storms and wildfires; rising temperatures; and rising sea levels. Caltrans is an active participant in the efforts being conducted in response to Executive Order S-13-08 and is mobilizing to be able to respond to the National Academy of Science Sea Level Rise Assessment Report.
3.3 Mitigation Measures for Significant Impacts under the California Environmental Quality Act

Chapter 3, California Environmental Quality Act Evaluation, provides a full discussion of all avoidance, minimization, and/or mitigation measures. No additional measures are needed to address impacts under CEQA.

3.4 Environmentally Superior Alternative

CEQA Guidelines (Section 15126.6(e)(2)) require that an environmentally superior alternative be identified. The environmentally superior alternative is generally defined as the alternative which would result in the least adverse environmental impacts to the project area and vicinity. If the No-Build Alternative is found to be the environmentally superior alternative, the document must identify an environmentally superior alternative among the other alternatives.

The No-Build Alternative would best avoid impacts as compared to the proposed build alternatives, and is thus the environmentally superior alternative. Although the No-Build Alternative would not result in any physical impacts to the environment, it would fail to meet the purpose and need of the project and would therefore not be considered an environmentally superior alternative.

Each build alternative meets the purpose of the project. Similar potential impacts with the implementation of Alternative 1 and 2 would be anticipated in the areas of land use, growth, farmlands, wetlands, utilities, traffic and transportation, cultural resources, water quality, hazardous waste, air quality and energy.

The main differences in impacts between the alternatives would be anticipated in the areas of business displacements, visual impacts, hydrology, paleontology, and noise. Alternative 1 would result in fewer impacts to hydrology, paleontology and noise, while Alternative 2 would have fewer impacts relative to business displacements and visual resources. Alternative 2 is identified as the environmentally superior alternative.

Determination of the environmentally superior alternative does not preclude a CEQA lead agency from adopting other alternatives. The lead agency may adopt a statement of overriding considerations which describes the agency’s decision to approve a project despite its significant adverse environmental impacts.
Chapter 4  Comments and Coordination

Early and continuing coordination with the general public and public agencies is an essential part of the environmental process. It helps planners determine the necessary scope of environmental documentation and the level of analysis required, and identify potential impacts and avoidance, minimization, and/or mitigation measures and related environmental requirements. Agency consultation and public participation for this project have been accomplished through a variety of formal and informal methods, including Project Development Team meetings, a public scoping meeting, interagency coordination meetings, stakeholder meetings, public meetings/open houses and the dissemination of project information via newsletters, fact sheets, a project website, and other project updates. This chapter summarizes the results of Caltrans’ efforts to identify, address, and resolve project-related issues through early and continuing coordination.

4.1  Public Agencies Consultation and Coordination

4.1.1  U.S. Environmental Protection Agency/Federal Highway Administration
Concurrence of air quality conformity was provided by StanCOG’s interagency consultation partners, which include the U.S. Environmental Protection Agency and Federal Highway Administration. A technical memorandum summarizing the Air Quality Study Report findings was circulated on April 1, 2016. Concurrence was received from the U.S. Environmental Protection Agency Region 9 on April 25, 2016 and the Federal Highway Administration on April 26, 2016, concluding that the proposed project is not a project of air quality concern (see Appendix I). Details of the air quality conformity analysis are included in Section 2.2.6, Air Quality, and Appendix I.

4.1.2  Native American Heritage Commission
Cultural resources technical studies prepared for the project included the results of coordination with the Native American Heritage Commission. Two requests for a search of the Sacred Lands File and Native American Contacts List were submitted to the Native American Heritage Commission. The most recent request was submitted on June 26, 2014, and a response was received on August 12, 2014.
The following Native American representatives were consulted in 2014:

- Neil Peyron, Chairperson, Tule River Indian Tribe
- Kerri Vera, Environmental Department, Tule River Indian Tribe
- Joey Garfield, Tribal Archaeologist, Tule River Indian Tribe
- Katherine Erolinda Perez, Northern Valley Yokuts Tribe
- Les James, Spiritual Leader, Southern Sierra Miwuk Nation
- Lois Martin, Chairperson, Southern Sierra Miwuk Nation

An earlier request was made on June 11, 2010, and a response was received on June 16, 2010. The following Native American representatives were consulted in 2010:

- Anthony Brochini, Chairperson, Southern Sierra Miwuk Nation
- Ryan Garfield, Chairperson, Tule River Indian Tribe
- Les James, Spiritual Leader, Southern Sierra Miwuk Nation
- Jay Johnson, Spiritual Leader, Southern Sierra Miwuk Nation
- Katherine Erolinda Perez, Northern Valley Yokuts Tribe

In both responses, the Native American Heritage Commission indicated that the Sacred Lands File search was negative for the presence of Native American cultural resources in the area of potential effects. The Native American Heritage Commission provided a list of individuals representing three tribes. Letters were sent to these representatives on August 13, 2014 and June 22, 2010. In October 2010, project archaeologists attempted to contact these individuals via telephone. To date, no responses have been received.

4.1.3 California Department of Fish and Wildlife
Preparation of the State Route 132 Natural Environmental Study required accessing the California Department of Fish and Wildlife’s California Natural Diversity Database to determine the potential presence of state-listed and special-status species in the project study area. The database was accessed in June 2016, January 2016, October 2015 and October 2014. However, Caltrans has not yet coordinated directly with the California Department of Fish and Wildlife personnel.
4.1.4 U.S. Fish and Wildlife Service
Preparation of the State Route 132 West Freeway/Expressway Natural Environmental Study included a request on June 20, 2016, October 26, 2015 and October 9, 2014 to U.S. Fish and Wildlife Service for a list of threatened and endangered species with the potential to occur in Stanislaus County (see Appendix I of this document). Caltrans also coordinated with U.S. Fish and Wildlife Service personnel in 2002 to confirm that the project area was outside the range for the federally endangered San Joaquin kit fox and therefore that species was excluded from the impact analysis.

4.1.5 U.S. Army Corps of Engineers
Caltrans staff coordinated with U.S. Army Corps of Engineers staff in January 2011 to conduct field verification in support of a jurisdictional determination. Additional data was requested by the U.S. Army Corps of Engineers, and it was provided on May 5, 2011 and June 21, 2011 to complete the verification. The jurisdictional determination was verified on July 29, 2011 and again on May 26, 2015 in response to a change in field conditions in which a seasonal wetland had been removed and was no longer present. At this time, a Clean Water Act Section 404 Permit is not needed because there are no impacts to waters of the U.S.

4.1.6 California Department of Toxic Substances Control
With the re-initiation of the project in 2004, Caltrans began coordination with the California Department of Toxic Substances Control regarding the three soil stockpiles within the proposed location of the project. To date, there has been ongoing coordination with and oversight by the California Department of Toxic Substances Control. Under the oversight of the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board, Caltrans initiated numerous site investigations that included stockpile characterization and a human health risk assessment.

Site investigations were conducted from 2004 to 2014 to characterize the nature and extent of contaminants associated with the soil stockpiles, to quantify risk to human health and the environment, and to evaluate and select the most appropriate remedial alternative that addresses the identified contaminants of concern.

The Soil Stockpiles Feasibility Study (see Appendix G) identified and evaluated applicable soil remediation options for the three soil stockpiles. Based on this study, a Draft Final Remedial Action Plan was prepared to describe the recommended
remedial alternative. The Draft Final Remedial Action Plan is included in Appendix H of this document.

California Department of Toxic Substances Control outreach activities have included interviewing and briefing representatives of the City of Modesto, Stanislaus County, and local residents at several intervals from 2011 to 2013. In addition to the public meetings described in Section 4.2, Public Participation, the following community outreach was conducted by the California Department of Toxic Substances Control:

- November 28, 2012: California Department of Toxic Substances Control staff and Caltrans staff met with five local residents and a local reporter and led them on a tour of soil stockpile 1. They also joined California Department of Toxic Substances Control to observe the contract workers as they were sampling monitoring well 2.

- April 2013: California Department of Toxic Substances Control conducted interviews with staff of the City of Modesto and Stanislaus County, as well as community members, to discuss potential site cleanup issues and receive input for the Draft Final Remedial Action Plan.

### 4.1.7 Central Valley Regional Water Quality Control Board

Caltrans continues to coordinate with the Central Valley Regional Water Quality Control Board concerning groundwater (see Section 2.2.5, Hazardous Waste/Materials). Coordination with the Central Valley Regional Water Quality Control Board began in December 2011. This coordination effort led to the preparation of the Soil Stockpiles Feasibility Study and the Draft Final Remedial Action Plan.

A Clean Water Act Section 401 Permit would not be needed to authorize the discharge of stormwater into waters of the U.S. However, a permit would be needed if the project involves the pumping of groundwater and subsequent discharging into waters of the U.S. Also, the construction/implementation of trenches intended for stormwater infiltration and evaporation could trigger the need for a Regional Water Quality Control Board Permit if a trench is classified as a Class 5 injection well (e.g., a vertical drywell or pipe intended to allow for infiltration into the groundwater). If required, prior to construction, a Clean Water Act Section 401 Permit application would be submitted and a permit would be obtained for impacts to waters of the State from the Central Valley Regional Water Quality Control Board.
If the regional board is not required to regulate activities under Section 401, impacts to waters of the State, specifically the seasonal wetlands identified in Section 2.3.1, would be regulated under the Porter-Cologne Authority. A Water Quality Certification would be acquired prior to construction.

4.1.8 California State Historic Preservation Officer
Coordination occurred with the State Historic Preservation Officer on May 16, 2012 to confirm the 2011 area of potential effects and on February 6, 2015 for the 2014 supplemental area of potential effects (see Appendix I of this document). The State Historic Preservation Officer concurred with the findings under Section 106 that two properties were eligible and 169 properties were not eligible for the National Register of Historic Places and the California Register of Historical Resources.

4.2 Public Participation
Public participation methods used for the project have included a variety of approaches, including stakeholder meetings/targeted outreach, mailing lists, and public information meetings/open houses (described below). Public participation tools have included fact sheets, multilingual community flyers and announcements, focus group outreach, display boards, and a project website. Newspaper ads and meeting notifications in English and Spanish were published in *The Modesto Bee* and *Vida en el Valle*, respectively.

4.2.1 Notice of Preparation
A Notice of Preparation was sent to numerous state and local agencies and recorded at the State Clearinghouse on January 7, 2010. The Notice of Preparation was also published in English in *The Modesto Bee* on January 13, 2010 and in Spanish in *Vida en el Valle* on January 20, 2010.

4.2.2 Scoping Meeting
A scoping meeting was held on January 25, 2010 at the SOS Club in Modesto. The purpose of the scoping meeting/open house was to inform the public and other interested parties about the project and to provide members of the public with an opportunity to voice their comments or concerns about the project. The meeting was conducted as an open house, with members of the SR 132 Project Team available to receive comments and answer questions. Exhibits provided information about the project, schedule, right-of-way processes, and environmental process. They also explained how to comment on the project and how to stay involved.
A total of 105 members of the public signed in at the meeting. Attendees were encouraged to submit written comments via comment sheets that were supplied, in addition to drawing on or otherwise commenting on the maps. A total of 18 comment sheets were received, and a public stenographer recorded 20 comments. Oral comments and suggestions were also gathered by personnel staffing the meeting.

Attendees were concerned about impacts to their property values and impacts during construction. Pollution (especially noise and air quality) was a significant concern, but people were also concerned about the potential project impact on agriculture. The proposed project cost was stated as a concern, but several people stated that the proposed project is needed. Some people suggested that rather than a freeway/expressway being constructed, the existing roadway and intersections should be improved. Connectivity for bicyclists and pedestrians was cited as a need, and access at Carpenter Road was a concern brought up by local businesses.

4.2.3 Plan Implementation Project Meetings
A stakeholder outreach group known as the Plan Implementation Project Team met between 2010 and 2014. The team was composed of representatives from Caltrans, StanCOG, the public works departments of the local jurisdictions, the Chamber of Commerce, the Manufacturers Council for the Central Valley, businesses, the general public and elected officials. Plan Implementation Project meetings were held at the StanCOG office at 1111 I Street in Modesto. Topics discussed during the meetings included funding, right-of-way, outreach, traffic control, noise, agricultural concerns, project schedule, project phasing and the scope of technical studies. Plan Implementation Project meetings were held on the following dates:

- January 19, 2010
- March 24, 2010
- September 30, 2010
- January 26, 2011
- July 27, 2011
- October 26, 2011
- February 22, 2012
- July 31, 2014

The topic of the Soil Stockpiles Feasibility Study and the Draft Final Remedial Action Plan for the Caltrans Modesto Soil Stockpiles was discussed on October 26, 2011 and at all meetings thereafter.

4.2.4 Public Information Meetings, Neighborhood Meetings, Open Houses
Public information meetings/open houses were conducted between the scoping meeting held in January 2010 and the public hearing that would be held when the
Draft environmental document is circulated to the public. These meetings provided project updates, addressed questions and concerns from members of the public, and receive comments on the proposed project. The meetings are summarized below.

**May 4, 2010—Martone Elementary School (Modesto)**
The purpose of this neighborhood meeting was to inform the public and other interested parties about the project and to solicit comments or concerns. The meeting was conducted as an open house and included informational display boards and project maps. A total of 37 members of the public signed in at the meeting, and 22 comment cards/letters were received regarding the new highway alignment, how the proposed project would relieve downtown traffic, noise levels, loss of property, and funding.

**September 8, 2011—Pearson Education Center (Modesto)**
The purpose of this neighborhood meeting was to solicit public comments, notably from those in the Emerald Avenue and Elm Tract neighborhood areas, about the project. The meeting was conducted as an open house and included project maps and exhibits, information on how to comment on the project, and how to stay involved. SR 132 Project Team members were present to explain the displays, answer questions, and receive public input. A total of 35 members of the public signed in at the meeting, and seven comment cards/letters were received. Attendees noted concerns about noise and air quality issues, residential relocations, and the need for SR 132 (existing Maze Boulevard) to be improved.

**December 7, 2011—Mark Twain Junior High School (Modesto)**
The purpose of this neighborhood meeting was to solicit public comments about the project. The meeting was conducted as an open house with project maps and exhibits on display. Members of the SR 132 Project Team were present to receive comments and answer questions. A total of 183 members of the public signed in at the meeting and were encouraged to submit written comments on comment cards. Fifty-nine comment cards/letters were received: 43 handwritten comment cards and 16 dictated to the public stenographer. Property owners were concerned about impacts to their property values and construction-related impacts. Numerous meeting attendees commented on potential noise and air quality impacts as well as the Caltrans Modesto Soil Stockpiles south of Kansas Avenue.
August 18, 2014—King-Kennedy Memorial Center (Modesto)

The purpose of this public information meeting/open house was to provide updated project information about the alternatives to be studied in this document. A total of 137 members of the public signed in at the meeting. SR 132 Project Team members were present to address comments and questions using exhibit boards and large format maps of the project. A stenographer was also present to take comments from meeting attendees. Representatives from Caltrans and StanCOG made a presentation on the project schedule, construction phasing, funding, project alternatives, and the status of the Draft Final Remedial Action Plan. Questions and comments from meeting attendees were answered by members of the SR 132 Project Team. Ten comment cards were completed, and five comments were dictated to the stenographer. Meeting attendees provided comments and posed questions on the alternatives for remediation of the soil stockpiles, proposed noise barriers, air quality impacts, connectivity to local streets, relocations, and relocation assistance.
Chapter 5  List of Preparers

This document was prepared by the following staff:

**Caltrans Staff**

Jeanne Day Binning, Branch Chief/Senior Environmental Planner. Ph.D., 
Anthropology, University of California, Riverside; B.A., Anthropology, 
California State University, Northridge; more than 40 years of cultural 
resources management experience, Great Basin and California. Contribution: 
Principal Investigator, Prehistoric Archaeology.

Jon L. Brady, Associate Environmental Planner (Architectural History/Archaeology). 
B.A., Political Science and Anthropology, M.A., History, California State 
University, Fresno; 35 years of cultural resource experience. Contribution: 
Co-Principal, Prehistoric/Historic Archaeology and Principal Architectural 
Historian.

Abdulrahim N. Chafi, Ph.D., P.E. Civil/Environmental Engineer. Registered Civil 
Engineer in the State of California. Ph.D., Environmental Engineering, 
California Coast University, Santa Ana; B.S., M.S., Chemistry and M.S. 
Civil/Environmental Engineering, California State University, Fresno; more 
than 15 years of environmental technical studies experience. Contribution: Air 
Quality and Noise oversight.

Jaimee Cornwell, Associate Environmental Planner (Natural Science). B.A., Biology, 
University of Montana; 12 years of biological experience. Contribution: 
Biology oversight.

Rajeev Dwivedi, Associate Engineering Geologist. Ph.D., Environmental 
Engineering, Oklahoma State University, Stillwater; more than 25 years of 
environmental technical studies experience. Contribution: Water Quality 
oversight.

Robyn D. Fong, Landscape Associate. B.S., Landscape Architecture, California 
Polytechnic State University; 16 years of landscape architecture experience. 
Contribution: Visual/Aesthetics oversight.
Dena Gonzalez, Senior Environmental Planner. B.S., Biology, California State University, Fresno; 13 years of biological experience. Contribution: Biology oversight, Senior review.


Shane Gunn, Associate Environmental Planner. B.A., Speech Communication, California State University, Fresno; 7 years of environmental experience. Contribution: Peer review.

David Lanner, Associate Environmental Planner. B.F.A., Art, Utah State University; 16 years of cultural resources experience. Contribution: Lead Archaeological Surveyor.

Jennifer Lugo, Associate Environmental Planner. M.A., History, California State University, Fresno; B.A., History, Minor Political Science, California State University, Fresno; 11 years of environmental planning experience. Contribution: Environmental Generalist oversight.

Grace Magsayo, Project Manager. B.S., Civil Engineering; 18 years of experience. Contribution: Project Management.

Kristen Merriman, Associate Environmental Planner. B.A., Anthropology, California State University, Fresno; 13 years of environmental impact assessment experience. Contribution: Quality Assurance/Quality Control Reviewer.

Andrew Pochwatka, Transportation Engineer-Stormwater Coordinator. B.S., Civil Engineering, California State University, Sacramento; 17 years of experience. Contribution: Stormwater and National Pollutant Discharge System oversight.

Ken J. Romero, Senior Transportation Engineer. B.S., Civil Engineering, California State University, Fresno; 9 years of environmental technical studies experience. Contribution: Senior oversight of Air Quality, Noise and Water Quality.

Kimely Sawtell, Associate Environmental Planner. M.A., Geography, California State University, Fresno; B.S., Geography, California State University, Fresno; 16 years of environmental planning experience. Contribution: Quality Assurance/Quality Control Reviewer.
Denesse Segura, Environmental Planner (Natural Science). M.S., Biology, California State University, Dominguez Hills; B.S., Biology, University of California, Los Angeles. Contribution: Biology oversight.

Jane Sellers, Research Writer. B.A., Journalism, California State University, Fresno; more than 25 years of writing/editing, media, corporate communications, Request for Proposal, and public relations experience. Contribution: Quality Assurance/Quality Control Technical Editor.

Scott Smith, Senior Environmental Planner. B.A., Economics, California State University, Fresno; 13 years of environmental planning experience. Contribution: Senior environmental oversight.

Richard C. Stewart, Engineering Geologist, P.G. B.S., Geology, California State University, Fresno; more than 29 years of hazardous waste and water quality experience; 12 years of paleontology/geology experience. Contribution: Hazardous Waste, Paleontology, Caltrans Modesto Soil Stockpiles oversight.

Juergen Vespermann, Senior Environmental Planner. Engineering Degree, Fachhochschule Muenster, Germany; more than 20 years of transportation planning/environmental planning. Contribution: Senior oversight of Hazardous Waste, Paleontology and the Caltrans Modesto Soil Stockpiles.

**Consulting Staff**

Lauren Abom, Senior Environmental Planner/Environmental Lead. M.S., Environmental Education, California State University, Hayward; B.S., Environmental Resources Sciences, University of California, Davis; 16 years of environmental planning experience. Contribution: Consultant Project Manager and provided quality control on the Environmental Impact Report/Environmental Assessment.

Jeff Bingham, Environmental Manager. M.S., Environmental Studies, California State University, Fullerton, B.A., Anthropology, California State University, Long Beach; 30 years of environmental planning and transportation experience. Contribution: Quality control and oversight of the Environmental Impact Report/Environmental Assessment.

Jeremiah Johnston, Editor. B.A., Rhetoric and Communications Studies, California State University Long Beach; 12 years of editing and writing experience,
including 4 years of environmental planning experience. Contribution: General editor of the Environmental Impact Report/Environmental Assessment.


Eddie Barrios, Transportation Engineer. B.S., Civil, University of California at Berkeley; 17 years of transportation engineering experience. Contribution: Prepared the traffic and transportation/pedestrian and bicycle facilities section for the Environmental Impact Report/Environmental Assessment.


Joe D’onofrio, Air Quality Specialist. M.A., Environmental Planning, Arizona State University; 12 years of mobile source air quality experience. Contribution:
Prepared the air quality and energy sections for the Environmental Impact Report/Environmental Assessment.

Jonathan Russ, Certified Hazardous Materials Manager (CHMM), Senior 
Environmental Scientist. B.S., Wildlife Sciences, Penn State University; 26 
years of hazardous waste/materials experience. Contribution: Supported the 
preparation of the hazardous waste/materials section for the Environmental 
Impact Report/Environmental Assessment.

Misha Seguin, Botanist and Wetland Ecologist. B.S., Environmental Science, 
University of Idaho; 14 years of biological resources and environmental 
planning experience. Contribution: Prepared the biological resource sections 
for the Environmental Impact Report/Environmental Assessment.

Misty Swan, Environmental Planner. 26 years of environmental planning and 
engineering project support experience. Contribution: Prepared the 
visual/aesthetics section for the Environmental Impact Report/Environmental 
Assessment.

Phill Peters, Environmental Planner. M.S., Biology, Western Michigan University, 
Kalamazoo; 15 years of environmental planning experience. Contribution: 
Prepared the water quality, hydrology and floodplain, and geology sections for 
the Environmental Impact Report/Environmental Assessment.
Chapter 6

Distribution List

The Draft Environmental Impact Report/Environmental Assessment was distributed to the following agencies, elected officials, service providers, and utility companies.

**Federal Agencies**

- U.S. Army Corps of Engineers
  Regulatory Division
  1325 J Street, Room 1480
  Sacramento, CA 95814

- U.S. Fish and Wildlife Service
  Sacramento Fish and Wildlife Office
  2800 Cottage Way, Room W-2605
  Sacramento, CA 95825-1846

**State Agencies**

- State Clearinghouse
  Office of Planning and Research
  1400 10th Street
  Sacramento, CA 95814-5502

- California Department of Toxic Substances Control
  8800 Cal Center Drive
  Sacramento, CA 95826

- California Department of Fish and Wildlife
  1234 East Shaw Avenue, Suite 206
  Fresno, CA 93710
  ATTN: John McCamman

- California Public Utilities Commission
  770 L Street, Suite 1050
  Sacramento, CA 95814

- California Department of Parks and Recreation
  Office of Historic Preservation
  1416 9th Street, Room 1442
  Sacramento, CA 95814

- California Air Resources Board
  1001 I Street
  Sacramento, CA 95814
  ATTN: Mary Nichols

- Native American Heritage Commission
  915 Capitol Mall, Room 364
  Sacramento, CA 95814

- California Highway Patrol
  Central Division
  4030 Kiernan Avenue
  Modesto, CA 95356

- Central Valley Regional Water Quality Control Board
  11020 Sun Center Drive, Suite 200
  Rancho Cordova, CA 95670
**Local/Regional Agencies**

San Joaquin Valley Air Pollution Control District: Northern Region
4800 Enterprise Way
Modesto, CA 95356

Chief of Police Galen Carroll
Modesto Police Department
600 10th Street
Modesto, CA 95354

Sheriff-Coroner Adam Christianson
Stanislaus County Sheriff’s Department
939 Oakdale Road
Modesto, CA 95355

Fire Chief Sean Slamon
Modesto Fire Department
600 11th Street
Modesto, CA 95354

Fire Chief Mike Peyton
Modesto Fire Department: Fire Prevention Bureau
1010 10th Street
Modesto, CA 95354

Chief Gary Hinshaw
Stanislaus County Emergency Services
3705 Oakdale Road
Modesto, CA 95357

Stanislaus County Environmental Resources
Hazardous Materials Division
3800 Cornucopia Way, Suite C
Modesto, Ca 95358

**Elected Officials**

Office of Senator Anthony Cannella
State Capitol, Room 5082
Sacramento, CA 95814

Office of Senator Tom Berryhill
State Capitol, Room 3076
Sacramento, CA 95814

Congressman Jeff Denham
10th District Modesto Office
4701 Sisk Road, Suite 202
Modesto, CA 95356
**Chapter 6 • Distribution List**

| **Board of Supervisors** | **Terry Withrow**  
| Stanislaus County Supervisor Dist. 3 | Stanislaus County Supervisor Dist. 3  
| 1010 10th Street, Suite 6500 | 1010 10th Street, Suite 6500  
| Modesto, CA 95354 | Modesto, CA 95354  
| Vito Chiesa | Dick Monteith  
| Stanislaus County Supervisor Dist. 2 | Stanislaus County Supervisor Dist. 4  
| 1010 10th Street, Suite 6500 | 1010 10th Street, Suite 6500  
| Modesto, CA 95354 | Modesto, CA 95354  
| **Modesto City Council** | Jim DeMartini  
| Mayor Ted Brandvold | Stanislaus County Supervisor Dist. 5  
| 1010 10th Street | 1010 10th Street, Suite 6500  
| Modesto, CA 95354 | Modesto, CA 95354  
| Mani Grewal | Kristi Ah You  
| District 1 Councilmember | District 3 Councilmember  
| 1010 10th Street | 1010 10th Street  
| Modesto, CA 95354 | Modesto, CA 95354  
| Tony Madrigal | Bill Zoslocki  
| District 2 Councilmember | District 4 Councilmember  
| 1010 10th Street | 1010 10th Street  
| Modesto, CA 95354 | Modesto, CA 95354  
| Jenny Kenoyer | Douglass Ridenour  
| District 5 Councilmember | District 6 Councilmember  
| 1010 10th Street | 1010 10th Street  
| Modesto, CA 95354 | Modesto, CA 95354  
| Douglas Ridenour |  
| District 6 Councilmember |  
| 1010 10th Street |  
| Modesto, CA 95354 |  

State Route 132 West Freeway/Expressway Draft EIR/EA • 353
## Planning Commissioners

<table>
<thead>
<tr>
<th>Planning Commissioners</th>
<th>Modesto Planning Commission</th>
<th>Modesto Planning Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1010 10th Street, Suite 3300</td>
<td>1010 10th Street, Suite 3300</td>
</tr>
<tr>
<td></td>
<td>Modesto, CA 95354</td>
<td>Modesto, CA 95354</td>
</tr>
<tr>
<td></td>
<td>Attn: Sandra Lucas</td>
<td>Attn: Carmen Morad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planning Commissioners</th>
<th>Modesto Planning Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1010 10th Street, Suite 3300</td>
</tr>
<tr>
<td></td>
<td>Modesto, CA 95354</td>
</tr>
<tr>
<td></td>
<td>Attn: Rosa Escutia-Braaton</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planning Commissioners</th>
<th>Modesto Planning Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1010 10th Street, Suite 3300</td>
</tr>
<tr>
<td></td>
<td>Modesto, CA 95354</td>
</tr>
<tr>
<td></td>
<td>Attn: Amin Vohra</td>
</tr>
</tbody>
</table>

## Libraries

<table>
<thead>
<tr>
<th>Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanislaus County Library</td>
</tr>
<tr>
<td>Modesto Branch</td>
</tr>
<tr>
<td>1500 I Street</td>
</tr>
<tr>
<td>Modesto, CA 95354</td>
</tr>
</tbody>
</table>

## Tribes

<table>
<thead>
<tr>
<th>Tribes</th>
<th>Tule River Indian Tribe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mr. Joey Garfield</td>
</tr>
<tr>
<td></td>
<td>Tribal Archaeologist</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 589</td>
</tr>
<tr>
<td></td>
<td>Porterville, CA 93258</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tribes</th>
<th>Southern Sierra Miwuk Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ms. Lois Martin</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 186</td>
</tr>
<tr>
<td></td>
<td>Mariposa, CA 95338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tribes</th>
<th>North Valley Yokuts Tribe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ms. Katherine Erolinda Perez</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 717</td>
</tr>
<tr>
<td></td>
<td>Linden, CA 95236</td>
</tr>
</tbody>
</table>
Utilities

Water Service
City of Modesto  
1010 10th Street, Suite 2100  
Modesto, CA 95354

Modesto Irrigation District  
1231 11th Street  
Modesto, CA 95351

Wastewater
City of Modesto  
Wastewater Division Administration  
1221 Sutter Avenue  
Modesto, CA 95351

Gas and Electric
Modesto Irrigation District  
1231 11th Street  
Modesto, CA 95351

Pacific Gas and Electric  
226 East Yosemite Avenue  
Manteca, CA 95336

Telecommunications
AT&T  
3900 Sisk Road, Suite E1  
Modesto, CA 95356

Comcast  
3055 Comcast Place  
Livermore, CA 94551

Level 3 Communications  
1124 13th Street  
Modesto, CA 95354

Sprint  
330 Commerce, Suite 100  
Irvine, CA 92606
Page Intentionally Left Blank
Appendix A  California Environmental Quality Act Checklist
The following checklist identifies physical, biological, social and economic factors that might be affected by the project. The CEQA impact levels include “potentially significant impact,” “less than significant impact with mitigation,” “less than significant impact,” and “no impact.”

Supporting documentation of all CEQA checklist determinations is provided in Chapters 2 and 3 of this Environmental Impact Report/Environmental Assessment. Documentation of “No Impact” determinations is provided at the beginning of Chapter 2. Discussion of all impacts, avoidance, minimization, and/or mitigation measures is under the appropriate topic headings in Chapters 2 and 3.

<table>
<thead>
<tr>
<th>I. AESTHETICS: Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. AGRICULTURE AND FOREST RESOURCES: In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment Project; and the forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?</td>
</tr>
<tr>
<td>b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?</td>
</tr>
</tbody>
</table>
### Appendix A • California Environmental Quality Act Checklist

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Result in the loss of forest land or conversion of forest land to non-forest use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

### III. AIR QUALITY: Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Conflict with or obstruct implementation of the applicable air quality plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Expose sensitive receptors to substantial pollutant concentrations?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create objectionable odors affecting a substantial number of people?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

### IV. BIOLOGICAL RESOURCES: Would the project:

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
### Appendix A • California Environmental Quality Act Checklist

<table>
<thead>
<tr>
<th>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

### V. CULTURAL RESOURCES:

Would the project:

<table>
<thead>
<tr>
<th>a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>✗</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d) Disturb any human remains, including those interred outside of formal cemeteries?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

### VI. GEOLOGY AND SOILS:

Would the project:

<table>
<thead>
<tr>
<th>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ii) Strong seismic ground shaking?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>iii) Seismic-related ground failure, including liquefaction?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>
### Appendix A • California Environmental Quality Act Checklist

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>iv) Landslides?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Result in substantial soil erosion or the loss of topsoil?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**VII. GREENHOUSE GAS EMISSIONS:** Would the project:

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

An assessment of the greenhouse gas emissions and climate change is included in the body of the environmental document. While Caltrans has included this good faith effort in order to provide the public and decision-makers as much information as possible about the project, it is Caltrans determination that in the absence of further regulatory or scientific information related to greenhouse gas emissions and CEQA significance, it is too speculative to make a significance determination regarding the project’s direct and indirect impact with respect to climate change. Caltrans does remain firmly committed to implementing measures to help reduce the potential effects of the project. These measures are outlined in the body of the environmental document.

**VIII. HAZARDS AND HAZARDOUS MATERIALS:** Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A • California Environmental Quality Act Checklist

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

**IX. HYDROLOGY AND WATER QUALITY.** Would the project:

a) Violate any water quality standards or waste discharge requirements? ☐ ☒ ☐ ☐

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)? ☐ ☐ ☒ ☐

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site? ☐ ☐ ☒ ☐

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site? ☐ ☐ ☒ ☐

e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff? ☐ ☒ ☐ ☐

f) Otherwise substantially degrade water quality? ☐ ☐ ☐ ☒
### Appendix A • California Environmental Quality Act Checklist

<table>
<thead>
<tr>
<th>g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>![ ]</td>
<td>![ ]</td>
<td>![ ]</td>
<td>![ ]</td>
</tr>
<tr>
<td>i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>![ ]</td>
<td>![ ]</td>
<td>![ ]</td>
<td>![ ]</td>
</tr>
<tr>
<td>j) Inundation by seiche, tsunami, or mudflow</td>
<td>![ ]</td>
<td>![ ]</td>
<td>![ ]</td>
<td>![ ]</td>
</tr>
</tbody>
</table>

### X. LAND USE AND PLANNING: Would the project:

| a) Physically divide an established community? | ![ ] | ![ ] | ![ ] | ![ ] |
| b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? | ![ ] | ![ ] | ![ ] | ![ ] |
| c) Conflict with any applicable habitat conservation plan or natural community conservation plan? | ![ ] | ![ ] | ![ ] | ![ ] |

### XI. MINERAL RESOURCES: Would the project:

| a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state? | ![ ] | ![ ] | ![ ] | ![ ] |
| b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan? | ![ ] | ![ ] | ![ ] | ![ ] |

### XII. NOISE: Would the project result in:

| a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies? | ![ ] | ![ ] | ![ ] | ![ ] |
| b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels? | ![ ] | ![ ] | ![ ] | ![ ] |
| c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project? | ![ ] | ![ ] | ![ ] | ![ ] |
Appendix A • California Environmental Quality Act Checklist

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

XIII. POPULATION AND HOUSING: Would the project:

a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)? ☐ ☐ ☒ ☐

b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere? ☐ ☐ ☐ ☒

c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere? ☐ ☐ ☐ ☒

XIV. PUBLIC SERVICES:

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

- Fire protection? ☐ ☐ ☒ ☐
- Police protection? ☐ ☐ ☒ ☐
- Schools? ☐ ☐ ☒ ☐
- Parks? ☐ ☐ ☐ ☒
- Other public facilities? ☐ ☐ ☐ ☒
**Appendix A • California Environmental Quality Act Checklist**

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

**XV. RECREATION:**

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? □ □ □ □ ×

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment? □ □ □ □ ×

**XVI. TRANSPORTATION/TRAFFIC:** Would the project:

a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit? □ □ × □

b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways? □ □ □ □ ×

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks? □ □ □ □ ×

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? □ □ □ □ ×

e) Result in inadequate emergency access? □ □ □ □ ×

f) Conflict with adopted policies, plans or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities? □ □ □ □ ×

**XVII. UTILITIES AND SERVICE SYSTEMS:** Would the project:

a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? □ □ □ □ ×

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? □ □ □ □ ×
Appendix A • California Environmental Quality Act Checklist

<table>
<thead>
<tr>
<th>c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g) Comply with federal, state, and local statutes and regulations related to solid waste?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XVIII. MANDATORY FINDINGS OF SIGNIFICANCE

<table>
<thead>
<tr>
<th>a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) Does the project have impacts that are individually limited, but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c) Does the project have environmental effects which would cause substantial adverse effects on human beings, either directly or indirectly?</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B  Resources Evaluated Relative to the Requirements of Section 4(f)
Page Intentionally Left Blank
Resources Evaluated Relative to the Requirements of Section 4(f)

This section of the document discusses parks, recreational facilities, wildlife refuges and historic properties found within or next to the project area that do not trigger Section 4(f) protection because either: 1) they are not publicly owned, 2) they are not open to the public, 3) they are not eligible historic properties, 4) the project does not permanently use the property and does not hinder the preservation of the property, or 5) the proximity impacts do not result in constructive use.

Two National Register of Historic Places-eligible properties were identified in the State Route 132 Historic Property Survey Report, which was completed in December 2011. The report was submitted to the State Historic Preservation Officer on March 16, 2012 for concurrence on eligibility determinations for the sites identified in the 2011 area of potential effects. A concurrence letter received from the State Historic Preservation Officer, dated May 16, 2012, confirmed the following two properties are eligible for listing on the National Register of Historic Places:

- 3530 Maze Boulevard, Modesto
- 416/418 I Street, Modesto

Five recreation resources were identified within 0.5 mile of the State Route 132 West Freeway/Expressway Project (project) study area.

- Charles M. Sharp Park
- J.M. Pike Park
- Virginia Corridor Trailway
- Cesar E. Chavez Park and Maddux Youth Center
- Mellis Park

All seven resources listed above were evaluated relative to the requirements of Section 4(f). Based on the evaluation, it has been concluded that there are no Section 4(f) uses of these seven properties.

This document discusses parks, recreational facilities, wildlife refuges and historic properties found within or adjacent to the project study area that do not trigger Section 4(f) protection either because: 1) they are not publicly owned, 2) they are not open to the public, 3) they are not eligible historic properties, 4) the project does not permanently use the property and does not hinder the preservation of the property, or 5) the proximity impacts do not result in constructive use.
The Section 4(f) resources located within 0.5 mile of the project that were evaluated relative to the requirements of Section 4(f) are described below. Please note that the identification of potential Section 4(f) resources is incomplete at this time because some parcels in private ownership were inaccessible for archaeological survey. These areas would be surveyed after selection of the preferred alternative and access is obtained. Geoarchaeological investigation (test excavations) would also be conducted after selection of the preferred alternative. A second supplemental Historic Property Survey Report would be prepared documenting the results. This report, along with a Section 106 finding of effect, would be provided to the State Historic Preservation Officer for concurrence after additional archaeological survey and geoarchaeological investigations are conducted for the preferred alternative that is selected. Concurrence by the State Historic Preservation Officer would complete the identification and effects determination for archaeological and historic architectural resources for the proposed undertaking. The Finding of Effect would require concurrence from the State Historic Preservation Officer and would include avoidance, minimization, and mitigation measures. These would be included in the Final EIR/EA.

3530 Maze Boulevard, Modesto
The property at 3530 Maze Boulevard is a residential and farm complex located south of existing SR 132 (Maze Boulevard) between Dakota Avenue and Carpenter Road on the western end of the area of potential effects. The buildings and landscaping features associated with 3530 Maze Boulevard were determined by Caltrans and the State Historic Preservation Officer to be eligible for the National Register of Historic Places as a unique regional example of Craftsman architectural style (see Appendix I). Constructed in 1918, the property consists of a Craftsman-style, single-family residence with a garage/shed, barn, water tower, outhouse, and associated landscaping on a 15.46-acre parcel. The historic boundary associated with 3530 Maze Boulevard consists of 3.86 acres on the eastern side of the parcel. The historic boundary is bound by the existing highway on the north, a driveway and shrubbery wall on the east, Modesto Irrigation District’s Lateral Canal No. 4 on the south, and the line between the old growth trees and more contemporary almond orchard on the west. The driveway is accessed from the existing highway east of the historic residence.

Properties eligible for the National Register of Historic Places are also protected under Section 4(f). The proposed project would acquire approximately 0.13 acre along existing SR 132 (Maze Boulevard) at this location. The boundary of the historic
property, as defined in the Department of Parks and Recreation Form 523,\textsuperscript{16} does not include the area of the proposed project acquisition. The historic boundary containing the National Register of Historic Places-eligible buildings and landscaping would not be affected by use of this portion of the larger parcel. Access to the historic property from the existing highway would be maintained during construction. Since the planned project acquisition would not affect the historic site boundary, and there would be no temporary use of the site for construction, it appears there would be no Section 4(f) use of the historic property. Caltrans would submit a Section 106 finding of effect on the 3530 Maze Boulevard property to the State Historic Preservation Officer for concurrence after selection of the preferred alternative.

**Charles M. Sharp Park**

Charles M. Sharp Park sits at 1900 Torrid Avenue in Modesto on approximately 7 acres. The park is owned and maintained by the City of Modesto and is eligible for protection under Section 4(f). Amenities at the park include a basketball court, picnic facilities, playground, restrooms, softball field, and volleyball court.\textsuperscript{17} Access to the park is from Torrid or Shasta avenues.

The proposed project would not require a permanent or temporary use of parklands because the park would be located more than 0.2 mile north of the two build alternatives south of Kansas Avenue. The park is separated from the project by a residential neighborhood and Kansas Avenue. Because of the distance from the project, there would be no proximity impacts attributable to a change in access or to noise or visual effects. The park is located beyond the corridor analyzed for noise impacts for the proposed project. The nearest noise analysis area (Area 5) is located between Berryessa Avenue and the proposed Project corridor south of Kansas Avenue. Because no substantial noise increases were identified in Area 5 and because sound reduces with distance, no substantial noise increases are anticipated at Charles M. Sharp Park. Therefore, the provisions of Section 4(f) are not triggered.

**J.M. Pike Park**

J.M. Pike Park sits at 1601 Princeton Avenue in Modesto on approximately 6.5 acres. The park is owned and maintained by the City of Modesto and is eligible for protection under Section 4(f). Facilities at the park include a baseball field, two


basketball half courts, picnic facilities, a playground, and softball and soccer fields.  

Access to the park is from Kearney and Princeton avenues.

The park is located east of 9th Street, more than 0.37 mile northeast of the northern end of both build alternatives, which is south of Woodland Avenue. There would be no permanent or temporary use of parklands because of the intervening distance of the park from the project. In addition, because of the distance of the park from the project, there would be no impacts attributable to a change in access or to noise or visual effects. Therefore, the provisions of Section 4(f) are not triggered.

**Virginia Corridor Trailway**

The Virginia Corridor Trailway is a paved Class I bike path owned and maintained by the City of Modesto. The bike path runs east and north along the former Tidewater Southern Railway line. The existing bike path extends from College Avenue to Bowen Avenue, a distance of roughly 2 miles. The bike path is being constructed in phases and, upon completion, would extend from Needham Street to Bangs Avenue, a distance of 4.2 miles. Proposed facilities along the bike path include picnic areas, shade structures, barbecues, and gardens. The Virginia Corridor Trailway is a publicly owned facility with mixed recreation and transportation use. Recreation is assumed to be the primary function of the bike path; therefore, the bike path is eligible for protection under Section 4(f).

The southernmost portion of the bike path on College Avenue is approximately 0.31 mile northeast of the project end on Needham Street. Neither build alternative would cross the existing portions of the bike path and no temporary or permanent use of the bike path would occur. Given the distance of the bike path from the project, there would be no impacts attributable to a change in access or to noise or visual effects. Therefore, the provisions of Section 4(f) are not triggered.

---


A picnic area and support facilities along the Virginia Corridor Trailway were developed with grants authorized under the Land and Water Conservation Fund Act of 1965, as amended (16 U.S. Code 4601-4604 et seq.), which qualifies the trailway as a Section 6(f) resource as well as a Section 4(f) resource. As described above, property from the Virginia Corridor Trailway would not be converted to a non-recreational use, and no replacement lands would be necessary as required by Section 6(f)(3) of the Land and Water Conservation Fund Act.

416/418 I Street, Modesto

This property is a two-story commercial property built between 1924 and 1925. Called Dania Hall, the property sits on an 0.11-acre parcel located on the south side of I Street. This property meets the National Register of Historic Places eligibility criteria at the local level for its association with the Danish-American settlement in Stanislaus County and as an example of Danish-American fraternal organization. On March 16, 2012, Caltrans submitted the Historic Property Survey Report to the State Historic Preservation Officer, who subsequently concurred that the 416/418 I Street property is eligible for inclusion in the National Register of Historic Places (see Appendix I). Because the historic property is National Register of Historic Places-eligible, it is also protected under Section 4(f).

The property sits near the intersection of 5th and I streets, 0.02 mile west of the southern end of both build alternatives. No construction activities are proposed on or adjacent to this property and, since there is no proposed temporary or permanent use of land from the parcel, there is no anticipated Section 4(f) use. Caltrans would submit a Section 106 finding of effect on the 416/418 I Street property to the State Historic Preservation Officer for concurrence after selection of the preferred alternative.

Cesar E. Chavez Park and Maddux Youth Center

The Cesar E. Chavez Park and Maddux Youth Center are located at 619 Sierra Drive in Modesto on approximately 7 acres. Owned and maintained by the City of Modesto, the park and youth center are eligible for protection under Section 4(f). Amenities at the park include two basketball courts, picnic facilities, a playground, and

---


restrooms.\textsuperscript{23} The Maddux Youth Center sits south of the park at 615 Sierra Drive and can be reserved for public use. Recreational facilities at the youth center include a youth boxing facility, an indoor basketball court, and a game room.\textsuperscript{24} The park can be accessed from the surrounding streets, including G Street, Sierra Drive, 3rd Street, and 4th Street. The youth center is accessed from Sierra Drive or 3rd Street.

The park and youth center are more than 0.2 mile southwest of the project’s southern end at I Street. Implementation of the proposed project would not require a temporary or permanent use of parklands. Because of the distance of the park and youth center from the project, there would be no impacts attributable to a change in access or to visual or noise effects. Therefore, the provisions of Section 4(f) are not triggered.

**Mellis Park**

Mellis Park sits at 601 South Martin Luther King Drive in Modesto on approximately 9 acres. Owned and maintained by the City of Modesto, the park is eligible for protection under Section 4(f). Facilities at the park include a lighted softball field, a youth ball field, two basketball courts, horseshoe pits, picnic facilities, a playground, and restrooms.\textsuperscript{25} The King-Kennedy Memorial Center is on the northeastern corner of the park and has an auditorium with a stage, kitchen facilities, and a classroom. Facilities at the park and the center can be reserved for public use.\textsuperscript{26} A parking area sits along the northern portion of the park. Access to the park is from Martin Luther King Drive.

The park is located 0.5 mile southwest of the project’s southern end on I Street, and there would be no temporary or permanent use of parklands. Because of the distance of the park from the project, there would be no impacts attributable to a change in access or to visual or noise effects. Therefore, the provisions of Section 4(f) are not triggered.


A group picnic area at Mellis Park was developed with grants authorized under the Land and Water Conservation Fund Act, qualifying the park as a Section 6(f) resource as well as a Section 4(f) resource. As described above, property from Mellis Park would not be converted to a non-recreational use, and no replacement lands would be necessary as required by Section 6(f)(3) of the Land and Water Conservation Fund Act.

March 2013

NON-DISCRIMINATION POLICY STATEMENT

The California Department of Transportation, under Title VI of the Civil Rights Act of 1964 and related statutes, ensures that no person in the State of California shall, on the grounds of race, color, national origin, sex, disability, religion, sexual orientation, or age, be excluded from participation in, be denied the benefits of, or be otherwise subjected to discrimination under any program or activity it administers.

For information or guidance on how to file a complaint based on the grounds of race, color, national origin, sex, disability, religion, sexual orientation, or age, please visit the following web page: http://www.dot.ca.gov/hq/bep/title_vi/66_visited.htm.

Additionally, if you need this information in an alternate format, such as in Braille or in a language other than English, please contact the California Department of Transportation, Office of Business and Economic Opportunity, 1823 14th Street, MS-78, Sacramento, CA 95811. Telephone: (916) 324-0449, TTY: 711, or via Fax: (916) 324-1949.

[Signature]
MALCOLM DOUGHERTY
Director

[Signature]
[Assistance by legal counsel]
Appendix D  Summary of Relocation Benefits
Appendix D • Summary of Relocation Benefits

Page Intentionally Left Blank
California Department of Transportation Relocation Assistance Program

Relocation Assistance Advisory Services

“The purpose of this title is to establish a uniform policy for fair and equitable treatment of persons displaced as a result of federal and federally assisted programs in order that such persons shall not suffer disproportionate injuries as a result of programs designed for the benefit of the public as a whole.”

The Fifth Amendment to the U.S. Constitution states, “No Person shall…be deprived of life, liberty, or property, without due process of law, nor shall private property be taken for public use without just compensation.” The Uniform Act sets forth in statute the due process that must be followed in Real Property acquisitions involving federal funds. Supplementing the Uniform Act is the government-wide single rule for all agencies to follow, set forth in 49 Code of Federal Regulations Part 24. Displaced individuals, families, businesses, farms, and nonprofit organizations may be eligible for relocation advisory services and payments, as discussed below.

Fair Housing

The Fair Housing Law (Title VIII of the Civil Rights Act of 1968) sets forth the policy of the U.S. to provide, within constitutional limitations, for fair housing. This act, and as amended, makes discriminatory practices in the purchase and rental of most residential units illegal. Whenever possible, minority persons shall be given reasonable opportunities to relocate to any available housing regardless of neighborhood, as long as the replacement dwellings are decent, safe, and sanitary and are within their financial means. This policy, however, does not require Caltrans to provide a person a larger payment than is necessary to enable a person to relocate to a comparable replacement dwelling.

Any persons to be displaced would be assigned to a relocation advisor, who would work closely with each displacee in order to see that all payments and benefits are fully utilized and that all regulations are observed, thereby avoiding the possibility of displacees jeopardizing or forfeiting any of their benefits or payments. At the time of the initiation of negotiations (usually the first written offer to purchase), owner-occupants are given a detailed explanation of the state’s relocation services. Tenant occupants of properties to be acquired are contacted soon after the initiation of negotiations and also are given a detailed explanation of the Caltrans Relocation Assistance Program. To avoid loss of possible benefits, no individual, family,
business, farm, or nonprofit organization should commit to purchase or rent a replacement property without first contacting a Department relocation advisor.

**Relocation Assistance Advisory Services**

In accordance with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended, Caltrans would provide relocation advisory assistance to any person, business, farm or nonprofit organization displaced as a result of the acquisition of real property for public use, so long as they are legally present in the U.S. Caltrans would assist eligible displacees in obtaining comparable replacement housing by providing current and continuing information on the availability and prices of both houses for sale and rental units that are “decent, safe and sanitary.” Nonresidential displacees would receive information on comparable properties for lease or purchase (for business, farm and nonprofit organization relocation services, see below).

Residential replacement dwellings would be in a location generally not less desirable than the displacement neighborhood at prices or rents within the financial ability of the individuals and families displaced, and reasonably accessible to their places of employment. Before any displacement occurs, comparable replacement dwellings would be offered to displacees that are open to all persons regardless of race, color, religion, sex, national origin, and consistent with the requirements of Title VIII of the Civil Rights Act of 1968. This assistance would also include the supplying of information concerning federal and state assisted housing programs and any other known services being offered by public and private agencies in the area.

Persons who are eligible for relocation payments and who are legally occupying the property required for the proposed project would not be asked to move without first being given at least 90 days written notice. Residential occupants eligible for relocation payment(s) would not be required to move unless at least one comparable “decent, safe and sanitary” replacement dwelling, available on the market, is offered to them by Caltrans.

**Residential Relocation Payments**

The Relocation Assistance Program would help eligible residential occupants by paying certain costs and expenses. These costs are limited to those necessary for or incidental to the purchase or rental of a replacement dwelling and actual reasonable moving expenses to a new location within 50 miles of the displacement property. Any
actual moving costs in excess of the 50 miles are the responsibility of the displacee. The Residential Relocation Assistance Program can be summarized as follows:

Moving Costs
Any displaced person, who lawfully occupied the acquired property, regardless of the length of occupancy in the property acquired, would be eligible for reimbursement of moving costs. Displacees would receive either the actual reasonable costs involved in moving themselves and personal property up to a maximum of 50 miles, or a fixed payment based on a fixed moving cost schedule. Lawful occupants who move into the displacement property after the initiation of negotiations must wait until Caltrans obtains control of the property in order to be eligible for relocation payments.

Purchase Differential
In addition to moving and related expense payments, fully eligible homeowners may be entitled to payments for increased costs of replacement housing.

Homeowners who have owned and occupied their property for 180 days or more prior to the date of the initiation of negotiations (usually the first written offer to purchase the property), may qualify to receive a price differential payment and may qualify to receive reimbursement for certain nonrecurring costs incidental to the purchase of the replacement property. An interest differential payment is also available if the interest rate for the loan on the replacement dwelling is higher than the loan rate on the displacement dwelling, subject to certain limitations on reimbursement based upon the replacement property interest rate. The maximum combination of these three supplemental payments that the owner-occupant can receive is $22,500. If the total entitlement (without the moving payments) is in excess of $22,500, the Last Resort Housing Program would be used (see the explanation of the Last Resort Housing Program below).

Rent Differential
Tenants and certain owner-occupants (based on length of ownership) who have occupied the property to be acquired by Caltrans prior to the date of the initiation of negotiations may qualify to receive a rent differential payment. This payment is made when Caltrans determines that the cost to rent a comparable “decent, safe and sanitary” replacement dwelling would be more than the present rent of the displacement dwelling. As an alternative, the tenant may qualify for a down payment benefit designed to assist in the purchase of a replacement property and the payment of certain costs incidental to the purchase, subject to certain limitations noted under
the Down Payment section below. The maximum amount payable to any eligible tenant and any owner-occupant of less than 180 days, in addition to moving expenses, is $5,250. If the total entitlement for rent supplement exceeds $5,250, the Last Resort Housing Program would be used.

To receive any relocation benefits, the displaced person must buy or rent and occupy a “decent, safe and sanitary” replacement dwelling within one year from the date Caltrans takes legal possession of the property, or from the date the displacee vacates the displacement property, whichever is later.

Down Payment
The down payment option has been designed to aid owner-occupants of less than 180 days and tenants in legal occupancy prior to Caltrans’ initiation of negotiations. The down payment and incidental expenses cannot exceed the maximum payment of $5,250. The one-year eligibility period in which to purchase and occupy a “decent, safe and sanitary” replacement dwelling would apply.

Last Resort Housing
Federal regulations (49 Code of Federal Regulations 24) contain the policy and procedure for implementing the Last Resort Housing Program on federal-aid projects. Last Resort Housing benefits are, except for the amounts of payments and the methods in making them, the same as those benefits for standard residential relocation as explained above. Last Resort Housing has been designed primarily to cover situations where a displacee cannot be relocated because of lack of available comparable replacement housing, or when the anticipated replacement housing payments exceed the $22,500 and $5,250 limits of the standard relocation procedure, because either the displacee lacks the financial ability or other valid circumstances.

After the initiation of negotiations, Caltrans would within a reasonable length of time, personally contact the displacees to gather important information, including the following:

- Number of people to be displaced.
- Specific arrangements needed to accommodate any family member(s) with special needs.
- Financial ability to relocate into comparable replacement dwelling which would adequately house all members of the family.
- Preferences in area of relocation.
Location of employment or school.

**Nonresidential Relocation Assistance**

The Nonresidential Relocation Assistance Program provides assistance to businesses, farms and nonprofit organizations in locating suitable replacement property, and reimbursement for certain costs involved in relocation. The Relocation Advisory Assistance Program would provide current lists of properties offered for sale or rent, suitable for a particular business’s specific relocation needs. The types of payments available to eligible businesses, farms and nonprofit organizations are: searching and moving expenses, and possibly reestablishment expenses; or a fixed in lieu payment instead of any moving, searching and reestablishment expenses. The payment types can be summarized as follows:

**Moving Expenses**
Moving expenses may include the following actual, reasonable costs:

- The moving of inventory, machinery, equipment and similar business-related property, including: dismantling, disconnecting, crating, packing, loading, insuring, transporting, unloading, unpacking, and reconnecting of personal property. Items acquired in the right-of-way contract may not be moved under the Relocation Assistance Program. If the displacee buys an Item Pertaining to the Realty back at salvage value, the cost to move that item is borne by the displacee.

- Loss of tangible personal property provides payment for actual, direct loss of personal property that the owner is permitted not to move.

- Expenses related to searching for a new business site, up to $2,500, for reasonable expenses actually incurred.

**Reestablishment Expenses**
Reestablishment expenses related to the operation of the business at the new location, up to $10,000 for reasonable expenses actually incurred.

**Fixed In Lieu Payment**
A fixed payment in lieu of moving, searching, and reestablishment payments may be available to businesses that meet certain eligibility requirements. This payment is an amount equal to half the average annual net earnings for the last two taxable years prior to the relocation and may not be less than $1,000 nor more than $20,000.
Additional Information

Reimbursement for moving costs and replacement housing payments are not considered income for the purpose of the Internal Revenue Code of 1954, or for the purpose of determining the extent of eligibility of a displacee for assistance under the Social Security Act, or any other law, except for any federal law providing local “Section 8” Housing Programs.

Any person, business, farm or nonprofit organization that has been refused a relocation payment by Caltrans relocation advisor or believes that the payment(s) offered by the agency are inadequate may appeal for a special hearing of the complaint. No legal assistance is required. Information about the appeal procedure is available from the relocation advisor.

California law allows for the payment for lost goodwill that arises from the displacement for a public project. A list of ineligible expenses can be obtained from Caltrans Right-of-Way. California’s law and the federal regulations covering relocation assistance provide that no payment shall be duplicated by other payments being made by the displacing agency.
Your Rights and Benefits as a Displacee Under the Uniform Relocation Assistance Program (Residential) 2007

California Department of Transportation
Appendix D • Summary of Relocation Benefits

Introduction

In building a modern transportation system, the displacement of a small percentage of the population is often necessary. However, it is the policy of Caltrans that displaced persons shall not suffer unnecessarily as a result of programs designed to benefit the public as a whole.

Displaced individuals, families, businesses, farms, and nonprofit organizations may be eligible for relocation advisory services and payments.

This brochure provides information about available relocation services and payments. If you are required to move as the result of a Caltrans transportation project, a Relocation Agent will contact you. The Relocation Agent will be able to answer your specific questions and provide additional information.

Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 As Amended "The Uniform Act"

The purpose of this Act is to provide for uniform and equitable treatment of persons displaced from their homes, businesses, or farms by federal and federally assisted programs and to establish uniform and equitable land acquisition policies for federal and federally assisted programs.

49 Code of Federal Regulations Part 24 implements the "Uniform Act" in accordance with the following relocation assistance objective:

To ensure that persons displaced as a direct result of federal or federally-assisted projects are treated fairly, consistently and equitably so that such persons will not suffer disproportionate injuries as a result of projects designed for the benefit of the public as a whole.

While every effort has been made to assure the accuracy of this booklet, it should be understood that it does not have the force and effect of law, rule, or regulation governing the payment of benefits. Should any difference or error occur, the law will take precedence.
Some Important Definitions...

Your relocation benefits can be better understood if you become familiar with the following terms:

**Comparable Replacement:** means a dwelling which is:

1. Decent, safe, and sanitary. (See definition below)
2. Functionally equivalent to the displaced dwelling.
3. Adequate in size to accommodate the family being relocated.
4. In an area not subject to unreasonable adverse environmental conditions.
5. In a location generally not less desirable than the location of your displacement dwelling with respect to public utilities and commercial and public facilities, and reasonably accessible to the place of employment.
6. On land that is typical in size for residential development with typical improvements.

**Decent, Safe and Sanitary (DS&S):** Replacement housing must be decent, safe, and sanitary...which means it meets all of the minimum requirements established by federal regulations and conforms to applicable housing and occupancy codes. The dwelling shall:

1. Be structurally sound, weather tight, and in good repair.
2. Contain a safe electrical wiring system adequate for lighting and other devices.
(3) Contain a heating system capable of sustaining a healthful temperature (of approximately 70 degrees) for a displaced person, except in those areas where local climatic conditions do not require such a system.

(4) Be adequate in size with respect to the number of rooms and area of living space needed to accommodate the displaced person. The Caltrans policy is that there will be no more than 2 persons per room unless the room is of adequate size to accommodate the normal bedroom furnishings for the occupants.

(5) Have a separate, well-lighted and ventilated bathroom that provides privacy to the user and contains a sink, bathtub or shower stall, and a toilet, all in good working order and properly connected to appropriate sources of water and to a sewage drainage system.

Note: In the case of a housekeeping dwelling, there shall be a kitchen area that contains a fully usable sink, properly connected to potable hot and cold water and to a sewage drainage system, and adequate space and utility service connections for a stove and refrigerator.

(6) Contains unobstructed egress to safe, open space at ground level. If the replacement dwelling unit is on the second story or above, with access directly from or through a common corridor, the common corridor must have at least two means of egress.

(7) For a displaced person who is handicapped, be free of any barriers which would preclude reasonable ingress, egress, or use of the dwelling by such displaced person.

Displaced Person or Displacee: Any person who moves from real property or moves personal property from real property as a result of the acquisition of the real property, in whole or in part, or as the result of a written notice from the agency to vacate the real property needed for a transportation project. In the case of a partial acquisition, Caltrans shall determine if a person is displaced as a direct result of the acquisition.

Residents not lawfully present in the United States are not eligible to receive relocation payments and assistance.

Relocation benefits will vary, depending upon the type and length of occupancy. As a residential displacee, you will be classified as either a:
Appendix D • Summary of Relocation Benefits

• An owner occupant of a residential property (includes mobile homes)
• A tenant occupant of a residential property (includes mobile homes and sleeping rooms)

Dwelling: The place of permanent or customary and usual residence of a person, according to local custom or law, including a single family house; a single family unit in a two-family, multi-family, or multi-purpose property; a unit of a condominium or cooperative housing project; a non-housekeeping unit; a mobile home; or any other residential unit.

Owner: A person is considered to have met the requirement to own a dwelling if the person purchases or holds any of the following interests in real property:

(1) Fee title, a life estate, a land contract, a 99-year lease, oral lease including any options for extension with at least 50 years to run from the date of acquisition; or

(2) An interest in a cooperative housing project which includes the right to occupy a dwelling; or

(3) A contract to purchase any interests or estates; or

(4) Any other interests, including a partial interest, which in the judgment of the agency warrants consideration as ownership.

Tenant: A person who has the temporary use and occupancy of real property owned by another.
Appendix D • Summary of Relocation Benefits

Moving Expenses

If you qualify as a displaced person, you are entitled to reimbursement of your moving costs and certain related expenses incurred in moving. The methods of moving and the various types of moving cost payments are explained. Below.

Displaced individuals and families may choose to be paid on the basis of actual, reasonable moving costs and related expenses, or according to a fixed moving cost schedule. However, to ensure your eligibility and prompt payment of moving expenses, you should contact your Relocation Agent before you move.

You Can Choose Either:

Actual Reasonable Moving Costs - You may be paid for your actual reasonable moving costs and related expenses when a commercial mover performs the move. Reimbursement will be limited to a move of 50 miles or less. Related expenses may include:

- Transportation
- Packing and unpacking personal property.
- Disconnecting and reconnecting household appliances.
- Temporary storage of personal property.
- Insurance while property is in storage or transit.

OR

Fixed Moving Cost Schedule - You may be paid on the basis of a fixed moving cost schedule. Under this option, you will not be eligible for reimbursement of related expenses listed above. The fixed schedule is designed to cover such expenses.
Examples (Year 2005 Rate):
   4 Rooms - $950
   7 Rooms - $1,550

If the furniture is moved with the mobile home, the amount of the fixed payment is based on Schedule B.

Examples (Year 200 Rate):
   4 Rooms - $1,175
   7 Rooms - $1,900

Under the Fixed Move Schedule for a furnished unit (e.g., you are a tenant of an apartment that is furnished by your landlord) is based on Schedule B.

Example (Year 2005 Rate):
   1 Room - $400

Under the Fixed Move Schedule, you will not receive any additional payments for temporary storage, lodging, transportation or utility hook-ups.

**Replacement Housing Payments**

The type of Replacement Housing Payment (RHP) depends on whether you are an owner or a tenant, and the length of occupancy in the property being acquired.

If you are a qualified **owner occupant** of more than 180 days prior to the initiation of negotiations for the acquisition of your property, you may be entitled to a RHP that consists of:

- Price Differential, and
- Mortgage Differential, and
- Incidental Expenses;
- OR
- Rent Differential
If you are a qualified owner occupant of more than 90 days but less than 180 days, OR you are a qualified tenant occupant of at least 90 days, you may be entitled to a RHP as follows:

Rent Differential

OR

Downpayment Option

Length of occupancy simply means counting the number of days that you actually occupied a dwelling before the date of initiation of negotiations by Caltrans for the purchase of the property. The term "initiation of negotiations" means the date Caltrans makes the first personal contact with the owner of real property, or his/ her representative, to give him/her a written offer for the property to be acquired.

Note: If you have been in occupancy less than 90 days before the initiation of negotiations and the property is subsequently acquired, or if you move onto the property after the initiation of negotiations and you are still in occupancy on the date of acquisition, you may or may not be eligible for a Replacement Housing Payment. Check with your Relocation Agent before you make any decision to vacate your property.

For Owner Occupants of 180 Days or More

If you qualify as a 180-day owner occupant, you may be eligible — in addition to the fair market value of your property — for a Replacement Housing Payment that consists of a Price Differential, Mortgage Differential and/or Incidental Expenses.

The Price Differential payment is the amount by which the cost of a replacement dwelling exceeds the acquisition cost of the displacement dwelling. This payment will assist you in purchasing a comparable decent, safe, and sanitary (DS&S) replacement dwelling. Caltrans will compute the maximum payment you may be eligible to receive.

In order to receive the full amount of the calculated price differential, you must spend at least the amount calculated by Caltrans on a replacement property.
The **Mortgage Differential** payment will reimburse you for any increased mortgage interest costs you might incur because the interest rate on your new mortgage exceeds the interest rate on the property acquired by Caltrans. The payment computation is complex as it is based on prevailing rates, your existing loan and your new loan. Also, a part of this payment may be prorated such as reimbursement for a portion of your loan origination fees and mortgage points.

To be eligible to receive this payment, the acquired property must have been encumbered by a bona fide mortgage which was a valid lien for at least 180 days prior to the initiation of negotiations.

You may also be reimbursed for any actual and necessary **Incidental Expenses** that you incur in relation to the purchase of your replacement property. These expenses may be those costs for title search, recording fees, credit report, appraisal report, and certain other closing costs associated with the purchase of property. You will not be reimbursed for any recurring costs such as prepaid real estate taxes and property insurance.

If the total amount of your **Replacement Housing Payment** (Price Differential, Mortgage Differential and Incidental Expenses) exceeds $22,500, the payment must be deposited directly into an escrow account or paid directly to the mortgage company.
EXAMPLES OF PRICE DIFFERENTIAL PAYMENT COMPUTATION:

Assume that Caltrans purchases your property for $98,000. After a thorough study of available, decent, safe and sanitary dwellings on the open market, Caltrans determines that a comparable replacement property will cost you $100,000. If your purchase price is $100,000, you will receive $2,000 (see Example A).

If your actual purchase price is more than $100,000, you pay the difference (see Example B). If your purchase price is less than $100,000, the differential payment will be based on actual costs (see Example C).

How much of a differential payment you receive depends on how much you actually spend on a replacement dwelling as shown in these examples:

**Caltrans' Computation**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable Replacement Property and Mobile Home</td>
<td>$100,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Property and Mobile Home</td>
<td>$ 98,000</td>
</tr>
<tr>
<td>Maximum Price Differential</td>
<td>$  2,000</td>
</tr>
</tbody>
</table>

**Example A**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase Price of Replacement</td>
<td>$100,000</td>
</tr>
<tr>
<td>Comparable Replacement Property</td>
<td>$100,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Property</td>
<td>$ 98,000</td>
</tr>
<tr>
<td>Maximum Price Differential</td>
<td>$  2,000</td>
</tr>
</tbody>
</table>

**Example B**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase Price of Replacement</td>
<td>$105,000</td>
</tr>
<tr>
<td>Comparable Replacement Property</td>
<td>$100,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Property</td>
<td>$ 98,000</td>
</tr>
<tr>
<td>Maximum Price Differential</td>
<td>$  2,000</td>
</tr>
<tr>
<td>You Must Pay the Additional</td>
<td>$   5,000</td>
</tr>
</tbody>
</table>

**Example C**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable Replacement Property</td>
<td>$100,000</td>
</tr>
<tr>
<td>Purchase Price of Replacement</td>
<td>$ 99,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Property</td>
<td>$ 98,000</td>
</tr>
<tr>
<td>Price Differential</td>
<td>$   1,000</td>
</tr>
</tbody>
</table>

*In Example C you will only receive $1,000 - not the full amount of the Caltrans "Comparable Replacement Property" because of the "Spend to Get" requirements.*
IN ORDER FOR A "180 DAY OWNER OCCUPANT" TO RECEIVE THE FULL AMOUNT OF THEIR REPLACEMENT HOUSING PAYMENT (Price Differential, Mortgage Differential and Incidental Expenses), you must:

A) Purchase and occupy a DS&S replacement dwelling within one year after the later of:

(1) The date you first receive a notification of an available replacement house, OR

(2) The date that Caltrans has paid the acquisition cost of your current dwelling (usually the closing of escrow on State's acquisition),

AND

B) Spend at least the amount of the Caltrans "Comparable Replacement Property" for a replacement property,

AND

C) File a claim for relocation payments within 18 months of the later:

(1) The date you vacate the property acquired by Caltrans, OR

(2) The date that Caltrans has paid the acquisition cost of your current dwelling (usually the close of escrow on State's acquisition)

You will not be eligible to receive any relocation payments until the State has actually made the first written offer to purchase the property. Also, you will also receive at least 90 days' written notice before you must move.
For Owner Occupants and Tenants of 90 Days or More

If you qualify as a 90-day occupant (either as an owner or tenant), you may be eligible for a Replacement Housing Payment in the form of a Rent Differential.

The Rent Differential payment is designed to assist you in renting a comparable decent, safe and sanitary replacement dwelling. The payment is based on the difference between the base monthly Rent for the property acquired by Caltrans (including average monthly cost for utilities) and the lesser of:

a) The monthly rent and estimated average monthly cost of utilities for a comparable replacement dwelling as determined by Caltrans, OR

b) The monthly rent and estimated average monthly cost of utilities for the decent, safe and sanitary dwelling that you actually rent as a replacement dwelling.

Utility costs are those expenses you incur for heat, lights, water and sewer - regardless of the source (e.g. electricity, propane, and septic system). It does not include garbage, cable, telephone, or security. The utilities at your property are the average costs over the last 12 months. The utilities at the comparable replacement property are the estimated costs for the last 12 months for the type of dwelling and area used in the calculation.

This difference is multiplied by 42 months and may be paid to you in a lump sum payment or in periodic installments in accordance with policy and regulations.

In order to receive the full amount of the calculated Rent Differential, you must spend at least the amount calculated by Caltrans on a replacement property.

This payment may - with certain limitations - be converted to a Downpayment Option to assist you in purchasing a replacement property.
Example of Rent Differential Payment Computation:

After a thorough study of comparable, decent, safe and sanitary dwellings that are available for rent, Caltrans determines that a comparable replacement property will rent for $325.00 per month.

**Caltrans Computation (rates are per month)**

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rental Rate for Comparable Replacement Property</td>
<td>$ 325</td>
</tr>
<tr>
<td>PLUS average estimated utilities costs</td>
<td>$ 100</td>
</tr>
<tr>
<td>TOTAL Cost to Rent Comparable Replacement Property</td>
<td>$ 425</td>
</tr>
<tr>
<td>Rental Rate for Your Current Property</td>
<td>$ 300</td>
</tr>
<tr>
<td>PLUS average utilities costs</td>
<td>$ 90</td>
</tr>
<tr>
<td>TOTAL Cost to Rent Current Property</td>
<td>$ 390</td>
</tr>
<tr>
<td>Comparable Replacement Property including utilities</td>
<td>$ 425</td>
</tr>
<tr>
<td>Cost you pay to rent your property including utilities</td>
<td>$ 390</td>
</tr>
<tr>
<td>Difference</td>
<td>$ 35</td>
</tr>
</tbody>
</table>

Multiplied by 42 months = $1,470 Rent Differential

**Example A:**

Rental Rate for a Replacement Property including Estimated average utilities costs $ 525  
Comparable Replacement Property including utilities $ 425  
Cost you pay to rent your property including utilities $ 390

Since $425 is less than $525, the Rent Differential is based on the difference between $390 and $425.

Rent Differential ($35 x 42 months = $1,470)

*In this case you spent "at least" the amount of the Comparable Replacement Property on the replacement property and will receive the full amount.*

**Example B:**

Rental Rate for a Replacement Property including Estimated average utilities costs $ 400  
Comparable Replacement Property including utilities $ 425  
Cost you pay to rent your property including utilities $ 390
Since $400 is less than $525, the Rent Differential is based on the difference between $400 and $390.

Rent Differential ($10 x 42 months = $420)

In this case you spent "less than" the amount of the Comparable Replacement Property on the replacement property and will not receive the full amount.

IN ORDER FOR A "90 DAY OWNER OCCUPANT" TO RECEIVE THE FULL AMOUNT OF THEIR REPLACEMENT HOUSING PAYMENT (Rent Differential), you must:

A) Rent and occupy a DS&S replacement dwelling within one year after the later of:

   (1) The date you first receive a notification of an available replacement house, OR

   (2) The day you vacate the property acquired by Caltrans.

AND

B) Spend at least the amount of the Caltrans "Comparable Replacement Property" to rent a replacement property,

AND

C) File a claim for relocation payments within 18 months of the later of:

   (1) The date you vacate the property acquired by Caltrans, OR

   (2) The date that Caltrans has paid the acquisition cost of your current dwelling (usually the close of escrow on State's acquisition).

You will not be eligible to receive any relocation payments until the State has actually made the first written offer to purchase the property. And, you will also receive at least 90 days' written notice before you must move.

Note 1: The time periods for a 90-day owner occupant are different than a 180-day owner occupant.
Note 2: If the Rent Differential is converted to a Downpayment Option, there is no "spend-to-get" requirement.

DOWN PAYMENT OPTION

The Rent Differential payment may - with certain limitations - be converted to a
Down Payment Option to assist you in purchasing a replacement property.
The down payment option is a direct conversion of the Rent Differential
payment.

If the Caltrans calculated Rent Differential is between $0 and $5,250, your down
payment option will be $5,250, which can be used towards the purchase of a
replacement decent, safe and sanitary dwelling.

If the Rent Differential is over $5,250, you may be able to convert the entire
amount of the Rent Differential to a downpayment option.

The down payment option must be used for the acquisition of the replacement
dwelling, plus any eligible incidental expenses (see "180-day Owner Occupants
Incidental Expenses") related to the purchase of the property. You must work
closely with your Relocation Agent to ensure you can utilize the full amount of
your down payment option towards the purchase.

If any portion of the Rent Differential was used prior to the decision to convert to
a down payment option, those advance payments will be deducted from the
entire benefit.

LAST RESORT HOUSING

On most projects, an adequate supply of housing will be available for sale and
for rent, and the benefits provided will be sufficient to enable you to relocate to
comparable housing. However, there may be projects in certain locations
where the supply of available housing is insufficient to provide the necessary
housing for those persons being displaced. In such cases, Caltrans will utilize a
method called Last Resort Housing. Last Resort Housing allows Caltrans to
construct, rehabilitate or modify housing in order to meet the needs of the
people displaced from a project. Caltrans can also pay above the statutory
limits of $5,250 and $22,500 in order to make available housing affordable.
Appendix D • Summary of Relocation Benefits

Relocation Advisory Assistance

Any individual, family, business or farm displaced by Caltrans shall be offered relocation advisory assistance for the purpose of locating a replacement property. Relocation services are provided by qualified personnel employed by Caltrans. It is their goal and desire to be of service to you and assist in any way possible to help you successfully relocate.

A Relocation Agent from Caltrans will contact you personally. Relocation services and payments will be explained to you in accordance with your eligibility. During the initial interview with you, your housing needs and desires will be determined as well as your need for assistance. You cannot be required to move unless at least one comparable replacement dwelling is made available to you.

You can expect to receive the following services, advice and assistance from your Relocation Agent who will:

- Explain the relocation benefits and eligibility requirements.
- Provide the amount of the replacement housing payments in writing.
- Assure the availability of a comparable property before you move.
- Inspect possible replacement residential units for DS&S compliance.
- Provide information on counseling you can obtain to help minimize hardships in adjusting to your new location.
- Assist you in completing loan documents, rental applications or Relocation Claims Forms.
AND provide information on:

- Security deposits
- Interest rates and terms
- Typical down payments
- VA and FHA loan requirements
- Real property taxes.
- Consumer education literature on housing

If you desire, your Relocation Agent will give you current listings of other available replacement housing. Transportation will be provided to inspect available housing, especially if you are elderly or handicapped. Though you may use the services of a real estate broker, Caltrans cannot provide a referral.

Your Relocation Agent is familiar with the services provided by others in your community and will provide information on other federal, state, and local housing programs offering assistance to displaced persons. If you have special problems, your Relocation Agent will make every effort to secure the services of those agencies with trained personnel who have the expertise to help you.

If the highway project will require a considerable number of people to be relocated, Caltrans will establish a temporary Relocation Field Office on or near the project. Project relocation offices will be open during convenient hours and evening hours if necessary.

In addition to these services, Caltrans is required to coordinate its relocation activities with other agencies causing displacements to ensure that all persons displaced receive fair and consistent relocation benefits.
Remember - YOUR RELOCATION AGENT is there to offer advice and assistance. Do not hesitate to ask questions. And be sure you fully understand all of your rights and available benefits.

YOUR RIGHTS AS A DISPLACEE

All eligible displacees have a freedom of choice in the selection of replacement housing, and Caltrans will not require any displaced person to accept a replacement dwelling provided by Caltrans. If you decide not to accept the replacement housing offered by Caltrans, you may secure a replacement dwelling of your choice, providing it meets DS&S housing standards. Caltrans will not pay more than your calculated benefits on any replacement property.

The most important thing to remember is that the replacement dwelling you select must meet the basic "decent, safe, and sanitary" standards. Do not execute a purchase agreement or a rental agreement until a representative from Caltrans has inspected and certified in writing that the dwelling you propose to occupy meets the basic standards. DO NOT jeopardize your right to receive a replacement housing payment by moving into a substandard dwelling.

It is important to remember that your relocation benefits will not have an adverse affect on your:

- Social Security Eligibility
- Welfare Eligibility
- Income Taxes
In addition, the Title VIII of the Civil Rights Act of 1968 and later acts and amendments make discriminatory practices in the purchase and rental of most residential units illegal if based on race, color, religion, sex, or national origin.

Whenever possible, minority persons shall be given reasonable opportunities to relocate to decent, safe, and sanitary replacement dwellings, not located in an area of minority concentration, and that is within their financial means. This policy, however, does not require Caltrans to provide a person a larger payment than is necessary to enable a person to relocate to a comparable replacement dwelling.

Caltrans' Non-Discrimination Policy ensures that all services and/or benefits will be administered to the general public without regard to race, color, national origin, or sex in compliance with Title VI of the 1964 Civil Rights Act (42 USC 2000d. et seq.).

And you always have the Right to Appeal any decision by Caltrans regarding your relocation benefits and eligibility.

Your Right of Appeal is guaranteed in the "Uniform Act" which states that any person may file an appeal with the head of the responsible agency if that person believes that the agency has failed to properly determine the person's eligibility or the amount of a payment authorized by the Act.

If you indicate your dissatisfaction, either verbally or in writing, Caltrans will assist you in filing an appeal and explain the procedures to be followed. You will be given a prompt and full opportunity to be heard. You have the right to be represented by legal counsel or other representative in connection with the appeal (but solely at your own expense).

Caltrans will consider all pertinent justifications and materials submitted by you and other available information needed to ensure a fair review. Caltrans will provide you with a written determination resulting from the appeal with an explanation of the basis for the decision. If you are still dissatisfied with the relief granted, Caltrans will advise you that you may seek judicial review.
Sus Derechos y Beneficios Como Una Persona Desplazada Bajo el Programa Uniforme De Asistencia Para Reubicación (Residencial)

Introducción

En la construcción de un sistema moderno de transportación, el desplazamiento de un pequeño porcentaje de la población es a menudo necesario. Sin embargo, la política de Caltrans es que las personas desalojadas no tengan que sufrir innecesariamente como resultado de los programas diseñados para el beneficio del público en general.

Los individuos y familias desplazadas pueden ser elegibles para recibir servicios de asesoramiento y pagos de reubicación.

Este folleto provee información acerca de los servicios y pagos de reubicación disponibles. Si usted es requerido a mudarse como resultado de un proyecto de transportación, un Agente de Reubicación se comunicará con usted. El Agente de Reubicación le contestará preguntas específicas y le proveerá información adicional.

Ley de Procedimiento Uniforme de Asistencia para Rubicación y Adquisición de Bienes Raíces de 1970, Enmendada "La Ley Uniforme"

El propósito de esta Ley es proveer tratamiento igual y uniforme para las personas que son desplazadas de sus hogares, negocios, y operaciones agrícolas por programas federales o programas que son asistidos con fondos federales y para establecer uniformidad e igualdad en la política de adquisición de tierras por programas federales y programas asistidos con fondos federales.

La ley trata de asegurar que las personas desplazadas directamente como resultado de proyectos federales o proyectos asistidos con fondos federales sean tratados con igualdad, consistencia y equidad para que esas personas no sufran
daños desproporcionados como resultado de proyectos designados para el
beneficio del público en general.

Aunque se ha hecho un esfuerzo para asegurar la precisión de este folleto, debe
de ser entendido que no tiene la fuerza o efecto de la ley, regla, o regulación
que gobierna el pago de los beneficios. Si hay diferencias o error, la ley tomará
precedencia.

Algunas Definiciones Importantes...

Sus beneficios de reubicación pueden ser entendidos mejor si usted entiende los
siguientes términos:

**Vivienda de Restitución comparable**: significa una propiedad que es:

1. Decente, segura y sanitaria. (Vea la definición abajo)
2. Equivalente funcionalmente a la propiedad desplazada.
3. Adecuada en tamaño para acomodar a la familia que esta siendo
   reubicada.
4. En un área que no esté sujeta a condiciones irrazonablemente adversas.
5. En una localidad generalmente no menos deseable que la localidad de su
   propiedad desplazada con respecto a servicios públicos, y acceso
   razonable al lugar de empleo.
6. En una parcela de tamaño típico para el desarrollo de una residencia de
   tamaño normal.

**Decente, Segura y Sanitaria (DS&S)**: La vivienda de restitución debe de ser
decente, segura y sanitaria ..., que significa que llena todos los requisitos
mínimos establecidos por las regulaciones federales y conforme a los códigos de
ocupación de viviendas aplicables. La propiedad será:

1. Buena estructuralmente, cerrada a las condiciones climáticas y en buen
   estado de reparación.
2. Contiene un sistema eléctrico adecuado para iluminación y otros aparatos
3. Contiene un sistema de calefacción capaz de mantener una temperatura
   saludable (de aproximadamente 70 grados) para la persona desplazada,
con excepción en aquellas áreas donde las condiciones climáticas no requieren dicho sistema.

(4) Debe de ser adecuada en tamaño con respecto al número de cuartos y áreas para vivir necesarias para acomodar a las personas desplazadas. Es política de Caltrans que más de dos personas no deben de estar en un solo cuarto, a menos que el tamaño del cuarto sea suficientemente adecuado para acomodar los muebles de dormitorios necesarios de los ocupantes.

(5) Tener un baño separado, bien iluminado y ventilado que sea privado a los usuarios y que contenga un lavamanos, una tina o regadera, y un excusado, todos en buenas condiciones y apropiadamente conectados a los sistemas de aguas negras y aguas potables.

Nota: En el caso de una propiedad residencial, debe de haber una área de cocina que contenga un lavaplatos usable, apropiadamente conectada a agua caliente y agua fría, y al sistema de drenaje, y con espacio adecuado para utilizar los servicios y conexiones para una estufa y un refrigerador.

(6) Que contenga salidas sin obstrucción y seguros espacio abierto al nivel del suelo. Si la propiedad de restitución está en el segundo piso o más arriba, que tenga acceso directamente desde o a través de un corredor, y que éste corredor común debe de tener al menos dos salidas.

(7) Si la persona desplazada es incapacitada físicamente, debe de ser libre de cualquier barrera que le impidan la entrada o salida, o uso razonable de la propiedad por dicha persona incapacitada.

Persona Desplazada: Cualquier individuo o familia que se mueva de una propiedad o mueva sus bienes personales de una propiedad como resultado de la adquisición de bienes raíces, en todo o en parte, o como resultado de una notificación escrita de una agencia pidiéndole que desocupe la propiedad que se necesita para un proyecto de transporte. En el caso de una adquisición parcial, Caltrans debe de determinar si la persona es desplazada directamente como resultado de esta adquisición.

Los residentes que no están legalmente en los Estados Unidos no son elegibles para recibir pagos y asistencia de reubicación.
Los beneficios de reubicación van a variar dependiendo del tipo y tiempo de ocupación. Como una persona desplazada de una unidad residencial usted puede ser clasificado como:

- Un dueño ocupante de una propiedad residencial (incluyendo casas movibles)
- Un inquilino ocupante de una propiedad residencial (incluyendo casas movibles y cuartos para dormir)

**Vivienda:** El lugar de permanencia o residencia regular y usual de una persona, de acuerdo a las costumbres locales o la ley, incluyendo una unidad familiar, una unidad familiar en un complejo doble o multi-familiar, o una propiedad de uso múltiple, una unidad de condominio o proyecto de vivienda en cooperativa, una unidad libre de mantenimiento doméstico, una casa móvil, o cualquier otra unidad residencial.

**Dueño:** Una persona es considerada que llena los requisitos de dueño de una casa, si esta persona compra, tiene título o tiene algunos de los siguientes intereses en una propiedad:

1. Una escritura de propiedad, un interés de por vida en una propiedad, un contrato de renta por 99 años, un contrato oral de renta incluyendo una opción para extensión con al menos 50 años que queden después de la fecha de adquisición; o
2. El interés en un proyecto de vivienda en cooperativa que incluya el derecho de ocupar una vivienda; o
3. Un contrato de compra de intereses, o bienes raíces.
4. Algún otro interés, incluyendo intereses parciales, que a juicio de la agencia garanticen los pagos como dueño.

**Inquilino:** Una persona que tiene el uso y la ocupación temporal de una propiedad de la que otro es dueño.
Gastos de Mudanza

Si usted califica como persona desplazada, usted tiene derecho a reembolso de sus gastos de mudanza y a ciertos gastos relacionados incurridos durante el traslado. Los métodos de traslado y los distintos tipos de pagos para gastos de mudanza son explicados abajo.

Los individuos y familias desplazadas pueden escoger un pago basado en los gastos reales, razonables y los gastos relacionados, o de acuerdo a una lista de costos fijos de mudanza. Sin embargo, para asegurar su elegibilidad y el pago rápido de sus gastos de mudanza, usted debe de ponerse en contacto con su Agente de Rubricación antes de mudarse.

Usted Puede Elegir Entre:

Los Gastos Razonables de Mudanza – A usted se le puede pagar por los gastos razonables de mudanza y gastos relacionados cuando una compañía comercial de mudanza hace la mudanza. Los reembolsos deberán ser limitados a una mudanza de 50 millas o menos. Los gastos relacionados pueden incluir:

- Transportación.
- Empaque y desempaque de propiedades personales.
- Desconexión y reconexión de aparatos eléctricos.
- Almacenaje temporal de propiedades personales.
- Seguros cuando la propiedad está almacenada o en tránsito.

O

Lista de Costos Fijos de Mudanza – A usted se le puede pagar basado en una lista de costos fijos de mudanza. Bajo esta opción, usted no puede ser elegible para reembolsos de gastos relacionados incluidos en la lista de arriba. Esta lista de gastos fijos está designada a cubrir todos esos gastos.

Por ejemplo (Tarifa para el año 2001)

4 Cuartos - $ 950
7 Cuartos - $1,550.
Los costos fijos de mudanza para una unidad amueblada (ejemplo, usted es inquilino en un apartamento donde los muebles pertenecen al dueño de la vivienda) están basados en la Tabla de Honorarios B.

Ejemplos (Taza en el año 2001):
4 Cuartos - $475
7 Cuartos - $625

Bajo la lista de Pago Fijos de Mudanza, usted no puede recibir ningún pago adicional por almacenamiento temporario, vivienda temporal, transporte o conexiones de servicios públicos.
Pagos Para Vivienda de Restitución

El tipo de Pago Para Vivienda de Restitución (RHP) depende de si usted es dueño o un inquilino, y en el tiempo de ocupación que tiene de la propiedad que será adquirida.

Si usted es calificado como dueño ocupante de más de 180 días antes de la iniciación de negociaciones para la adquisición de su propiedad, usted puede tener derecho a recibir RHP que consiste en:

Diferencia de Precio, y
Diferencia para Hipoteca, y
Gastos Incidentales
O

Diferencia Para Rentar

Si usted es calificado como dueño ocupante de más de 90 días, pero menos de 180 días, O si usted es calificado como inquilino ocupante de al menos 90 días, usted puede tener derecho a recibir RHP así:

Diferencia Para Rentar
U

Opción para Enganche

Tiempo de ocupación simplemente significa contar el número de días que usted actualmente ocupó la vivienda antes de la fecha de iniciación de negociaciones por Caltrans para la compra de la propiedad. El término “iniciación de negociaciones” significa la fecha que Caltrans hizo el primer contacto personal con el dueño de bienes raíces, o su representante, para darle a él/ella una oferta escrita para la adquisición de la propiedad.

Nota: Si usted ocupó una vivienda por menos de 90 días antes de la iniciación de negociaciones y la propiedad es posteriormente adquirida, o si usted se mudó a la propiedad después de la iniciación de negociaciones y usted todavía
ocupa tu propiedad a la fecha de adquisición, puedes ser elegible para un Pago para Restitución de Vivienda, basado en una guía de elegibilidad establecida. Consulta con tu Agente de Reubicación antes de que haga cualquier decisión de mudarse de tu propiedad.

Para Ocupantes de 180 Días o Más

Si eres elegible como dueño ocupante de 180 días, puedes ser elegible – además del valor equitativo en el mercado de tu propiedad – para un Pago de Restitución de Vivienda que consiste en un pago de Diferencia de Precio y/o Gastos Incidentales.

El Pago de Diferencia de Precio es la cantidad por la que el costo de una vivienda de reposición excede el costo de adquisición de la vivienda desplazada. Este pago le asistirá en la compra de una vivienda decente, segura, y sanitaria (DS&S). Caltrans calculará el pago máximo que puedes recibir. (Vea un ejemplo en la página 15.)

Para recibir la cantidad total de la diferencia de precio calculada, debes gastar al menos la cantidad calculada por Caltrans en la propiedad de reposición.

El pago de Diferencia de Hipoteca será reembolsado por cualquier aumento del costo de interés en la hipoteca que hayas incurrido porque la tasa de interés en tu nueva hipoteca excede la tasa de interés de la propiedad adquirida por Caltrans. La computación del pago es complicada ya que está basada en las tasas típicas entre su préstamo anterior y su préstamo nuevo. También, una parte de esos pagos pueden ser prorrateados como reembolso por una porción de los honorarios de su préstamo y los puntos (intereses) de la hipoteca.

Para ser elegible para recibir este pago, la propiedad adquirida debe ser hipotecada con una hipoteca de buena fe, la cual fue un crédito válido de por lo menos 180 días antes de la iniciación de negociaciones.

Usted también puede ser reembolsado por cualquier Gasto Incidental actual y necesario que incurra en relación con la compra de su propiedad de restitución. Estos gastos pueden ser los costos por búsqueda de título, honorarios de copia en el Registro, reporte de crédito, reporte de evaluación, y ciertos otros gastos de cierre de escritura. Usted no puede ser reembolsado por ningún gasto frecuente como pre-pagos de impuesto de bienes raíces y seguro de propiedad.
Si la cantidad total de su Pago de Vivienda de Restitución (Diferencia de Precio, Diferencia Para Hipoteca y Gastos Incidenciales) excede $22,500, el pago debe de ser depositado directamente en una cuenta fiduciaria o ser pagado directamente a la compañía financiera.

**EJEMPLO DE COMO SE CALCULA LA DIFERENCIA DE PAGO:**

Suponga que Caltrans compra su propiedad por $98,000. Después de un estudio completo de viviendas disponibles en el mercado, que sean decentes, seguras y sanitarias, Caltrans determina que la propiedad de restitución comparable en el mercado abierto le costará $100,000. Si su precio de compra es $100,000 usted recibirá $2,000 (Vea el **Ejemplo A**)

Si su precio de compra es de más de $100,000, usted paga la diferencia (vea el **Ejemplo B**). Si su precio de compra es menos de $100,000, el pago se basará en los costos actuales (vea el **Ejemplo C**).

La cantidad que usted recibe en un pago diferencial dependerá de cuanto usted realmente gasta en una vivienda de restitución, como se muestra en estos ejemplos.

**Computación de Caltrans**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio Comparable de la Propiedad de Restitución</td>
<td>$100,000</td>
</tr>
<tr>
<td>Precio de Adquisición de su Propiedad</td>
<td>$ 98,000</td>
</tr>
<tr>
<td>Diferencia Máxima de Precio</td>
<td>$  2,000</td>
</tr>
</tbody>
</table>

**Ejemplo A**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio de Compra de Restitución</td>
<td>$100,000</td>
</tr>
<tr>
<td>Propiedad Comparable de Restitución</td>
<td>$100,000</td>
</tr>
<tr>
<td>Precio de Adquisición de su Propiedad</td>
<td>$ 98,000</td>
</tr>
<tr>
<td>Diferencia Máxima de Precio</td>
<td>$  2,000</td>
</tr>
</tbody>
</table>
Appendix D • Summary of Relocation Benefits

Ejemplo B

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Monto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio de Compra de Restitución</td>
<td>$105,000</td>
</tr>
<tr>
<td>Propiedad Comparable de Restitución</td>
<td>$100,000</td>
</tr>
<tr>
<td>Precio de Adquisición de su Propiedad</td>
<td>$ 98,000</td>
</tr>
<tr>
<td>Diferencia Máxima de Precio</td>
<td>$  2,000</td>
</tr>
<tr>
<td>Usted Debe de Pagar el Precio Adicional de</td>
<td>$  5,000</td>
</tr>
</tbody>
</table>

Ejemplo C

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Monto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propiedad Comparable de Restitución</td>
<td>$100,000</td>
</tr>
<tr>
<td>Precio de Compra de Restitución</td>
<td>$ 99,000</td>
</tr>
<tr>
<td>Precio de Adquisición de su Propiedad</td>
<td>$ 98,000</td>
</tr>
<tr>
<td>Diferencia de Precio</td>
<td>$  1,000</td>
</tr>
</tbody>
</table>

En el ejemplo C usted solo recibirá $1,000 – no la cantidad completa de “La propiedad Comparable de Restitución” por los requisitos de “Gastar para Obtener” de Caltrans.

PARA QUE UN “DUENO OCUPANTE DE 180 DÍAS” RECIBA LA CANTIDAD TOTAL DE SUS BENEFICIOS DE PAGOS PARA VIVIENDA (Diferencia de Precio, Diferencia de Hipoteca y Gastos Incidenciales), usted debe:

A) Comprar y ocupar una vivienda de restitución que sea DS&S dentro de al menos un año desde la fecha más tarde de:

1) La fecha en que recibió la primera notificación de una casa de restitución, O

2) La fecha que Caltrans pagó los costos de adquisición de su vivienda actual (usualmente los gastos de cierre de escritura en la adquisición del Estado.)

Y

B) Haber gastado al menos la cantidad que Caltrans estableció para “La Propiedad Comparable de Restitución” para la propiedad de restitución.

Y
C) Reportar un reclamo para pago para reubicación dentro de los 18 meses de la fecha más tarde de:

1) La fecha en que se mudó de la propiedad adquirida por Caltrans, O

2) La fecha en que Caltrans le pagó los costos de adquisición de su vivienda actual (usualmente al cierre de escritura en la adquisición del Estado.)

Usted no será elegible para recibir ningún pago de reubicación hasta que el Estado haya hecho la primera oferta por escrito de la compra de la propiedad. Usted también recibirá una notificación escrita por lo menos 90 días antes de tener que mudarse.

Para Dueños Ocupantes e Inquilinos de 90 Días o Más

Si usted califica como un ocupante (ya sea como dueño o inquilino) de 90 días, usted puede ser elegible para un Pago de Vivienda de Restitución en la forma de Diferencia para Rentar.

El pago de la Diferencia para Rentar es designado para asistirle en la renta de una vivienda comparable que sea decente, segura y sanitaria. El pago será basado en la diferencia entre la renta básica mensual por la propiedad adquirida por Caltrans (incluyendo el promedio del costo mensual de servicios públicos) y el menor de:

a) La renta mensual y el promedio del costo mensual estimado de los servicios públicos para una vivienda comparable de restitución determinada por Caltrans, O

b) La renta mensual y el promedio del costo mensual estimado de los servicios públicos para una vivienda decente, segura y sanitaria que usted rente como vivienda de restitución.

Gastos de servicios públicos son esos gastos que usted incurre por calefacción, luz, agua, aguas negras y basura – sin importar quien los provea (ejemplo, electricidad, gas propano, y sistema séptico.) No incluye cable de televisión, teléfono, o seguridad. Los servicios públicos en su propiedad de restitución será el promedio del promedio de costos por los 3 últimos meses para el tipo de vivienda y área usados en los cálculos.
Esta diferencia es multiplicada por 42 meses y le puede ser pagado en una sola suma o en pagos periódicos de acuerdo con la política y regulaciones. (Vea un ejemplo en la página 21.)

Para recibir la cantidad calculada total de la diferencia para rentar, usted debe gastar al menos la cantidad calculada por Caltrans en la propiedad de restitución.

Este pago puede —con ciertas limitaciones— ser convertido en una Opción para Enganche para asistirle en la compra de una propiedad de restitución (Vea la página 25 para una explicación completa.)

EJEMPLO DE LA COMPUTACIÓN DEL PAGO DE LA DIFERENCIA PARA RENTAR:

Después de hacer un estudio completo de viviendas comparables, decentes, seguras y sanitarias que estén disponibles para rentar, Caltrans determina que una propiedad comparable de restitución podría ser rentada por $325 al mes.

**Computación de Caltrans**

<table>
<thead>
<tr>
<th>Detalle</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renta por una Propiedad Comparable de Restitución</td>
<td>$325 al mes</td>
</tr>
<tr>
<td>MÁS: estimado de costos de servicios públicos</td>
<td>100 al mes</td>
</tr>
<tr>
<td>TOTAL Costo de renta por una Propiedad Comparable de Restitución</td>
<td>$425 al mes</td>
</tr>
<tr>
<td>Renta por su Propiedad Actual</td>
<td>$330 al mes</td>
</tr>
<tr>
<td>MÁS: costos de servicios públicos</td>
<td>90 al mes</td>
</tr>
<tr>
<td>TOTAL Costo para pagar la renta de su propiedad actual</td>
<td>$390 al mes</td>
</tr>
<tr>
<td>Propiedad Comparable de Restitución incluyendo servicios públicos</td>
<td>$425 al mes</td>
</tr>
<tr>
<td>Costo para pagar la renta de su propiedad incluyendo servicios públicos</td>
<td>390 al mes</td>
</tr>
<tr>
<td>Diferencia</td>
<td>$35 al mes</td>
</tr>
</tbody>
</table>

Multiplicado por 42 meses = $1,470 Diferencia para Rentar
Ejemplo A:
Renta para una Propiedad de Restitución, incluyendo los costos estimados de servicios públicos $ 525 al mes
Propiedad Comparable de Restitución incluyendo servicios públicos $ 425 al mes
Costos de pago de la renta de su propiedad incluyendo servicios públicos $ 390 al mes

Ya que $425 es menos que $525, la diferencia para rentar está basada en la diferencia entre $390 y $425.

Diferencia para Rentar ($35 x 42 meses = $1,470)
En este caso usted gasta “al menos” la cantidad de la Propiedad de Restitución Comparable en la propiedad de restitución y así recibirá la cantidad total.

Ejemplo B:
Renta por una Propiedad de Restitución, incluyendo los costos estimados de servicios públicos $ 400 al mes
Propiedad Comparable de Restitución incluyendo servicios públicos $ 425 al mes
Costos de pago de la renta de su propiedad incluyendo servicios públicos $ 390 al mes

Ya que $400 es menos que $525, la diferencia para rentar está basada en la diferencia entre $400 y $390.

Diferencia para Rentar ($10 x 42 meses = $420)
En este caso usted va a gastar “menos que” la cantidad de Propiedad de Restitución Comparable en la restitución de la vivienda y usted no recibirá la cantidad total.

PARA QUE UN “DUENO OCUPANTE DE 90 DÍAS” RECIBA LA CANTIDAD TOTAL DE PAGO PARA SU VIVIENDA DE RESTITUCION (Diferencia para Rentar), usted debe de:

A) Rentar y ocupar una vivienda de restitución y S&S dentro de un año después de la última fecha de...
(1) La fecha en que usted recibió la primera notificación de una casa de restitución disponible, O

(2) El día en que usted su mudó de la propiedad adquirida por Caltrans.

Y

B) Gastar al menos la cantidad de la "Propiedad Comparable de Restitución" de Caltrans para rentar una vivienda de restitución.

Y

C) Reportar un reclamo para pagos de reubicación dentro de los 18 meses de la fecha más tarde:

(1) La fecha en que usted se mudó de la propiedad adquirida por Caltrans, O

(2) La fecha en que Caltrans le pagó los costos de adquisición de su propiedad actual (usualmente al cierre de escritura de la adquisición del Estado.)

Usted no será elegible para recibir ningún pago de reubicación hasta que haya hecho la primera oferta escrita para comprar la propiedad. Además, usted recibirá al menos una noticia por escrito 90 días antes de tener que mudarse.
**OPCIÓN PARA ENGANCHE**

El pago de Diferencia para Rentar puede — con ciertas limitaciones — ser convertido en una **Opción para Enganche** para asistirle en la compra de una propiedad de restitución. La Opción para Enganche es una conversión directa del pago de la diferencia para rentar.

Si la diferencia para rentar es calculada entre $0 y $5,250, su Opción Para Enganche será de $5,250 la cual puede ser usada para la compra de una vivienda de restitución decente, segura y sanitaria.

Si la diferencia para rentar es más de $5,250 usted podrá convertir la cantidad completa de diferencia para rentar a una Opción Para Enganche.

La Opción Para Enganche debe de ser usada para el enganche requerido, la cual usualmente es un porcentaje del precio total de compra, más cualquier gasto incidental elegible (vea la página 14, “Gastos Incidentales para Dueños Ocupantes de 180 días”) relacionado con la compra de la propiedad. Usted debe trabajar junto con su Agente de Reubicación para asegurarse de que puede utilizar la cantidad total de su Opción Para Enganche en su compra.

Si alguna porción de la diferencia para rentar fue usada antes de su decisión de convertirla a una Opción Para Enganche, los pagos avanzados serán deducidos de los beneficios completos.
CASAS DEL ÚLTIMO RECURSO

En la mayoría de los proyectos de Caltrans, existe una cantidad adecuada de viviendas de venta y alquiler, y los beneficios serán suficientes para que usted pueda reubicarse a una vivienda comparable. Sin embargo, en ciertas localidades pueden haber proyectos donde el número de viviendas disponibles no son suficientes para proveer viviendas a todas las personas desplazadas. En estos casos, Caltrans utiliza un método llamado Casa del Último Recurso. La Casa del Último Recurso permite a Caltrans construir, rehabilitar, o modificar viviendas para cumplir con las necesidades de las personas desplazadas por un proyecto. Caltrans puede también pagar arriba de los límites legales de $5,250 y $22,500 para hacer posible viviendas con precios razonables.

Asistencia de Consulta Para Reubicación

A cualquier individuo, familia, negocio u operación agrícola desplazada por Caltrans deberá ofrecersele servicios de asistencia con el propósito de localizar una propiedad de reubicación. Los servicios de reubicación son proveídos por empleados calificados de Caltrans. Es la meta de ellos y el deseo de estos empleados de servirle y asistirle de cualquier manera posible para ayudarle a reubicarse exitosamente.

Un Agente de Reubicación de Caltrans se pondrá en contacto con usted personalmente. Los servicios de reubicación y pagos se le explicarán de acuerdo con su elegibilidad. Durante la entrevista inicial, sus necesidades de vivienda y deseos se determinarán así como sus necesidades de asistencia. No se le puede pedir que se mude a menos que una vivienda comparable de reubicación le sea disponible.

Usted puede esperar recibir los siguientes servicios, consejos y asistencia de su Agente de Reubicación quien le:

- Explicará los beneficios de reubicación y los requerimientos de elegibilidad.
- Proveerá por escrito la cantidad de pago por su vivienda de reubicación.
- Asegurará la propiedad disponible de una vivienda comparable antes de que se mude.
- Inspeccionará las posibles unidades residenciales de reubicación para el cumplimiento de DS&S.
• Proveerá información y aconsejará cómo puede obtener ayuda para minimizar las adversidades en ajustarse a su nueva localidad.

• Ayudará en completar los documentos de préstamos, aplicaciones de rentas o las Formas de Reclamo para Reubicación.

Y proveeré información de:

• Seguro de Depósitos
• Tasa de intereses y términos
• Pagos típicos de enganches
• Requisitos de préstamos de la Administración de Veteranos (VA) y la Administración de Vivienda Federal (FHA)
• Impuestos sobre bienes raíces
• Literatura de educación en viviendas para el consumidor

Si usted lo desea, el Agente de Reubicación le dará una lista actual de otras viviendas de renta/situación disponibles.

Se proveerá transporte para inspeccionar viviendas disponibles, especialmente si usted es mayor de edad o con impedimento físico. Aunque usted puede utilizar los servicios de un agente de bienes raíces, Caltrans no lo podrá referir.

Su Agente de Reubicación está familiarizado con los servicios proveídos por otras agencias de su comunidad y le proveerá información de otros programas de viviendas federales, estatales y locales que ofrecen programas de asistencia para personas desplazadas. Si usted tiene algún problema especial, su Agente de Reubicación hará su mejor esfuerzo para asegurarle los servicios de esas agencias con personal capacitado y con experiencia que le ayudarán.

Si el proyecto de transporte requiere un número considerable de personas que sean reubicados, Caltrans establecerá una Oficina Temporal de Reubicación en, o cerca del proyecto. Las oficinas de proyectos de reubicación deberán de abrirse durante horas convenientes y en horas tempranas de la noche, si es necesario.
Además de estos servicios, Caltrans es requerido que coordine las actividades de otras agencias que causen desplazamientos para asegurar que todas esas personas desplazadas reciban beneficios de reubicación equitativos y consistentes.

Recuerde – SU AGENTE DE REUBICACIÓN está para aconsejarle y asistirle. No vacile en hacer preguntas, y asegúrese de que entiende completamente sus derechos y beneficios de reubicación disponibles.
SUS DERECHOS COMO UNA PERSONA DESPLAZADA

Todas las personas elegibles como personas desplazadas tienen la libertad de escoger dentro de la selección de viviendas de restitución, y Caltrans no requerirá a ninguna persona que sea desplazada que acepte una vivienda de restitución proveída por Caltrans. Si usted decide no aceptar la vivienda de restitución ofrecida por Caltrans, usted puede elegir una vivienda de restitución de su propia selección, mientras que cumple con los requisitos de DS&S. Caltrans no pagará más que los beneficios calculados por una vivienda de restitución.

Lo más importante que usted debe de recordar es que la vivienda de restitución que usted seleccione debe de llenar los requisitos básicos de “decente, segura y sanitaria”. No ejecute los documentos de compra o el contrato de renta hasta que un representante de Caltrans haya inspeccionado y certificado por escrito que la vivienda que usted se propone ocupar cumple con los requisitos básicos. NO ARRIESGUE su derecho de recibir los pagos de vivienda de restitución por mudarse a una vivienda que no sea “decente, segura y sanitaria.”

Es importante recordar que sus beneficios de reubicación no van a tener ningún efecto adverso en su:

- Elegibilidad para Seguro Social
- Elegibilidad para Asistencia Social
- Impuestos sobre ingresos

Además, el Título VII de los Derechos Civiles, Ley de 1968 y luego otras leyes y enmiendas hacen descriminatoria la práctica de compra y renta de unidades de vivienda si es basada ilegalmente en la raza, color, religión, sexo u origen nacional.

Cuando sea posible, a personas de minorías se les debe de dar oportunidades razonables para reubicarse a viviendas de restitución que sean decentes, seguras y sanitarias, no localizadas en áreas de concentración de minorías, y que estén dentro de sus recursos económicos. Esta política, sin embargo, no requiere que Caltrans provea a una persona pagos más grandes de lo que sean necesarios para permitir que la persona sea reubicada a una vivienda de restitución comparable.
La política No-Discriminatoria de Caltrans asegura que todos los servicios y/o los beneficios deben de ser administrados al público en general sin importar la raza, color, origen nacional, o sexo en cumplimiento con el Título VI de la Ley de Derechos Civiles de 1964 (42 USC 2000 d. et seq.)

Usted siempre tendrá el Derecho de Apelar cualquier decisión hecha por Caltrans relacionada a los beneficios de reubicación y elegibilidad.

Su Derecho de Apelar está garantizado en la “Ley Uniforme” la cual establece que una persona puede apelar al jefe de la agencia responsable, si ella cree que la agencia ha fallado en determinar correctamente su elegibilidad, o la cifra del pago autorizado por la Ley.

Si usted indica su desatisfacción, ya sea verbalmente o por escrito, Caltrans le asistirá en hacer su demanda de apelación y le explicará el procedimiento que debe de seguir. Usted tiene derecho de ser representado por un asesor legal u otro representante en conexión con su apelación (pero solamente por su propia cuenta.)

Caltrans considerará toda justificación y materia pertinente que usted entregue u otra información disponible, necesaria para asegurar una audiencia equitativa. Caltrans le proveerá una determinación por escrito del resultado de su apelación, con una explicación sobre la base de la decisión. Si usted aún no está satisfecho con la decisión otorgada, Caltrans le aconsejará que usted puede pedir una audiencia judicial.

Noticiero de la Ley para Americanos con Incapacidades Físicas (ADA):

Para personas con incapacidades físicas, este documento es disponible en formatos alternativos. Para Información llame al número (916) 654-5413 Voz, CRS: 1-800-735-2929, o escriba a Derecho de Vía, MS 37, 1120 N Street, Sacramento, CA 95814.
Your Rights and Benefits as a Displacee
Under the Uniform Relocation Assistance Program (Mobile Home)

Introduction

In building a modern transportation system, the displacement of a small percentage of the population is often necessary. However, it is the policy of Caltrans that displaced persons shall not suffer unnecessarily as a result of programs designed to benefit the public as a whole.

Displaced individuals, families, businesses, farms, and nonprofit organizations may be eligible for relocation advisory services and payments.

This brochure provides information about available relocation services and payments. If you are required to move as the result of a Caltrans transportation project, a Relocation Agent will contact you. The Relocation Agent will be able to answer your specific questions and provide additional information.

Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970
As Amended
“The Uniform Act”

The purpose of this Act is to provide for uniform and equitable treatment of persons displaced from their homes, businesses, or farms by federal and federally assisted programs and to establish uniform and equitable land acquisition policies for federal and federally assisted programs.

49 Code of Federal Regulations Part 24 implements the “Uniform Act” in accordance with the following relocation assistance objective:

To ensure that persons displaced as a direct result of federal or federally-assisted projects are treated fairly, consistently and equitably so that such persons will not suffer disproportional injuries as a result of projects designed for the benefit of the public as a whole.
While every effort has been made to assure the accuracy of this booklet, it should be understood that it does not have the force and effect of law, rule, or regulation governing the payment of benefits. Should any difference or error occur, the law will take precedence.

**Some Important Definitions...**

Your relocation benefits can be better understood if you become familiar with the following terms:

**Comparable Replacement:** means a dwelling which is:

1. Decent, safe, and sanitary (See definition below.)
2. Functionally equivalent to the displaced dwelling.
3. Adequate in size to accommodate the family being relocated.
4. In an area not subject to unreasonable adverse environmental conditions.
5. In a location generally not less desirable than the location of your displacement dwelling with respect to public utilities and commercial and public facilities, and reasonably accessible to the place of employment.
6. On land that is typical in size for residential development with typical improvements.

**Decent, Safe and Sanitary (DS&S):** Replacement housing must be decent, safe, and sanitary, which means it meets all of the minimum requirements established by federal regulations and conforms to applicable housing and occupancy codes. The dwelling shall:

1. Be structurally sound, weather tight, and in good repair.
2. Contain a safe electrical wiring system adequate for lighting and other devices.
3. Contain a heating system capable of sustaining a healthful temperature (of approximately 70 degrees) for a displaced person, except in those areas where local climatic conditions do not require such a system.
(4) Be adequate in size with respect to the number of rooms and area of living space needed to accommodate the displaced person. The Caltrans policy is that there will be no more than two persons per room unless the room is of adequate size to accommodate the normal bedroom furnishings for the occupants.

(5) Have a separate, well-lighted and ventilated bathroom that provides privacy to the user and contains a sink, bathtub or shower stall, and a toilet, all in good working order and properly connected to appropriate sources of water and to a sewage drainage system.

Note: In the case of a housekeeping dwelling, there shall be a kitchen area that contains a fully usable sink, properly connected to potable hot and cold water and to a sewage drainage system, and adequate space and utility service connections for a stove and refrigerator.

(6) Contains unobstructed egress to safe, open space at ground level. If the replacement dwelling unit is on the second story or above, with access directly from or through a common corridor, the common corridor must have at least two means of egress.

(7) For a displaced person who is handicapped, be free of any barriers which would preclude reasonable ingress, egress, or use of the P.C. dwelling by such displaced person.

Displaced Person or Displacee: Any person who moves from real property or moves personal property from real property as a result of the acquisition of the real property, in whole or in part, or as the result of a written notice from the agency to vacate the real property needed for a transportation project. In the case of a partial acquisition, Caltrans shall determine if a person is displaced as a direct result of the acquisition.

Residents not lawfully present in the United States are not eligible to receive relocation payments and assistance.

Relocation benefits will vary, depending upon the type and length of occupancy. As a residential displacee, you will be classified as either:

- An owner occupant of a residential property (includes mobile homes)
- A tenant occupant of a residential property (includes mobile homes and sleeping rooms)
Appendix D • Summary of Relocation Benefits

Dwelling: The place of permanent or customary and usual residence of a person, according to local custom or law, including a single family house; a single family unit in a two-family, multi-family, or multi-purpose property; a unit of a condominium or cooperative housing project; a non-housekeeping unit; a mobile home; or any other residential unit.

Mobile Home: Generally refers to single, double or triple wide mobile home units. It does not include manufactured homes that are permanently affixed to the realty, as these are treated as single family dwellings. However, it can include certain trailers or recreational vehicles that are a primary residence depending on how they are permanently affixed to the real property.

Owner: A person is considered to have met the requirement to own a dwelling if the person purchases or holds any of the following interests in real property:

1. Fee title, a life estate, a land contract, a 99-year lease, oral lease including any options for extension with at least 50 years to run from the date of acquisition; or
2. An interest in a cooperative housing project which includes the right to occupy a dwelling; or
3. A contract to purchase any interests or estates; or
4. Any other interests, including a partial interest, which in the judgment of the agency warrants consideration as ownership.

Tenant: A person who has the temporary use and occupancy of real property owned by another.

Mobile Homes

If the mobile home is not acquired by Caltrans, the owner (regardless of who occupies it) of a mobile home is eligible for a payment to move the mobile home to a replacement piece of land based on an actual cost basis. This includes the cost to disassemble, move and reassemble any porches, decks, skirting and/or awnings. Additional costs may be eligible for reimbursement if Caltrans determines they are “actual, reasonable and necessary.” Some of these costs might be:
Appendix D • Summary of Relocation Benefits

- Anchoring the unit to the new pad
- Additional axles or brakes on the mobile home that are required for transportation
- Temporary protection of an extra wide mobile home unit that must be split during the move
- Utility hook-ups to the unit (e.g., water, sewer, septic, electricity, gas) – if utilities are already available to the mobile home location (e.g., pad)
- Necessary repairs to meet local and state code
- Modifications necessary to meet Caltrans “decent, safe and sanitary” requirements
- Non-returnable entrance fee to the mobile home park – with limitations

The movement of the mobile home must be performed by a qualified mover and the payment is based on the lowest of two bids obtained by the owner of the mobile home and approved by Caltrans. Caltrans cannot pay for the move of the mobile home beyond 50 miles unless there are no suitable replacement pieces of land or mobile home parks within the 50-mile radius. Approval for a move beyond 50 miles must be obtained in advance of the move.

Moving Expenses

In addition to moving the mobile home, the occupant (regardless of who owns it) may be eligible for a payment to move their personal property – if you qualify as a “displaced person.”

The methods of moving and the various types of moving cost payments are explained below. Displaced individuals and families may choose to be paid on the basis of actual, reasonable moving costs and related expenses, or according to a fixed moving cost schedule. However, to ensure your eligibility and prompt payment of moving expenses, you should contact your Relocation Agent before you move.

You Can Choose Either:

Actual Reasonable Moving Costs – You may be paid for your actual reasonable moving costs and related expenses when a commercial mover performs the
move. Reimbursement will be limited to a move of 50 miles or less. Related expenses may include:

- Transportation
- Packing and unpacking personal property
- Disconnecting and reconnecting household appliances
- Temporary storage of personal property
- Insurance while property is in storage or transit

OR

**Fixed Moving Cost Schedule** – You may be paid on the basis of a fixed moving cost schedule. Under this option, you will not be eligible for reimbursement of related expenses listed above. The fixed schedule is designed to cover such expenses.

Examples (Year 2000 Rate):

<table>
<thead>
<tr>
<th>Room Count</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Rooms</td>
<td>$950</td>
</tr>
<tr>
<td>7 Rooms</td>
<td>$1,550</td>
</tr>
</tbody>
</table>

If the furniture is moved with the mobile home, the amount of the fixed payment is based on Schedule B.

Examples (Year 2001 Rate):

<table>
<thead>
<tr>
<th>Room Count</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Rooms</td>
<td>$475</td>
</tr>
<tr>
<td>7 Rooms</td>
<td>$625</td>
</tr>
</tbody>
</table>

Normally no additional payments for temporary storage, lodging, transportation or utility hook-ups of household appliances can be paid with the fixed move schedule. However, the occupants of the mobile home who choose to move back into the same mobile home at the new location, can receive an allowance for food and lodging during the move and set-up time. Also, utility hook-ups to the mobile home unit may be eligible for reimbursement.

**Note:** Even if the mobile home is acquired by Caltrans, the occupant (regardless of who owns it) of the mobile home is still eligible for a payment to move their personal property.

Mobile Home
Replacement Housing Payments

The occupant of a mobile home unit may be eligible for a replacement housing payment. The type of Replacement Housing Payment (RHP) depends on whether you are an owner or a tenant of the mobile home, and the length of occupancy in the mobile home unit that is on property being acquired for a highway project.

If you are a qualified owner occupant of both the land and the mobile home for more than 180 days prior to the initiation of negotiations for the acquisition of your property – and the mobile home unit is acquired by Caltrans – you may be entitled to a RHP that consists of:

- Price Differential, and
- Mortgage Differential, and
- Incidental Expenses;

OR

Rent Differential

You do not have to purchase and occupy another mobile home unit in order to receive your RHP – however, the new residential unit must meet the "decent, safe and sanitary" requirements.

If the mobile home is not acquired by Caltrans, you may still be eligible for a RHP to assist you with purchasing a replacement piece of land where you can move your mobile home.

It is important to know that if you do not own both the mobile home and the property, your RHP can be limited. You must work closely with your Relocation Agent to fully understand your eligibility.

If you are a qualified owner occupant of the mobile home for more than 90 days but less than 180 days, OR you are a qualified tenant occupant of the mobile home for at least 90 days, you may be entitled to a RHP as follows:
Rent Differential

OR

Down Payment Option

As the occupant of a mobile home – regardless of the length of time or your status as an owner or tenant – your payment will vary depending upon the following:

- If the mobile home unit was acquired by Caltrans
- The owner of the mobile home
- You will occupy the mobile home at the new location if it is moved
- You choose to occupy another type of unit such as a single family residence

Length of occupancy simply means counting the number of days that you actually occupied the mobile home unit on the land that is being acquired by Caltrans – prior to the date of initiation of negotiations by Caltrans for the purchase of the property. The term “initiation of negotiations” means the date Caltrans makes the first personal contact with the owner of real property, or his/her representative, to give him/her a written offer for the property to be acquired.

Note: If you have been in occupancy less than 90 days before the initiation of negotiations and the property is subsequently acquired, or if you move onto the property after the initiation of negotiations and you are still in occupancy on the date of acquisition, you may or may not be eligible for a Replacement Housing Payment, based on the established affordability guidelines. Check with your Relocation Agent before you make any decision to vacate your property.

For Owner Occupants of 180 Days or More

If you qualify as a 180-day owner occupant, you may be eligible – in addition to the fair market value of your property – for a Replacement Housing Payment that consists of a Price Differential, Mortgage Differential and/or Incidental Expenses.

The Price Differential payment is the amount by which the cost of a replacement dwelling exceeds the acquisition cost of the displacement dwelling. This payment
will assist you in purchasing a comparable decent, safe, and sanitary (DS&S) replacement dwelling. Caltrans will compute the maximum payment you may be eligible to receive.

In order to receive the full amount of the calculated price differential, you must spend at least the amount calculated by Caltrans on a replacement property.

The Mortgage Differential payment will reimburse you for any increased mortgage interest costs you might incur because the interest rate on your new mortgage for the real property, or the loan obtained for just the mobile home unit, exceeds the interest rate on the property acquired by Caltrans. The payment computation is complex because it is based on prevailing rates, your existing loan and your new loan. Also, a part of this payment may be prorated such as reimbursement for a portion of your loan origination fees and mortgage points.

To be eligible to receive this payment, the acquired property must have been encumbered by a bona fide mortgage which was a valid lien for at least 180 days prior to the initiation of negotiations.

You may also be reimbursed for any actual and necessary Incidental Expenses that you incur in relation to the purchase of your replacement property. These expenses may be those costs for title search, recording fees, credit report, appraisal report, and certain other closing costs associated with the purchase of property. You may also be eligible for certain costs related to the purchase of a new mobile home, such as sales tax or use tax payments, DMV title transfer fees, or building and transportation permits. You will not be reimbursed for any recurring costs such as prepaid real estate taxes and property insurance.

If the total amount of your Replacement Housing Payment (RHP) (Price Differential, Mortgage Differential and Incidental Expenses) exceeds $22,500, the payment must be deposited directly into an escrow account or paid directly to the mortgage company.

EXAMPLES OF PRICE DIFFERENTIAL PAYMENT COMPUTATION:

**SCENARIO 1:** If you owned and occupied the mobile home for at least 180 days, and it's on your own property, and Caltrans acquires your mobile home, then you are entitled to receive a Price Differential based on a comparable residential property.
Appendix D • Summary of Relocation Benefits

Assume that Caltrans purchases your property and mobile home for $98,000. After a thorough study of available, decent, safe and sanitary dwellings on the open market, Caltrans determines that a comparable replacement property, a mobile home on a similar size lot, will cost you $100,000. If your actual purchase price is $100,000, you will receive $2,000 (see Example A).

If your actual purchase price is more than $100,000, you pay the difference (see Example B). If your actual purchase price is less than $100,000, the differential payment will be based on actual costs (see Example C).

Remember: You do not have to purchase another mobile home as your replacement property.

How much of a differential payment you receive depends on how much you actually spend on a replacement dwelling as shown in these examples:

Caltrans' Computation
Comparative Replacement Property and Mobile Home: $100,000
Acquisition Price of Your Property and Mobile Home: - $98,000
Maximum Price Differential: $ 2,000

Example A
Purchase Price of Replacement Property and Mobile Home: $100,000
Comparative Replacement Property and Mobile Home: $100,000
Acquisition Price of Your Property and Mobile Home: - $98,000
Maximum Price Differential: $ 2,000

Example B
Purchase Price of Replacement Property and Mobile Home: $105,000
Comparative Replacement Property and Mobile Home: $100,000
Acquisition Price of Your Property and Mobile Home: - $98,000
Maximum Price Differential: $ 2,000
You Must Pay the Additional: $ 5,000
Example C
Comparable Replacement Property and Mobile Home: $100,000
Purchase Price of Replacement and Mobile Home: $99,000
Acquisition Price of Your Property and Mobile Home: $98,000
Price Differential: $1,000

In Example C you will only receive $1,000 – not the full amount of the Caltrans “Comparable Replacement Property” because of the “Spend to Get” requirements.

SCENARIO 2: If you owned and occupied the mobile home for at least 180 days, and it's on your own property, and Caltrans DOES NOT acquire your mobile home, then you are entitled to receive a Price Differential based on a comparable residential property on which you can relocate your mobile home.

Assume that Caltrans purchases your land for $48,000. After a thorough study of available locations for purchase that can accommodate the mobile home unit that you retained (which will be moved by a qualified mover), Caltrans determines that a comparable replacement piece of land will cost you $51,000. If your actual purchase price is $51,000, you will receive $3,000 (see Example A).

If your actual purchase price is more than $51,000, you pay the difference (see Example B). If your actual purchase price is less than $51,000, the differential payment will be based on actual costs (see Example C).

Remember: You do not have to buy a replacement piece of land for your mobile home. You can sell your mobile home to a private party, and purchase a single family residence. However, your RHP will be based on the replacement value of the land.

How much of a differential payment you receive depends on how much you actually spend on a replacement dwelling as shown in these examples:
### Appendix D • Summary of Relocation Benefits

#### Caltrans' Computation

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable Replacement Land:</td>
<td>$51,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Land:</td>
<td>-$48,000</td>
</tr>
<tr>
<td>Maximum Price Differential:</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

#### Example A

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase Price of Replacement Land:</td>
<td>$51,000</td>
</tr>
<tr>
<td>Comparable Replacement Land:</td>
<td>$51,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Land:</td>
<td>-$48,000</td>
</tr>
<tr>
<td>Maximum Price Differential</td>
<td>$3,000</td>
</tr>
<tr>
<td>You Must Pay the Additional:</td>
<td>$4,000</td>
</tr>
</tbody>
</table>

#### Example B

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase Price of Replacement Land:</td>
<td>$55,000</td>
</tr>
<tr>
<td>Comparable Replacement Land:</td>
<td>$51,000</td>
</tr>
<tr>
<td>Acquisition Price of Your Land:</td>
<td>-$48,000</td>
</tr>
<tr>
<td>Maximum Price Differential</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

#### Example C

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable Replacement Property:</td>
<td>$51,000</td>
</tr>
<tr>
<td>Purchase Price of Replacement:</td>
<td>$49,500</td>
</tr>
<tr>
<td>Acquisition Price of Your Property:</td>
<td>-$48,000</td>
</tr>
<tr>
<td>Price Differential</td>
<td>$1,500</td>
</tr>
</tbody>
</table>

*In Example C you will only receive $1,500 – not the full amount of the Caltrans “Comparable Replacement Property” because of the “Spend to Get” requirements.*

**SCENARIO 3:** If you **owned and occupied the mobile home for at least 180 days**, and it's on land that you rent (e.g. a mobile home park), and Caltrans DOES NOT **acquire your mobile home**, then you may be entitled to a Rent Differential based on a comparable piece of land.
However, if Caltrans acquires your mobile home because it cannot be moved, it is not considered "decent, safe and sanitary," there are no comparable replacement locations, or available mobile home parks will not accept it because of its size or condition, then you may be entitled to a **Price Differential** for the mobile home plus a **Rent Differential** for the land you rent in the Mobile Home Park.

Assume that Caltrans purchases your mobile home for $38,000 which is located in a Mobile Home Park where you pay $400 per month for rent (which includes heat, lights, water, garbage, sewer). Caltrans conducts a thorough study of available pieces of land for rent that can accommodate a mobile home unit AND the purchase price of a comparable mobile home unit. An example of your entitlement might be:

**Caltrans' Computation**

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable Replacement Land for Rent:</td>
<td>$ 500</td>
</tr>
<tr>
<td>Rent you currently pay at the mobile home park:</td>
<td>$ 400</td>
</tr>
<tr>
<td>Monthly difference:</td>
<td>$ 100</td>
</tr>
<tr>
<td>Multiplied times 42 months – Maximum Rent Differential:</td>
<td>$ 4,200</td>
</tr>
</tbody>
</table>

If you spent at least $500 per month at the new location.

PLUS:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparable Replacement Mobile Home for purchase:</td>
<td>$42,000</td>
</tr>
<tr>
<td>Acquisition Price of the Mobile Home you occupy:</td>
<td>$ 38,000</td>
</tr>
<tr>
<td>Maximum Price Differential:</td>
<td>$ 4,000</td>
</tr>
</tbody>
</table>

If you pay at least $42,000 for a new mobile home to be set up at the new mobile home park.

*In order for a “180 day owner occupant” to receive the full amount of their Replacement Housing Payment (Price Differential, Mortgage Differential and Incidental Expenses), you must:*
Appendix D • Summary of Relocation Benefits

A) Purchase and occupy a DS&S replacement dwelling within one year after the later of:

(1) The date you first receive a notification of an available replacement residential property (e.g. mobile home on an existing location, land available for your mobile home, or another type of residential unit), OR

(2) The date that Caltrans has paid the acquisition cost of your mobile home and/or land (usually the closing of escrow on State’s acquisition), AND

B) Spend at least the amount of the Caltrans “Comparable Replacement Property” for a replacement property, AND

C) File a claim for relocation payments within 18 months of the later:

(1) The date you vacate the property acquired by Caltrans, OR

(2) The date that Caltrans has paid the acquisition cost of your current dwelling (usually the close of escrow on State’s acquisition).

You will not be eligible to receive any relocation payments until the State has actually made the first written offer to purchase the property. Also, you will also receive at least 90 days’ written notice before you must move.

For Owner Occupants and Tenants of 90 Days or More

If you qualify as a 90-day occupant (either as an owner or tenant), you may be eligible for a Replacement Housing Payment in the form of a Rent Differential. Remember – it is your status in the mobile home unit that determines your “occupancy.”

The Rent Differential payment is designed to assist you in renting a comparable-decent, safe and sanitary replacement dwelling. The payment is based on the difference between the base monthly Rent for the property acquired by Caltrans (including average monthly cost for utilities) and the lesser of:

Mobile Home
Appendix D • Summary of Relocation Benefits

a) The monthly rent and estimated average monthly cost of utilities for a comparable replacement dwelling as determined by Caltrans, OR

b) The monthly rent and estimated average monthly cost of utilities for the decent, safe and sanitary dwelling that you actually rent as a replacement dwelling.

Utility costs are those expenses you incur for heat, lights, water and sewer—regardless of the source (e.g. electricity, propane, and septic system). It does not include garbage, cable, telephone, or security. The utilities at your property are the average costs over the last 12 months. The utilities at the comparable replacement property are the estimated costs for the last 12 months for the type of dwelling and area used in the calculation.

This difference is multiplied by 42 months and may be paid to you in a lump sum payment or in periodic installments in accordance with policy and regulations. (See page 23 for an example)

In order to receive the full amount of the calculated Rent Differential, you must spend at least the amount calculated by Caltrans on a replacement property.

This payment may—with certain limitations—be converted to a Down Payment Option to assist you in purchasing a replacement property. (See page 31 for a full explanation)

Example of Replacement Housing Payments for 90 day occupants:

Situation 1: You owned and occupied the mobile home unit and the land for at least 90 days but not more than 180 days. You are entitled to a Rent Differential based on the economic rent of your home (the unit and the land) and a comparable home (the unit and the land) that is available for rent.

If you move the mobile home, then you are entitled to a Rent Differential based on the economic rent of the mobile home site and a comparable mobile home site that is available for rent.

Situation 2: You rented and occupied the mobile home unit for at least 90 days, which was located on land you owned. You are entitled to a Rent Differential based on the actual rent of your mobile home plus the economic rent of the
mobile home site, and a comparable mobile home (the unit and site) that is available for rent.

**Situation 3:** You *rented and occupied* the mobile home and the land for at least 90 days. You are entitled to a *Rent Differential* based on the actual rent of the mobile home unit (including utilities) and the land, compared with a comparable home (the unit and the land) that is available for rent.

**Situation 4:** You *owned and occupied* the mobile home for at least 90 days, on land that you rented. You are entitled to a *Rent Differential* based on economic rent of the mobile home PLUS the actual rent of the mobile home site, and a comparable mobile home (the unit and site) that is available for rent.

If you move the mobile home, then you are entitled to a *Rent Differential* based on the actual or economic rent of the mobile home site and a comparable mobile home site that is available for rent.

**In order for a “90 day owner occupant” to receive the full amount of their Replacement Housing Payment (Rent Differential), you must:**

A) Rent and occupy a DS&S replacement dwelling within one year after the later of:

   (1) The date you first receive a notification of an available replacement house, **OR**

   (2) The day you vacate the property acquired by Caltrans.

AND

B) Spend at least the amount of the Caltrans “Comparable Replacement Property” to rent a replacement property.

AND

C) File a claim for relocation payments within 18 months of the later of:

   (1) The date you vacate the property acquired by Caltrans, **OR**

   (2) The date that Caltrans has paid the acquisition cost of your current dwelling (usually the close of escrow on State’s acquisition).
In order for a "90 day occupant" to receive the full amount of their Replacement Housing Payment (Rent Differential), you must:

A) Rent and occupy a DS&S replacement dwelling within one year after day you vacate the property acquired by Caltrans.

AND

B) Spend at least the amount of the Caltrans "Comparable Replacement Property" to rent a replacement property.

AND

C) File a claim for relocation payments within 18 months of the day you vacate the property acquired by Caltrans.

You will not be eligible to receive any relocation payments until the State has actually made the first written offer to purchase the property. Also, you will also receive at least 90 days' written notice before you must move.

**Down Payment Option**

The Rent Differential payment may – with certain limitations – be converted to a Down Payment to assist you in purchasing a replacement property. The Down Payment is a direct conversion of the Rent Differential payment.

If the Caltrans calculated Rent Differential is between $0 and $5,250, your Down Payment will be $5,250 which can be used towards the purchase of a replacement decent, safe and sanitary dwelling.

If the Rent Differential is over $5,250, you may be able to convert the entire amount of the Rent Differential to a Down Payment option.

The Down Payment option must be used for the required Down Payment, which is usually a percentage of the entire purchase price, plus any eligible incidental expenses (see page 17 – 180-day Owner Occupants Incidental Expenses) related to the purchase of the property. You must work closely with your Relocation Agent to ensure you can utilize the full amount of your Down Payment option towards the purchase.
Appendix D • Summary of Relocation Benefits

If any portion of the Rent Differential was used prior to the decision to convert to a Down Payment, those advance payments will be deducted from the entire benefit.

Last Resort Housing

On most projects, an adequate supply of housing will be available for sale and for rent, and the benefits provided will be sufficient to enable you to relocate to comparable housing. However, there may be projects in certain locations where the supply of available housing is insufficient to provide the necessary housing for those persons being displaced. In such cases, Caltrans will utilize a method called Last Resort Housing. Last Resort Housing allows Caltrans to construct, rehabilitate or modify housing in order to meet the needs of the people displaced from a project. Caltrans can also pay above the statutory limits of $5,250 and $22,500 in order to make available housing affordable.

Relocation Advisory Assistance

Any owner or occupant of a mobile home impact by a Caltrans project shall be offered relocation advisory assistance for the purpose of locating a replacement property. Relocation services are provided by qualified personnel employed by Caltrans. It is their goal and desire to be of service to you and assist in any way possible to help you successfully relocate.

A Relocation Agent from Caltrans will contact you personally. Relocation services and payments will be explained to you in accordance with your eligibility. During the initial interview with you, your housing needs and desires will be determined as well as your need for assistance. You cannot be required to move unless at least one comparable replacement dwelling is made available to you.

You can expect to receive the following services, advice and assistance from your Relocation Agent who will:

• Explain the relocation benefits and eligibility requirements.
• Provide the amount of the replacement housing payments in writing.
• Assure the availability of a comparable property before you move.
• Inspect possible replacement residential units for DS&S compliance.
• Provide information on counseling you can obtain to help minimize hardships in adjusting to your new location.
• Assist you in completing loan documents, rental applications or Relocation claims.

AND provide information on:

• Security deposits
• Interest rates and terms
• Typical down payments
• VA and FHA loan requirements
• Real and personal property taxes
• Qualified mobile home movers, including disassembly and reassembly
• Mobile Home Park requirements and fees
• Consumer education literature on housing

If you desire, your Relocation Agent will give you current listings of other available replacement housing. Transportation will be provided to inspect available housing, especially if you are elderly or handicapped. Though you may use the services of a real estate broker, Caltrans cannot provide a referral.

Your Relocation Agent is familiar with the services provided by others in your community and will provide information on other federal, state, and local housing programs offering assistance to displaced persons. If you have special problems, your Relocation Agent will make every effort to secure the services of those agencies with trained personnel who have the expertise to help you.

If the highway project will require a considerable number of people to be relocated, Caltrans will establish a temporary Relocation Field Office on or near the project. Project relocation offices will be open during convenient hours and evening hours if necessary.

In addition to these services, Caltrans is required to coordinate its relocation activities with other agencies causing displacements to ensure that all persons displaced receive fair and consistent relocation benefits.

Remember—YOUR RELOCATION AGENT is there to offer advice and assistance. Do not hesitate to ask questions. And be sure you fully understand all of your rights and available benefits.
YOUR RIGHTS AS A DISPLACEE

All eligible displacees have a freedom of choice in the selection of replacement housing, and Caltrans will not require any displaced person to accept a replacement dwelling provided by Caltrans. If you decide not to accept the replacement housing offered by Caltrans, you may secure a replacement dwelling of your choice, providing it meets DS&S housing standards. Caltrans will not pay more than your calculated benefits on any replacement property.

The most important thing to remember is that the replacement dwelling you select must meet the basic “decent, safe, and sanitary” standards. Do not execute a purchase agreement or a rental agreement until a representative from Caltrans has inspected and certified in writing that the dwelling you propose to occupy meets the basic standards. DO NOT jeopardize your right to receive a replacement housing payment by moving into a substandard dwelling.

It is important to remember that your relocation benefits will not have an adverse affect on your:

- Social Security Eligibility
- Welfare Eligibility
- Income Taxes

In addition, the Title VIII of the Civil Rights Act of 1968 and later acts and amendments make discriminatory practices in the purchase and rental of most residential units illegal if based on race, color, religion, sex, or national origin.

Whenever possible, minority persons shall be given reasonable opportunities to relocate to decent, safe, and sanitary replacement dwellings, not located in an area of minority concentration, and that is within their financial means. This policy however, does not require Caltrans to provide a person a larger payment than is necessary to enable a person to relocate to a comparable replacement dwelling.

Caltrans' Non-Discrimination Policy ensures that all services and/or benefits will be administered to the general public without regard to race, color, national origin, or sex in compliance with Title VI of the 1964 Civil Rights Act (42 USC 2000d. et seq.).
And you always have the **Right to Appeal** any decision by Caltrans regarding your relocation benefits and eligibility.

Your Right of Appeal is guaranteed in the "Uniform Act" which states that any person may file an appeal with the head of the responsible agency if that person believes that the agency has failed to properly determine the person's eligibility or the amount of a payment authorized by the Act.

If you indicate your dissatisfaction, either verbally or in writing, Caltrans will assist you in filing an appeal and explain the procedures to be followed. You will be given a prompt and full opportunity to be heard. You have the right to be represented by legal counsel or other representative in connection with the appeal (but solely at your own expense).

Caltrans will consider all pertinent justifications and materials submitted by you and other available information needed to ensure a fair review. Caltrans will provide you with a written determination resulting from the appeal with an explanation of the basis for the decision. If you are still dissatisfied with the relief granted, Caltrans will advise you that you may seek judicial review.
Sus Derechos y Beneficios Como una Persona Desplazada Bajo el Programa Uniforme de Asistencia Para Reubicación (Casa Movible)

Introducción

En la construcción de un sistema moderno de transportación, el desplazamiento de un pequeño porcentaje de la población es necesario a menudo. Sin embargo, la política de Caltrans es que las personas desalojadas no tengan que sufrir innecesariamente como resultado de los programas diseñados para el beneficio del público en general.

Los individuos y familias desplazadas pueden ser elegibles para recibir servicios de asesoramiento y pagos de reubicación.

Este folleto provee información acerca de los servicios y pagos de reubicación disponibles. Si usted tiene que mudarse como resultado de un proyecto de transportación, un agente de reubicación estará en contacto con usted. El agente de reubicación le contestará preguntas específicas y le proveerá información adicional.

La Ley Uniforme de Asistencia Para Reubicación y Adquisición de Bienes Raíces de 1970

“La Ley Uniforme”

El propósito de esta ley es proveer tratamiento igual y uniforme para las personas que son desplazadas de sus hogares, negocios u operaciones agrícolas por programas federales o programas que son asistidos con fondos federales y para establecer uniformidad e igualdad en la política de adquisición de tierras por programas federales y programas asistidos con fondos federales.

La ley trata de asegurar que las personas desplazadas directamente como resultado de proyectos federales o proyectos asistidos con fondos federales sean
tratados con igualdad, consistencia y equidad para que esas personas no sufran daños desproporcionados como resultado de proyectos diseñados para el beneficio del público en general.

Aunque se ha hecho un esfuerzo para asegurar la precisión de este folleto, debe entenderse que no tiene la fuerza o efectos de la ley, regla o regulación que gobierna el pago de los beneficios. Si hay diferencias o errores, la ley tomará precedencia.

Algunas Definiciones Importantes...

Se puede entender sus beneficios de reubicación mejor si usted se familiariza con los siguientes términos:

**Vivienda de restitución comparable** significa una propiedad que sea:

1. Decente, segura y sanitaria. (Vea la definición abajo.)

2. Equivalente funcionalmente a la propiedad desplazada.

3. Adequada en tamaño para acomodar a la familia que está siendo reubicado.

4. En un área que no tiene condiciones adversas irrazonables.

5. En un lugar generalmente no menos deseable que el lugar de su propiedad desplazada con respeto a servicios públicos y acceso razonable al lugar de empleo.

6. En un terreno de tamaño típico para una colonia de viviendas típicas.

**Decente, segura y sanitaria (D, S & S):** La vivienda de restitución debe de ser decente, segura y sanitaria que significa que cumple con todos los requisitos establecidos por las regulaciones federales y conforme a los códigos de ocupación de viviendas aplicables. La propiedad tiene que:

1. Tener buena estructura, cerrada a las condiciones climáticas y en buen estado de reparación.

2. Tener un sistema eléctrico adecuado para iluminación y otros aparatos.
(3) Tener un sistema de calefacción capaz de mantener una temperatura saludable (de aproximadamente 70 grados) para la persona desplazada, con excepción de las áreas donde las condiciones climáticas no requieren dicho sistema.

(4) Ser adecuada en tamaño con respecto al número de cuartos y áreas para vivir necesarias para acomodar a las personas desplazadas. La política de Caltrans es que no más de dos personas deben de ocupar un solo cuarto, a menos que el cuarto tenga el tamaño adecuado para acomodar los muebles de dormitorios necesarios para los ocupantes.

(5) Tener un baño separado, bien iluminado y ventilado, que sea privado, que tenga un lavamanos, tina o regadera, un excusado, todos en buenas condiciones y conectados a los sistemas de agua potable y aguas negras.

Nota: En el caso de una propiedad residencial, debe de tener una cocina con una fregadera con agua caliente y agua fría, conectada al sistema de aguas negras, y con espacio adecuado y en los enchufes para una estufa y un refrigerador.

(6) Tener una salida sin obstrucciones a un espacio seguro y abierto al nivel del suelo. Si la propiedad de restitución está en el primer piso o más arriba con acceso a un pasillo común, el pasillo común tiene que tener dos salidas por lo menos.

(7) Ser libre de cualquier obstáculo que le impidiera la entrada o la salida a una persona incapacitada físicamente.

Persona desplazada: Cualquier individuo o familia que se muda de una propiedad o mueva sus bienes personales de una propiedad como resultado de la adquisición de bienes raíces, en todo o en parte, o como resultado de una notificación escrita de una agencia para desocupar la propiedad que se necesita para un proyecto de transportación. En el caso de una adquisición parcial, Caltrans determinará si la persona es desplazada directamente como resultado de la adquisición.

Los residentes que no están legalmente en los Estados Unidos no son elegibles para recibir pagos y asistencia de reubicación.
Los beneficios de reubicación varían según el tipo y tiempo de ocupación. Como una persona desplazada de un unidad residencial usted puede ser clasificado como:

- Un dueño ocupante de una propiedad residencial (incluye casas movibles)
- Un inquilino ocupante de una propiedad Residencial (incluye casas movibles y cuartos para dormir)

**Vivienda:** El lugar permanente o residencia regular y usual de una persona, de acuerdo con las costumbres locales o la ley, incluyendo una unidad familiar en un complejo doble o multi- familiar, o una propiedad de uso múltiple, una unidad de condominio o proyecto de vivienda en cooperativa, una unidad libre de mantenimiento doméstico, una casa movible, o cualquier otra unidad residencial

**Dueño:** Una persona es considerada dueña de una casa si compra, tiene título o tiene cualquier de los siguientes intereses en una propiedad:

1. Una escritura de propiedad, un interés de por vida en una propiedad, un contrato de renta por 99 años, un contrato oral de renta incluyendo una opción para extensión con al menos 50 años que queden después de la fecha de adquisición.

2. Un interés en un proyecto de vivienda en cooperativa que incluya el derecho de ocupar una vivienda.

3. Un contrato para comprar cualquier interés o bienes raíces.

4. Cualquier otro interés, incluyendo intereses parciales, que la agencia considera como título de propiedad.

**Inquilino:** Una persona que tiene el uso y la ocupación de una propiedad que es de otro dueño.

**Casas Movibles**

Si la casa movible no es adquirido por Caltrans, el dueño (no importa quien es el ocupante) de la casa movible es elegible para un pago para mudar la casa movible a otro sitio basado en el costo real de la mudanza. Esto incluye el costo
de desarmar, mover y volver a armar portales, pisos, faldones y toldos. Costos adicionales pueden ser elegibles para reembolso si Caltrans determina que son “verdaderos, razonables y necesarios.” Algunos de estos costos podrían ser:

- La instalación de la casa en el nuevo cimiento
- Ejes o frenos extras para transportar la casa
- Protección temporal para una casa muy ancha que se tiene que dividir en dos partes durante la mudanza
- Conexión de utilidades a la casa (agua potable, aguas negras, electricidad, gas) – si las utilidades ya están disponibles en el nuevo sitio
- Modificaciones necesarias para cumplir con códigos locales y estatales
- Modificaciones necesarias para cumplir con los requisitos de “decente, seguro y sanitario” de Caltrans
- Pago no-reembolsable para entrar en un parque de casas movibles – con limitaciones

La mudanza de la casa móvil tiene que ser desempeñada por una compañía calificada y el pago está basado en el menor de dos estimaciones obtenidos por el dueño de la casa móvil y aprobados por Caltrans. Caltrans no puede pagar por la mudanza de una casa móvil de más de 50 millas a menos que no haya ningún sitio adecuado dentro de 50 millas. Hay que conseguir la aprobación para una mudanza de más de 50 millas antes de la mudanza.

**Gastos de Mudanza**

Además de mudar la casa móvil, el ocupante (no importa quién es el dueño) puede ser elegible para un pago para mover su propiedad personal – si califica como “una persona desplazada.”

Los métodos de mudanza y los varios tipos de pagos para gastos de mudanza se explican abajo. Individuos y familias desplazadas pueden escoger pagarse basado en los costos de mudanza verdaderos y razonables, o según una lista de costos fijos. Sin embargo, para asegurar su elegibilidad y el pago pronto de los gastos de mudanza, usted debe de comunicarse con su Agente de Reubicación antes de mudarse.
Usted Puede Elegir Entre:

Los Gastos Razonables de Mudanza – A usted se le puede pagar por los gastos razonables de mudanza y gastos relacionados cuando una compañía comercial de mudanza hace la mudanza. Los reembolsos serán limitados a una mudanza de 50 millas o menos. Los gastos relacionados pueden incluir:

- Transportación
- Empaque y desempaque de propiedades personales
- Desconexión y reconexión de aparatos eléctricos
- Almacenaje temporal de propiedades personales
- Seguros cuando la propiedad está almacenada o en tránsito

O

Lista de Costos Fijos de Mudanza – A usted se le puede pagar basado en una lista de costos fijos de mudanza. Bajo esta opción, usted no puede ser elegible para reembolsos de gastos relacionados incluidos en la lista de arriba. Esta lista de gastos fijos cubre todos esos gastos.

Por ejemplo (tarifa para el año 2001)
- 4 cuartos – $950
- 7 cuartos – $1,550

Si los muebles se mudan con la casa móvil, la cantidad del pago fijo está basada la Lista B.

Por ejemplo (tarifa para el año 2001)
- 4 cuartos – $475
- 7 cuartos – $625

Normalmente no hay pagos adicionales para almacenaje temporal, alojamiento, transporte, y/o conexión de utilidades con la lista de pagos fijos. Sin embargo, los ocupantes de una casa móvil que vuelven a vivir en la misma casa móvil en el nuevo sitio pueden recibir un pago para comida y alojamiento durante la mudanza. La conexión de utilidades también puede ser elegible para reembolso.
Nota: Aún la casa móvil es adquirida por Caltrans, el ocupante (no importa quién es el dueño) de la casa móvil todavía es elegible para un pago para mudar su propiedad personal.

**Pagos para Vivienda de Restitución**

El ocupante de una casa móvil puede ser elegible para un pago para vivienda de restitución. El tipo de pago para vivienda de restitución depende de si usted es dueño o inquilino, y en el tiempo que tiene en la casa móvil que está en el terreno adquirido para el proyecto.

Si usted es calificado como **dueño ocupante** del terreno y la casa móvil por más de 180 días antes de la iniciación de las negociaciones para la adquisición de su propiedad – y la casa móvil es adquirida por Caltrans – usted puede ser elegible para un pago para vivienda de restitución que consiste en:

- **Diferencia de Precio**, y
- **Diferencia para Hipoteca**, y
- **Gastos Incidentales**
- **O**
- **Diferencia para Rentar**

Usted no tiene que comprar y ocupar otra casa móvil para recibir un pago para vivienda de restitución – pero la nueva unidad residencial tiene que ser “decente, seguro y sanitario.”

Si la casa móvil no es adquirida por Caltrans, usted todavía puede recibir un pago para vivienda de restitución para ayudarle a comprar un terreno donde puede poner su casa móvil.

Es **importante** saber que si usted **no es dueño** de la casa móvil y el terreno, el pago para vivienda de restitución puede ser limitado. Usted debe de comunicarse con su Agente de Reubicación para entender su elegibilidad.
Si usted califica como dueño ocupante de la casa móvil por más de 90 días pero menos de 180 días, o si califica como inquilino ocupante de la casa móvil al menos por 90 días, puede ser elegible por un pago para vivienda de restitución de la manera que sigue:

**Diferencia para Rentar**

- O

**Opción para Enganche**

Como ocupante de una casa móvil – no importa el tiempo o si es dueño o inquilino – su pago puede variar depende de lo siguiente:

- Si la casa móvil es adquirida por Caltrans
- Quien es el dueño de la casa móvil
- Si usted va a ocupar la casa móvil en el nuevo sitio
- Si usted ocupa otro tipo de unidad como una casa permanente

El tiempo de ocupación significa el número de días que usted ha ocupado la casa móvil en el terreno adquirido por Caltrans – antes de la fecha de la iniciación de las negociaciones para comprar la propiedad. La “iniciación de las negociaciones” significa la fecha cuando Caltrans se comunica por primera vez con el dueño del terreno para hacer una oferta escrita para la propiedad.

**Nota:** Si usted ha sido ocupante por menos de 90 días antes de la iniciación de las negociaciones y se adquiere la propiedad después, o si usted se muda a la propiedad después de la iniciación de las negociaciones y todavía está allí en la fecha de la adquisición, usted puede ser elegible para un pago de vivienda de restitución basado en una guía de elegibilidad establecida. Consulte con su Agente de Reubicación antes de decidir de mudarse de su propiedad.

**Para Ocupantes de 180 Días o Más**

Si usted califica como dueño ocupante de 180 días, puede ser elegible – además del valor justo de su propiedad – por un pago para vivienda de restitución que consiste en un pago de diferencia de precio y/o gastos incidentales.
El pago de **Diferencia de Precio** es la cantidad por la que el costo de una vivienda de restitución excede el costo de adquisición de la vivienda desplazada. Este pago le ayuda en la compra de una vivienda decente, segura y sanitaria (D.S&S). Caltrans calcula el pago máximo que usted puede ser elegible para recibir.

Para recibir la cantidad total de la diferencia de precio calculada, usted debe gastar al menos la cantidad calculada por Caltrans para la propiedad de restitución.

El pago de **Diferencia de Hipoteca** le será reembolsado por cualquier aumento del costo de interés en la hipoteca que usted haya incurrido porque la tasa de interés de su nueva hipoteca excede la tasa de interés de la propiedad adquirida por Caltrans. La computación del pago es complicada ya que está basada en las tasas típicas entre su préstamo anterior y su préstamo nuevo. También, una parte de los pagos puede ser prorrateado como reembolso por una porción de los honorarios de su préstamo y los puntos (intereses) de la hipoteca.

Para ser elegible para recibir este pago, la propiedad adquirida debe de ser hipotecada con una hipoteca de buena fé, la cual fue un crédito válido por lo menos 180 días antes de la iniciación de las negociaciones.

Usted también puede ser reembolsado por cualquier **Gasto Incidental** actual y necesario que usted incurra en relación con la compra de su propiedad de restitución. Estos gastos pueden ser los costos por la búsqueda de título, honorarios de copia en el Registro, reporte de crédito, reporte de evaluación, y ciertos gastos de cierre de escritura. Usted no puede ser reembolsado por ningún gasto frecuente como pre-pagos de impuesto de bienes raíces y seguros de propiedad.

Si la cantidad total de su **Pago para Vivienda de Restitución** (Diferencia de Precio, Diferencia para Hipoteca y Gastos Incidenciales) excede $22,500, el pago debe de ser depositado directamente en una cuenta fiduciaria o ser pagado directamente a la compañía financiera.

**EJEMPLO DE COMO SE CALCULA LA DIFERENCIA DE PAGO:**

**EJEMPLO 1:** Si usted **era dueño y ocupaba la casa móvil al menos por 180 días**, y **usted es el dueño del terreno donde está la casa móvil**, y Caltrans
Adquiere su casa móvil, usted puede recibir un pago para Diferencia de Precio basado en una propiedad residencial comparable.

Suponga que Caltrans compra su propiedad por $98,000. Después de un estudio completo de viviendas disponibles en el mercado, que sean decentes, seguras y sanitarias, Caltrans determina que la propiedad de restitución comparable en el mercado abierto le costará $100,000. Si su precio de compra es $100,000, usted recibirá $2,000 (vea el Ejemplo A).

Si su precio de compra es de más de $100,000, usted paga la diferencia (vea el Ejemplo B). Si su precio de compra es menos de $100,000, el pago se basará en los costos actuales (vea el Ejemplo C).

La cantidad que usted recibe en un pago diferencial depende de cuanto usted realmente gasta en una vivienda de restitución, como se muestra en estos ejemplos.

**Computación de Caltrans**

| Precio comparable de la propiedad de restitución | $100,000 |
| Precio de adquisición de su propiedad | $98,000 |
| Diferencia máxima de precio | $2,000 |

**Ejemplo A**

| Precio de compra de restitución | $100,000 |
| Propiedad comparable de restitución | $100,000 |
| Precio de adquisición de su propiedad | $98,000 |
| Diferencia máxima de precio | $2,000 |

**Ejemplo B**

| Precio de compra de restitución | $105,000 |
| Propiedad comparable de restitución | $100,000 |
| Precio de adquisición de su propiedad | $98,000 |
| Diferencia máxima de precio | $2,000 |
| Usted debe de pagar el precio adicional de | $5,000 |
**Ejemplo C**

| Propiedad comparable de restitución | $100,000 |
| Precio de compra de restitución | $99,000 |
| Precio de adquisición de su propiedad | $98,000 |
| Diferencia de precio | $1,000 |

En el ejemplo C usted solo recibirá $1,000 – no la Cantidad completa de “La propiedad comparable de restitución” por los requisitos de “Gastar para obtener” de Caltrans.

**EJEMPLO 2:** Si usted era dueño y ocupaba la casa movible al menos por 180 días, y usted es el dueño del terreno donde está la casa movible, y Caltrans NO adquiere su casa movilbe, usted puede recibir un pago para Diferencia de Precio basado en una propiedad residencial comparable donde usted puede mudar su casa movible.

Suponga que Caltrans compra su terreno por $48,000. Después de un estudio completo de terrenos que se venden donde hay espacio para su casa movible, Caltrans determina que un terreno comparable le costará $51,000. Si su precio de compra es $51,000, usted recibe $3,000 (vea Ejemplo A).

Si su precio de compra es más de $51,000, usted paga la diferencia (vea Ejemplo B). Si su precio de compra es menos de $51,000, el pago se basará en los costos actuales (vea Ejemplo C).

Recuerda: **Usted no tiene que comprar un terreno para su casa movible. Usted puede vender su casa movilbe a otra persona, y comprar una casa permanente. Pero, su Pago para Vivienda de Restitución será basado en el valor del terreno de restitución.**

La cantidad que usted recibe en un pago diferencial depende de cuanto usted realmente gasta en una vivienda de restitución, como se muestra en estos ejemplos:

**Computación de Caltrans**

| Terreno de restitución comparable | $51,000 |
| Precio de adquisición de su terreno | $48,000 |
| Diferencia de precio máxima | $ 3,000 |
Ejemplo A

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio de terreno de restitución</td>
<td>$51,000</td>
</tr>
<tr>
<td>Terreno de restitución comparable</td>
<td>$51,000</td>
</tr>
<tr>
<td>Precio de adquisición de su terreno</td>
<td>$-48,000</td>
</tr>
<tr>
<td>Diferencia de precio máxima</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

Ejemplo B

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio de terreno de restitución</td>
<td>$55,000</td>
</tr>
<tr>
<td>Terreno de restitución comparable</td>
<td>$51,000</td>
</tr>
<tr>
<td>Precio de adquisición de su terreno</td>
<td>$-48,000</td>
</tr>
<tr>
<td>Diferencia de precio máximo</td>
<td>$3,000</td>
</tr>
<tr>
<td>Usted tiene que pagar</td>
<td>$4,000</td>
</tr>
</tbody>
</table>

Ejemplo C

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propiedad de restitución comparable</td>
<td>$51,000</td>
</tr>
<tr>
<td>Precio de terreno de restitución</td>
<td>$49,500</td>
</tr>
<tr>
<td>Precio de adquisición de su terreno</td>
<td>$-48,000</td>
</tr>
<tr>
<td>Diferencia de precio</td>
<td>$1,500</td>
</tr>
</tbody>
</table>

En ejemplo C usted solamente recibe $1,500 – no la cantidad completa de la “Propiedad de Restitución Comparable” por los requisitos de “Gastar para Obtener”

EJEMPLO 3: Si usted era dueño y ocupaba la casa móvil al menos por 180 días, y usted renta el terreno (por ejemplo en un parque de casas movibles), y Caltrans NO adquiere su casa móvil, usted puede recibir un pago para Diferencia para Rentar basado en un terreno comparable.

Sin embargo, si Caltrans adquiere su casa móvil porque no se puede mudarla, no es “decente, segura y sanitaria”, no hay sitios comparables donde mudaría, o los parques de casas movibles no la aceptan por el tamaño o la condición, usted podría recibir un pago para Diferencia de Precio para la casa móvil más un pago para Diferencia para Rentar para el terreno que usted renta en el parque de casas movibles.

Suponga que Caltrans compra su casa móvil por $38,000 que está ubicado en un parque de casas moviles donde usted paga $400 mensualmente en renta (incluyendo calificación, luz, agua y basura). Caltrans hace un estudio completo de los terrenos disponibles para rentar donde se puede poner una casa móvil...
el precio de compra de una casa móvil comparable. Un ejemplo de su pago podría ser:

**Computación de Caltrans**

- Renta de terreno de restitución: $500
- Su renta actual en el parque de casas móviles: $400
- La diferencia: $100
- Multiplicado por 42 meses – Pago de diferencia para rentar máximo: $4,200

Si usted gasta al menos $500 por mes en el nuevo sitio.

MÁS:

- Precio de comparable casa móvil de restitución: $42,000
- Precio de adquisición de la casa móvil que usted ocupa: $38,000
- Pago de diferencia de precio máximo: $4,000

Si usted gasta al menos $42,000 por una nueva casa móvil en el nuevo sitio.

Para que un dueño ocupante de 180 días reciba la cantidad total de sus pagos para vivienda de Restitución (Diferencia de Precio, Diferencia de Hipoteca y Gastos Incidentales), usted tiene que:

A) Comprar y ocupar una vivienda de restitución que sea D.S&S dentro de un año desde la fecha más tarde de:

1) La fecha en que usted recibe la primera notificación de una vivienda de restitución disponible (una casa móvil que ya está en un sitio, un terreno para su casa móvil, o otro tipo de unidad residencial).
(2) La fecha en que Caltrans le paga el costo de adquisición de su casa movible y/o el terreno (normalmente el cierre de escritura de la adquisición de Caltrans).

Y

B) Gastar al menos la cantidad que Caltrans estableció para la propiedad de restitución,

Y

C) Entregar un reclamo para pago de reubicación dentro de 18 meses desde la fecha más tarde de:

(1) La fecha en que usted se muda de la propiedad adquirida de Caltrans, O

(2) La fecha en que Caltrans le paga el costo de adquisición de su vivienda actual (normalmente el cierre de escritura de la adquisición de Caltrans).

Usted no será elegible para recibir ningún pago de reubicación hasta que Caltrans haya hecho la primera oferta por escrito de la compra de la propiedad. Usted también recibirá una notificación escrita por lo menos 90 días antes de tener que mudarse.

**Para Dueños Ocupantes e Inquilinos de 90 Días o Más**

Si usted califica como un ocupante (ya sea como dueño o inquilino) de 90 días, usted puede ser elegible para un Pago de Vivienda de Restitución en la forma de Diferencia para Rentar.

El pago de la Diferencia para Rentar es para ayudarle en la renta de un vivienda comparable que sea decente, segura y sanitaria. El pago es basado en la diferencia entre la renta mensual por la propiedad adquirida por Caltrans (incluyendo el promedio del costo mensual de servicios públicos) y el menor de:

a) La renta mensual y el promedio del costo mensual estimado de los servicios públicos para una vivienda comparable de restitución determinada por Caltrans, O
b) La renta mensual y el promedio del costo mensual estimado de los servicios públicos para una vivienda decente, segura y sanitaria que usted rente como vivienda de restitución.

Gastos de servicios públicos son esos gastos que Usted incurre por calefacción, luz, agua, aguas negras y basura — sin importar quien los provea (electricidad, gas propano y sistema séptico). No incluye cable de televisión, teléfono o seguridad. Los servicios públicos en su propiedad son el promedio de los costos por los últimos 12 meses. Los servicios públicos en la propiedad de restitución comparable son los costos estimados por los últimos 12 meses por el tipo de vivienda y el área usados en los cálculos.

Esta diferencia es multiplicada por 42 meses y le puede ser pagado en una sola suma o en pagos periódicos de acuerdo con la política y regulaciones. (Vea el ejemplo en la página 23)

Para recibir la cantidad calculada total de la diferencia para rentar, usted tiene que gastar al menos la cantidad calculada por Caltrans en la propiedad de restitución.

Este pago puede – con ciertas limitaciones – ser convertido en un Enanche para ayudarle en la compra de una propiedad de restitución (vea la página 31 para una explicación completa).

Ejemplo de Pagos de Vivienda de Restitución Para Ocupantes de 90 Días:

Situación 1: Usted era dueño y ocupaba la casa movible y el terreno por al menos 90 días pero no más de 180 días. Usted puede recibir un pago de Diferencia para Rentar basado en la renta Económica de la vivienda (la casa movible y el terreno) y una vivienda comparable (la casa movible y el terreno) que está disponible para rentar.

Si usted muda la casa movible, puede recibir un pago de Diferencia para Rentar basado en la renta económica del sitio de la casa movible y un sitio comparable de casa movible que está disponible para rentar.

Situación 2: Usted rentaba y ocupaba la casa movible por al menos 90 días, la cual que estaba ubicada en un terreno de que usted es el dueño. Usted puede recibir un pago de Diferencia para Rentar basado en la renta de la casa movible más la renta económica del sitio de la casa movible, y una casa movible comparable (la casa movible y el terreno) que está disponible para rentar.
Situación 3: Usted rentaba y ocupaba la casa movible y el terreno por al menos 90 días. Usted puede recibir un pago de Diferencia para Rentar basado en la renta de la casa movible (incluyendo servicios públicos) y el terreno, comparado con una vivienda comparable (la casa movible y el terreno) que está disponible para rentar.

Situación 4: Usted era dueño y ocupaba la casa movible por al menos 90 días, en un terreno que usted rentaba. Usted puede recibir un pago de Diferencia para Rentar basado en la renta económica de la casa movible MÁS la renta del sitio de la casa movible, y una casa movible comparable (la casa movible y el sitio) que está disponible para rentar.

Si usted mude la casa movible, puede recibir un pago de Diferencia para Rentar basado en la renta verdadera o económica del sitio de casa movible y un sitio de casa movible comparable que está disponible para rentar.

Para que un "dueño ocupante de 90 días" reciba la cantidad total de su Pago para Vivienda de Restitución (Diferencia para Rentar), usted tiene que:

A) Rentar y ocupar una vivienda de restitución D,S&S dentro de un año desde la fecha más tarde de:

1. La fecha en que usted recibe por primera vez una notificación de una vivienda de restitución disponible, 0

2. El día en que usted se muda de la propiedad adquirida por Caltrans.

Y

B) Gastar al menos la cantidad de la "Propiedad de Restitución Comparable" estableció por Caltrans para rentar una propiedad de restitución.

Y

C) Entregar un reclamo por pagos de reubicación dentro de 18 meses desde la fecha más tarde de:

1. La fecha en que usted se muda de la propiedad adquirida por Caltrans, 0

2. La fecha en que Caltrans ha pagado el costo de la adquisición de su vivienda actual (normalmente el cierre de escritura de la adquisición de Caltrans).
Para que un “ocupante de 90 días” reciba la cantidad total de su Pago para Vivienda de Restitución (Diferencia para Rentar), **usted** tiene que:

A) Rentar y ocupar una vivienda de restitución DS&S dentro de un año después de mudarse de la propiedad adquirida por Caltrans.

Y

B) Gastar al menos la cantidad establecida por Caltrans para rentar una vivienda de restitución.

Y

C) Entregar un reclamo por pagos de reubicación dentro de 18 meses del día en que usted se muda de la propiedad adquirida por Caltrans.

Usted no será elegible para recibir ningún pago de reubicación hasta que Caltrans haya hecho la primera oferta por escrito de la compra de la propiedad. Usted también recibirá un notificación escrita por lo menos 90 días antes de tener que mudarse.

**ENGANCHE**

El pago de Diferencia para Rentar puede – con ciertas limitaciones – ser convertido en un **Enganche** para ayudarte en la compra de una propiedad de restitución. El enganche es una conversión directa del pago de diferencia para rentar.

Si la diferencia para rentar es calculada entre $0 y $5,250, su Enganche será de $5,250, la cual puede ser usada para la compra de una vivienda de restitución decente, segura y sanitaria.

Si la diferencia para rentar es más de $5,250, usted puede convertir la cantidad completa de diferencia para rentar a un Enganche.

El Enganche debe de ser usada para el enganche requerido, la cual usualmente es un porcentaje del precio total de compra, más cualquier gasto incidental elegible (vea la página 17 – Gastos Incidentales para Dueños Ocupantes de 180 Días) relacionado con la compra de la propiedad. Usted debe de trabajar junto con su Agente de Reubicación para asegurarse de que puede utilizar la cantidad total de su Enganche en su compra.
Si alguna porción de la diferencia para rentar fue usada antes de su decisión de convertirla a un enganche, los pagos avanzados serán deducidos de los beneficios completos.

**CASA DEL ÚLTIMO RECURSO**

En la mayoría de los proyectos de Caltrans, existe una cantidad adecuada de viviendas de venta y alquiler, y los beneficios serán suficientes para que usted pueda reubicarse a una vivienda comparable. Sin embargo, en ciertas localidades pueden haber proyectos donde el número de viviendas disponibles no son suficientes para proveer viviendas a todas las personas desplazadas. En estos casos, Caltrans utiliza un método llamado Casa del Último Recurso. La Casa del Último Recurso permite a Caltrans construir, rehabilitar, o modificar viviendas para cumplir con las necesidades de las personas desplazadas por un proyecto. Caltrans puede también pagar arriba de los límites legales de $5,250 y $22,500 para hacer posible viviendas con precios razonables.

**Asistencia de Consulta para Reubicación**

A cualquier individuo, familia, negocio u operación agrícola desplazada por Caltrans debe de ofrecérsele servicios de asistencia con el propósito de encontrar una propiedad de restitución. Los servicios de reubicación son proveídos por empleados calificados de Caltrans. Es la meta de ellos y el deseo de estos empleados de servirle y asistirle de cualquier manera posible para ayudarle a reubicarse exitosamente.

Un Agente de Reubicación de Caltrans se pondrá en contacto con usted personalmente. Los servicios de reubicación y pagos se explicarán de acuerdo con su elegibilidad. Durante la entrevista inicial, sus necesidades de vivienda y deseos se determinarán así como sus necesidades de asistencia. No se le puede pedir que se mude a menos que una vivienda comparable de restitución le sea disponible.

Usted puede esperar recibir los siguientes servicios, consejos y asistencia de su Agente de Reubicación quien le:

- Explicará los beneficios de reubicación y los requisitos de elegibilidad.
- Proveerá por escrito la cantidad de pago por su vivienda de restitución.
- Asegurará la disposición de una propiedad comparable antes de que se mude.
• Inspeccionará las posibles unidades residenciales de restitución para cumplir con DS&S.
• Proveerá información y aconsejará como puede obtener ayuda para minimizar las adversidades en ajustarse a su nuevo lugar.
• Ayudará en completar los documentos de préstamos, aplicaciones de rentas o las formas de reclamo para reubicación.

Y proveerle información de:
• Seguro de depósitos
• Tasa de intereses y términos
• Pagos típicos de enganches
• Requisitos de préstamos de la Administración de Veteranos (VA) y la Administración de Vivienda Federal (FHA)
• Impuestos sobre bienes raíces
• Literatura de educación en viviendas para el Consumidor

Si usted lo desea, el Agente de Reubicación le dará una lista actual de otras viviendas de restitución disponibles.

Se proveerá transportación para inspeccionar viviendas disponibles, especialmente si usted es mayor de edad o con impedimento físico. Aunque usted puede utilizar los servicios de un agente de bienes raíces, Caltrans no lo puede referir.

Su Agente de Reubicación está familiarizado con los servicios proveídos por otras agencias de su comunidad y le proveerá información de otros programas de viviendas federales, estatales y locales que ofrecen programas de asistencia para personas desplazadas. Si usted tiene algún problema especial, su Agente de Reubicación hará su mejor esfuerzo para asegurarle los servicios de esas agencias con personal capacitado y con experiencia que la ayudarán.

Si el proyecto de transportación requiere un número considerable de personas que sean reubicados, Caltrans establecerá una oficina temporal de reubicación en, o cerca del proyecto. Las oficinas de proyectos de reubicación deberán de abrirse durante horas convenientes y en horas tempranas de la noche, se es necesario.
Además de estos servicios, Caltrans tiene que coordinar las actividades de otras agencias que causen desplazamientos para asegurar que todas esas personas desplazadas reciban beneficios de reubicación equitativos y consistentes.

Recuerde – SU AGENTE DE REUBICACIÓN está para aconsejarle y ayudarle. No vacile en hacer preguntas, y asegúrese de que entiende completamente sus derechos y beneficios de reubicación disponibles.

**SUS DERECHOS COMO UNA PERSONA DESPLAZADA**

Todas las personas elegibles como personas desplazadas tienen la libertad de escoger de escoger una vivienda de restitución, y Caltrans no requerirá a ninguna persona que sea desplazada que acepte una vivienda de restitución proveída por Caltrans. Si usted decide no aceptar la vivienda de restitución proveída por Caltrans, usted puede elegir una vivienda de restitución de su propia selección, mientras que cumple con los requisitos de DS&S. Caltrans no pagará más que los beneficios calculados por una vivienda de restitución.

Lo más importante que usted debe de recordar es que la vivienda de restitución que usted escoger debe de llenar los requisitos básicos de “decente, segura y sanitaria”. No execute los documentos de compra o el contrato de renta hasta que un representante de Caltrans haya inspeccionado y certificado por escrito que la vivienda que usted se propone ocupar cumple con los requisitos básicos. NO ARRIESGUE su derecho de recibir los pagos de vivienda de restitución por mudarse a una vivienda que no sea “decente, segura y sanitaria”.

Es importante recordar que sus beneficios de Reubicación **no tendrán ningún efecto adverso** para su:

- Elegibilidad para Seguro Social
- Elegibilidad para Asistencia Social
- Impuestos sobre ingresos

Además, el Título VIII de la Ley de los Derechos Civiles de 1968 y luego otras leyes y enmiendas hacen descriminatoria la práctica de compra y renta de unidades de vivienda si es basada ilegalmente en la raza, color, religión, sexo u origen nacional.
Cuando sea posible, a personas de minorías se les debe de dar oportunidades razonables para reubicarse a viviendas de restitución que sean decentes, seguras y sanitarias, no ubicadas en áreas de concentración de minorías, y que estén dentro de sus recursos económicos. Esta política, sin embargo, no requiere que Caltrans provea a una persona pagos más grandes de lo que sean necesarios para permitir que la persona sea reubicada a una vivienda de restitución comparable.

La Política No Discriminatoria de Caltrans asegura que todos los servicios y/o beneficios deben de ser administrados al público en general sin importar la raza, color, origen nacional, o sexo en cumplimiento con el Título VI de la Ley de Derechos Civiles de 1964 (42 USC 2000 d. et seq.)

Usted siempre tendrá el Derecho de Apelar cualquier decisión hecha por Caltrans relacionada a los beneficios de reubicación y elegibilidad.

Su Derecho de Apelar está garantizado en la "Ley Uniforme" la cual establece que una persona puede Apelar al jefe de la agencia responsable, si ella cree que la agencia ha fallado en determinar correctamente su elegibilidad, o la cifra del pago autorizado por la Ley.

Si usted indica su desatisfacción, ya sea verbalmente o por escrito, Caltrans le asistirá en hacer su demanda de apelación y le explicará el procedimiento que debe de seguir. Usted tiene derecho de ser representado por un asesor legal o otro representante en conexión con su apelación (pero solamente por su propia cuenta).

Caltrans considerará toda justificación y materia pertinente que usted entregue u otra información disponible, necesaria para asegurar un audiencia equitativa. Caltrans le proveerá una determinación por escrito del resultado de su apelación, con una explicación sobre la base de la decisión. Si usted aún no está satisfecho con la decisión otorgada, Caltrans le aconsejará que usted puede pedir una Audiencia judicial.
Noticiero de la Ley para Americanos con Incapacidades Físicas (ADA):

Para personas con incapacidades físicas, este documento es disponible en formatos alternativos. Para información llame al número (916) 654-5413 Voz, CRS: 1-800-735-2929, o escriba a Derecho de Vía, MS-37, 1120 N Street, Sacramento, CA 95814.
Your Rights and Benefits as a Displaced Business, Farm or Nonprofit Organization Under the Uniform Relocation Assistance Program

Introduction

In building a modern transportation system, the displacement of a small percentage of the population is often necessary. However, it is the policy of Caltrans that displaced persons shall not suffer unnecessarily as a result of programs designed to benefit the public as a whole.

Displaced businesses, farms, and nonprofit organizations may be eligible for relocation advisory services and payments.

This brochure provides information about available relocation services and payments. If you are required to move as the result of a Caltrans transportation project, a Relocation Agent will contact you. The Relocation Agent will be able to answer your specific questions and provide additional information.

Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 As Amended "The Uniform Act"

The purpose of this Act is to provide for uniform and equitable treatment of persons displaced from their business, farm or nonprofit organization, by federal and federally assisted programs and to establish uniform and equitable land acquisition policies for federal and federally assisted programs.

49 Code of Federal Regulations Part 24 implements the "Uniform Act" in accordance with the following relocation assistance objective:

To ensure that persons displaced as a direct result of federal or federally-assisted projects are treated fairly, consistently and equitably so that such persons will not suffer disproportionate injuries as a result of projects designed for the benefit of the public as a whole.
While every effort has been made to assure the accuracy of this booklet, it should be understood that it does not have the force and effect of law, rule, or regulation governing the payment of benefits. Should any difference or error occur, the law will take precedence.

**Relocation Services**

The California Department of Transportation has two programs to aid businesses, farms and nonprofit organizations which must relocate.

These are:

1. The Relocation Advisory Assistance Program, which is to aid you in locating a suitable replacement property, and

2. The Relocation Payments Program, which is to reimburse you for certain costs involved in relocating. These payments are classified as:
   - Moving and Related Expenses (costs to move personal property not acquired).
   - Reestablishment Expenses (expenses related to the replacement property).
   - In-Lieu Payment (a fixed payment in lieu of moving and related expenses, and reestablishment expenses).

**NOTE:** Payment of loss of goodwill is considered an acquisition cost. California law and the federal regulations mandate that relocation payments cannot duplicate other payments such as goodwill. You will not be eligible to receive any relocation payments until the State has actually made the first written offer to purchase the property. You will also receive at least 90 days’ written notice before you must move.
Some Important Definitions...

Your relocation benefits can be better understood if you become familiar with the following terms:

**Business:** Any lawful activity, with the exception of a farm operation, conducted primarily for the purchase, sale, lease and rental of personal or real property, or for the manufacture, processing, and/or marketing of products, commodities, or any other personal property, or for the sale of services to the public, or solely for the purpose of this Act, and outdoor advertising display or displays, when the display(s) must be moved as a result of the project.

**Displaced Person or Displacee:** Any person who moves from real property or moves personal property from real property as a result of the acquisition of the real property, in whole or in part, or as the result of a written notice from the agency to vacate the real property needed for a transportation project. In the case of a partial acquisition, Caltrans shall determine if a person is displaced as a direct result of the acquisition.

Owners and tenants not lawfully present in the United States are not eligible to receive relocation payments and assistance.

**Contributes Materially:** A business or farm operation must have had average annual gross receipts of at least $5,000 or average annual net earnings of at least $1,000, or their income must have contributed at least 33 1/3 percent of the owner’s or operator’s average annual gross income from all sources, in order to qualify as a bona-fide operation.

**Farm Operation:** Any activity conducted solely or primarily for the production of one or more agricultural products or commodities, including timber, for sale and home use, and customarily producing such products or commodities in sufficient quantity to be capable of contributing materially to the operator’s support.

**Nonprofit Organization:** A public or private entity that has established its nonprofit status under applicable law.
MOVING EXPENSES

If you qualify as a displaced business, farm or nonprofit organization, you are entitled to reimbursement of your moving costs and certain related expenses incurred in moving. To qualify you must legally occupy the property as the owner or lessee/tenant when Caltrans initiates negotiations for the acquisition of the property OR at the time Caltrans acquires title or takes possession of the property. However, to assure your eligibility and prompt payment of moving expenses, you should contact your Relocation Agent before you move.

You Can Choose Either:

Actual Reasonable Moving Costs – You may be paid for your actual reasonable moving costs and related expenses when a commercial mover performs the move. Reimbursement will be limited to a move of 50 miles or less. Related expenses, with limitations, **may** include:

- Transportation.
- Packing and unpacking of personal property.
- Disconnecting and reconnecting personal property related to the operation.
- Temporary storage of personal property.
- Insurance while property is in storage or transit, or the loss and damage of personal property if insurance is not reasonably available.
- Expenses in finding a replacement location.
- Professional services to plan and monitor the move of the personal property to the new location.
- Licenses, permits and fees required at the replacement location.

OR

Self-Move Agreement – You may be paid to move your own personal property based on the lower of two acceptable bids obtained by Caltrans.
Appendix D • Summary of Relocation Benefits

Under this option, you will still be eligible for reimbursement of related expenses listed above that were not included in the bids.

OR

In-Lieu Payment – You can accept a fixed payment between $1,000 and $20,000, based on your annual earnings IN LIEU OF the moving cost, related expenses and reestablishment cost.

Actual Reasonable Moving Costs

You may be paid the actual reasonable and necessary costs of your move when a professional mover performs the move. All of your moving costs must be supported by paid receipts or other evidence of expenses incurred. In addition to the transportation costs of your personal property, certain other expenses may also be reimbursable, such as packing, crating, unpacking and uncrating, and the disconnecting, dismantling, removing, reassembling, and reinstalling relocated machinery, equipment, and other personal property.

Other expenses such as professional services necessary for planning and carrying out the move, temporary storage costs, and the cost of licenses, permits and certifications may also be reimbursable. This is not intended to be an all-inclusive list of moving related expenses. Your Relocation Agent can provide you with a complete explanation of reimbursable expenses.

Self-Move Agreement

If you agree to take full responsibility for all or part of the move of your business, farm, or nonprofit organization, the Department may approve a payment not to exceed the lower of two acceptable bids obtained by the Department from qualified moving firms or a qualified Department staff employee. A low-cost or uncomplicated move may be based on a single bid or estimate at the Department’s discretion. The advantage of this moving option is the fact that it relieves the displaced business, farm or nonprofit organization operator from documenting all moving expenses. The Department may make the payment without additional documentation as long as the payment is limited to the amount of the lowest acceptable bid or estimate. Other expenses, such as professional services for planning, storage costs, and the cost of licenses, permits, and certifications may also be reimbursable if determined to be necessary. These latter expenses must be pre approved by the Relocation Agent.
Requirements:

Before you move, you must provide Caltrans with the:

- Certified inventory of all personal property to be moved.
- Date you intend to vacate the property.
- Address of the replacement property.
- Opportunity to monitor and inspect the move from the acquired property to the replacement property.

Related Expenses

1. **Searching Expenses for Replacement Property**: Displaced businesses, farms and nonprofit organizations are entitled to reimbursement for actual reasonable expenses incurred in searching for a replacement property, not to exceed $2,500. Expenses may include transportation, meals, and lodging when away from home; the reasonable value of the time spent during the search; fees paid to the real estate agents, brokers or consultants; and other expenses determined to be reasonable and necessary by the Department.

2. **Direct Loss of Tangible Personal Property**: Displaced businesses, farms, and nonprofit organizations may be eligible for a payment for the actual direct loss of tangible personal property which is incurred as a result of the move or discontinuance of the operation. This payment will be based upon the lesser of:
   
   a. The fair market value of the item for continued use at the displacement site minus the proceeds from its sale.
   
   OR
   
   b. The estimated cost of moving and reinstalling the replaced item, based on the lowest acceptable bid or estimate obtained by the Department for eligible moving and related expenses, including dismantling and reassembly, but with no allowance for storage, costs of code requirement betterments or upgrades at the replacement site.
EXAMPLE:
You determine that the "document shredder" cannot be moved to the new location because of its condition, and you will not replace it at the new location.

Fair Market Value of the Document Shredder
Based on its use at the current location $1,500
Proceeds: Price received from selling the Document Shredder $500
Net Value $1,000

OR

Estimated cost to move $1,050

Based on the "lesser of", the amount of the "Loss of Tangible Personal Property" = $1,000

Note: You are also entitled to all reasonable costs incurred in attempting to sell the document shredder (e.g. advertisement).

3. Purchase of Substitute Personal Property: If an item of personal property, which is used as part of the business, farm, or nonprofit organization, is not moved but is promptly replaced with a substitute item that performs a comparable function at the replacement site, the displacee is entitled to payment of the lesser of:

a. The cost of the substitute item, including installation costs at the replacement site, minus any proceeds from the sale or trade-in of the replaced item;

OR

b. The estimated cost of moving and reinstalling the replaced item, based on the lowest acceptable bid or estimate obtained by the Department for eligible moving and related expenses, including dismantling and reassembly, but with no allowance for storage, cost of code requirement betterments or upgrades at the replacement site.
EXAMPLE A:
You determine that the copying machine cannot be moved to the new location because it is now obsolete and you will replace it.

Cost of a substitute copy machine  
Including installation costs at the replacement site  $3,000  
Trade-in Allowance  - $2,600  
Net Value  $500  

OR

Estimated cost to move  $550  

Based on the "lesser of", the amount of the  
"Substitute Personal Property" =  $500  

EXAMPLE B:
You determine that the chairs will not be used at the new location because they no longer match the décor and you will replace them.

Cost of substitute chairs  $1,000  
Proceeds from selling the chairs  - $100  
Net Value  $900  

OR

Estimated cost to move  $200  

Based on the "lesser of", the amount of the  
"Substitute Personal Property" =  $200  

Note: You are also entitled to all reasonable costs incurred in attempting to sell the copy machine and/or chairs.

4. Disconnecting and Reinstallation: You will be reimbursed for your actual and reasonable costs to disconnect, dismantle, remove, reassemble and reinstall any machinery, equipment or other personal property in relation to its move to the new location. This includes connection to utilities available nearby and any modifications to the
personality that is necessary to adapt it to utilities at the replacement site.

5. **Physical changes at the new location:** You may be reimbursed for certain physical changes to the replacement property if the changes are necessary to permit the reinstallation of machinery or equipment necessary for the continue operation of the business. **Note:** The changes cannot increase the value of the building for general purposes, nor can they increase the mechanical capability of the buildings beyond its normal requirements.

6. The cost of installing utilities from the right of way line to the structure(s) or improvements on the replacement site.

7. Marketing studies, feasibility surveys and soil testing.

8. Professional real estate services needed for the purchase or lease of a replacement site.

9. One-time assessments or impact fees for anticipated heavy utility usage.

**Reestablishment Expenses**

A small business, farm or nonprofit organization may be eligible for a payment, not to exceed $10,000, for expenses actually incurred in relocating and reestablishing the enterprise at a replacement site.

Reestablishment expenses may include, but are not limited to, the following:

1. Repairs or improvements to the replacement real property required by Federal, State or local laws, codes or ordinances.

2. Modifications to the replacement real property to make the structure(s) suitable for the business operation.

3. Construction and installation of exterior signing to advertise the business.

4. Redecoration or replacement such as painting, wallpapering, paneling or carpeting when required by the condition of the replacement site or for aesthetic purposes.
5. Advertising the new business location.

6. The estimated increased costs of operation at the replacement site during the first two years, for items such as:
   a) Lease or rental charges
   b) Personal or real property taxes
   c) Insurance premiums, and
   d) Utility charges (excluding impact fees).

7. Other items that the Department considers essential for the reestablishment of the business or farm.

Note: A nonprofit organization must substantiate that it cannot be relocated without a substantial loss of existing patronage (membership or clientele). The payment is based on the average of two years annual gross revenues less administrative expenses.

In-Lieu Payment (Fixed)

Displaced businesses, farms and nonprofit organizations may be eligible for a fixed payment in lieu of (in place of) actual moving expenses, personal property losses, searching expense, and reestablishment expenses. The fixed payment may not be less than $1,000 or more than $20,000.

For a business to be eligible for a fixed payment, the Department must determine the following:

1. The business owns or rents personal property that must be moved due to the displacement.

2. The business cannot be relocated without a substantial loss of existing patronage.

3. The business is not part of a commercial enterprise having more than three other businesses engaged in the same or similar activity, which are under the same ownership and are not being displaced by the department.

4. The business contributed materially to the income of the displaced business operator during the two taxable years prior to displacement.
Appendix D • Summary of Relocation Benefits

Any business operation that is engaged solely in the rental of space to others is not eligible for a fixed payment. This includes the rental of space for residential or business purposes.

Eligibility requirements for farms and nonprofit organizations are slightly different than business requirements. If you are being displaced from a farm or your represent a nonprofit organization and are interested in a fixed payment, please consult your relocation counselor for additional information.

The Computation of Your In-Lieu Payment:

The fixed payment for a displaced business or farm is based upon the average annual net earnings of the operation for the two taxable years immediately preceding the taxable year in which it is displaced. Caltrans can use a different two year period if it is determined that the last two taxable years do not accurately reflect the earnings of the operation.

**EXAMPLE:** Caltrans acquires your property and you move in 2005:

- 2003 Annual Net Earnings $10,500
- 2004 Annual Net Earnings $12,500
- TOTAL $23,000
- **Average over two years** $11,500

This would be the amount of your in-lieu payment. Remember – this is in-lieu of all other moving benefits, including reestablishment expenses. You must provide the Department with proof of net earnings to support your claim.

Proof of net earnings can be documented by income tax returns, certified financial statements, or other reasonable evidence of net earnings acceptable to the Department.

**Note:** The computation for nonprofit organizations differs in that the payment is computed on the basis of average annual gross revenues less administrative expenses for the two year period specified above.

**Before You Move:**

A. Request a determination of entitlement for in-lieu payment from your Relocation Agent.
B. Include a written statement of the reasons the business cannot be relocated without a substantial loss in net earnings.
Appendix D • Summary of Relocation Benefits

C. Provide certified copies of tax returns for the two tax years immediately preceding the tax year in which you move. (If you move anytime in the year 2005, regardless of when negotiations began or the State took title to the property, the taxable years would be 2003 and 2004).

D. You will be notified of the amount you are entitled to after the application is received and approved.

E. You cannot receive the payment until after you vacate the property, AND submit a claim for the payment within 18 months of the date of your move.

Relocation Advisory Assistance

Any business, farm or nonprofit organization displaced by Caltrans shall be offered relocation advisory assistance for the purpose of locating a replacement property. Relocation services are provided by qualified personnel employed by Caltrans. It is their goal and desire to be of service to you and assist in any way possible to help you successfully relocate.

A Relocation Agent from Caltrans will contact you personally. Relocation services and payments will be explained to you in accordance with your eligibility. During the initial interview with you, your needs and desires will be determined as well as your need for assistance.
Appendix D • Summary of Relocation Benefits

You can expect to receive the following services, advice and assistance from your Relocation Agent who will:

- Determine your needs and preferences.
- Explain the relocation benefits and eligibility requirements.
- Provide information on replacement properties for your consideration.
- Provide information on counseling you can obtain to help minimize hardships in adjusting to your new location.
- Assist you in completing loan documents, rental applications or Relocation Claims Forms.

AND provide information on:

- Security deposits
- Interest rates and terms
- Typical down payments
- Permits, fees and local planning
- SBA loan requirements
- Real property taxes.
- Consumer education literature

If you desire, your Relocation Agent will give you current listings of other available replacement property. Transportation will be provided to inspect available property, especially if you are elderly or handicapped. Though you may use the services of a real estate broker, Caltrans cannot provide a referral.

Your Relocation Agent is familiar with the services provided by others in your community and will provide information on other federal, state, and local programs offering assistance to displaced persons. If you have special needs, your Relocation Agent will make every effort to secure the services of those agencies with trained personnel who have the expertise to help you.

If the highway project will require a considerable number of people to be relocated, Caltrans will establish a temporary Relocation Field Office on or near the project. Project relocation offices will be open during convenient hours and evening hours if necessary.

In addition to these services, Caltrans is required to coordinate its relocation activities with other agencies causing displacements to ensure that all persons displaced receive fair and consistent relocation benefits.
Appendix D • Summary of Relocation Benefits

Remember - YOUR RELOCATION AGENT is there to offer advice and assistance. Do not hesitate to ask questions. And be sure you fully understand all of your rights and available benefits.

YOUR RIGHTS AS A DISPLACEE

It is important to remember that your relocation benefits will not have an adverse affect on your:

- Social Security Eligibility
- Welfare Eligibility
- Income Taxes

In addition, the Title VIII of the Civil Rights Act of 1968 and later acts and amendments make discriminatory practices in the purchase and rental of most residential units illegal if based on race, color, religion, sex, or national origin.

Caltrans' Non-Discrimination Policy ensures that all services and/or benefits will be administered to the general public without regard to race, color, national origin, or sex in compliance with Title VI of the 1964 Civil Rights Act (42 USC 2000d. et seq.).

And you always have the Right to Appeal any decision by Caltrans regarding your relocation benefits and eligibility.

Your Right of Appeal is guaranteed in the "Uniform Act" which states that any person may file an appeal with the head of the responsible agency if that
person believes that the agency has failed to properly determine the person's eligibility or the amount of a payment authorized by the Act.

If you indicate your dissatisfaction, either verbally or in writing, Caltrans will assist you in filing an appeal and explain the procedures to be followed. You will be given a prompt and full opportunity to be heard. You have the right to be represented by legal counsel or other representative in connection with the appeal (but solely at your own expense).

Caltrans will consider all pertinent justifications and materials submitted by you and other available information needed to ensure a fair review. Caltrans will provide you with a written determination resulting from the appeal with an explanation of the basis for the decision. If you are still dissatisfied with the relief granted, Caltrans will advise you that you may seek judicial review.
Sus Derechos y Beneficios Como Negocio,
Operación Agrícola o Organización
No Lucrativa Desplazada Bajo el Departamento
de Transportación de California,
Programa para Asistencia de Reubicación

Introducción

Cuando se está construyendo un sistema de transporte moderno, el desplazamiento de un pequeño porcentaje de la población es a veces necesario. Sin embargo, es el procedimiento de Caltrans que las personas desplazadas no deben de sufrir innecesariamente como resultado de los programas diseñados para el beneficio del público en general.

Los negocios, operaciones agrícolas, y organizaciones no-lucrativas desplazadas pueden ser elegibles para servicios de reubicación y pagos.

Este libro le provee información acerca de los servicios y pagos de reubicación disponibles. Si usted tiene que mudarse como resultado de un proyecto de transporte de Caltrans, un Agente de Reubicación lo contactará. El Agente de Reubicación estará disponible para responderle preguntas específicas y darle información adicional.
Acta de Procedimiento Uniforme de Asistencia para Reubicación y Adquisición de Bienes Raíces de 1970, Emendada
“El Acta Uniforme”

El propósito de esta Acta es de proveer uniformidad e igualdad de tratamiento a personas desplazadas de sus negocios, operaciones agrícolas, u organización no-lucrativa, por programas federales o programas asistidos con fondos federales, y de establecer uniformidad e igualdad en los procedimientos para adquisición de tierras para los programas federales y programas asistidos con fondos federales.

El Código de Regulaciones Federales 49, Parte 24 implementa el “Acta Uniforme” de acuerdo a los siguientes objetivos de asistencia de relocalización:

Para asegurar que las personas desplazadas como resultado directo de proyectos federales o proyectos asistidos con fondos federales sean tratados con justicia, consistencia e igualdad de tal manera que esas personas no sufran daños desproporcionados como resultado de los proyectos diseñados para el beneficio del público en general.

Mientras se ha hecho todo esfuerzo para asegurar la veracidad de este folleto, debe entenderse que no tiene la fuerza ni efecto de la ley, regla o regulaciones que gobiernan el pago de los beneficios. Si alguna diferencia o error resulta, la ley tomará precedencia.
Servicios de Reubicación

El Departamento de Transportación tiene dos programas para ayudar a negocios, granjas y organizaciones no-lucrativas que tienen que reubicarse. Estas son:

1. El Programa de Consejos de Asistencia de Reubicación, que es para ayudarle en localizar una propiedad de reemplazo conveniente, y

2. El Programa de Pagos para Reubicación, que le reembolsará de ciertos costos envueltos en la reubicación. Estos pagos están clasificados como:

   - Gastos Relacionados a Mudanza (costos de mover propiedad personal no adquirida).
   - Gastos de Reestablecimiento (gastos relacionados a la propiedad de reemplazo).
   - Pagos Fijos (pago fijo en vez de los gastos de mudanzas y otros gastos relacionados, y gastos de reestablecimiento).

Nota: Pagos por pérdida de clientela es considerado un costo de adquisición. La ley de California y las regulaciones federales mandan que los pagos de reubicación no pueden duplicar otros pagos, como los pagos de pérdida de clientela.

Usted no puede ser elegible a recibir ningún pago de reubicación hasta que el Estado haya hecho la primera oferta escrita para comprar su propiedad. Usted también recibirá un aviso escrito por lo menos 90 días antes que se tenga que mover.
Algunas Definiciones Importantes...

Sus beneficios de relocalización pueden ser entendidos mejor si usted se familiariza con los siguientes términos:

**Negocio:** Cualquier actividad legal, con la excepción de operaciones agrícolas, conducida principalmente para la compra, venta, arrendamiento, y alquiler de bienes personales o bienes raíces, o para la fabricación, elaboración y/o mercadotecnia de productos, mercancías, u otros bienes personales, o solamente para el propósito de ésta Acta, un rótulo con anuncio o anuncios, cuando el rótulo(s) tenga(n) que ser movido(s) como resultado del proyecto.

**Negocios Pequeños:** Un negocio que tenga no más de 500 empleados trabajando en el lugar que esta siendo adquirido o desplazado por un programa o proyecto.

**Contribuye Materialmente:** Un negocio u operación agrícola debe de haber tenido un ingreso bruto en recibo de de al menos $5,000 o un promedio anual de ingreso netos de al menos $1,000, para poder calificar como una operación de buena fe.

**Operación Agrícola:** Cualquier actividad conducida sola o primariamente para la producción de uno o más productos de agricultura o mercancías, incluyendo venta de madera, para la venta y uso en casa, y producción ordinaria de tales productos o mercancía en cantidades suficientes para tener la capacidad de contribuir materialmente al soporte del operario.

**Organización No-lucrativa:** Una entidad pública o privada que haya establecido su estado de organización no-lucrativa bajo las leyes aplicables.

**Persona desplazada:** Cualquier individuo o familia que se muda de una propiedad o nueva sus bienes personales de una propiedad como resultado de la adquisición de bienes raíces, en todo o en parte, o como resultado de una notificación escrita de una agencia para desocupar la propiedad que se necesita para un proyecto de transportación. En el caso de una adquisición parcial, Caltrans determinará si la persona es desplazada directamente como resultado de la adquisición.

Los residentes que no están legalmente en los Estados Unidos no son elegibles para recibir pagos y asistencia de reubicación.
Los beneficios de reubicación varían según el tipo y tiempo de ocupación. Como una persona desplazada de un unidad residencial usted puede ser clasificado como:

- Un dueño ocupante de una propiedad residencial (incluye casas movibles)
- Un inquilino ocupante de una propiedad Residencial (incluye casas movibles y cuartos para dormir)

**GASTOS DE MUDANZA**

Si usted califica como un negocio, operación agrícola, u organización no-lucrativa desplazada, usted puede recibir reembolso de los gastos de mudanza y ciertos gastos relacionados incurridos en la mudanza. Para calificar, usted tiene que ocupar la propiedad legalmente como dueño o inquilino cuando Caltrans inicie negociaciones para la adquisición de la propiedad. O al tiempo que Caltrans adquiera título, o tome posesión de la propiedad. Sin embargo, para asegurar su elegibilidad y el pronto pago de los gastos de mudanza, usted tiene que haber contactado a su Agente de Reubicación antes de que se mude.

**Usted Puede Escoger Entre:**

**Gastos Razonables de Mudanza Actual** – Usted tiene que haber pagado por sus gastos de mudanza razonables y gastos relacionados cuando una compañía comercial hace la mudanza.

El reembolso será limitado a mudanza de 50 millas o menos. Los gastos relacionados, con limitaciones, pueden incluir:

- Transportación.
- Empacamiento y desempacamiento de la propiedad personal.
- Desconexión y reconexión relacionada a la operación de la propiedad personal.
- Almacenamiento temporal de la propiedad personal.
Appendix D • Summary of Relocation Benefits

Seguros mientras la propiedad está en almacenamiento o en tránsito, o la propiedad personal es perdida y dañada, si los seguros no son razonablemente disponible.

- Gastos en encontrar un lugar de reemplazamiento.
- Servicios profesionales para planificar y supervisar la mudanza de la propiedad personal al nuevo lugar.
- Licencias, permisos y honorarios requeridos en el lugar de reemplazamiento.

Contrato de Mudanza Propia – Usted puede ser pagado por mover su propia propiedad personal basado en la más baja de dos ofertas aceptables obtenidas por Caltrans. Bajo esta opción, usted deberá todavía ser elegible para el reembolso de los gastos arriba relacionados que no fueron incluidos en la oferta.

Pago Fijo – Usted puede aceptar un pago fijo entre $1,000 y $20,000 basado en sus ganancias anuales EN VEZ de los costos y gastos relacionados de la mudanza.

Costos Actuales Razonables de Mudanza:

Pueden pagársele los gastos actuales razonables y necesarios de su mudanza si lo transporta con una compañía comercial de muebles y mudanzas. Todos sus gastos deben de ser respaldados con recibos u otra evidencia de gastos incurridos. Además de los gastos de transportación de su propiedad personal, ciertos otros gastos también pueden ser reembolsados, tales como empaque, embalaje, desempaque y desembalaje, desconexión, desmantelación, removimiento, reensamblamiento, y reinstalación de maquinaria relocalizada, equipos y otras propiedades personales. Otros gastos necesarios tales como servicios profesionales para planificar y supervisar la mudanza, almacenaje temporal y el costo para licencias, permisos y certificados también pueden ser reembolsables. Esta no es la intención de ser una lista inclusiva de todos los gastos relacionados de mudanza. Su Agente de Reubicación puede proveerle una explicación completa de los gastos reembolsables.
Contrato de Mudanza Propia

Si usted elige tomar la responsabilidad total o parcial para la mudanza de su negocio, operación agrícola, u organización no-lucrativa, Caltrans puede aprobar un pago sin exceder el presupuesto más bajo de dos ofertas aceptables de una compañía comercial de muebles y mudanzas o por el Agente de Reubicación. Una mudanza a costo bajo o sin complicaciones puede ser basada en una sola oferta o estimado. En realidad, la ventaja de esta opción es que releva de la obligación al operador del negocio, operación agrícola u organización no-lucrativa desplazadas de documentar todos los gastos de mudanza. Caltrans puede hacer el pago sin documentación adicional siempre y cuando el pago sea limitado a la cantidad más baja aceptable de la oferta o del estimado. Otros gastos tales como servicios profesionales para planificar, costos de almacenaje y el costo de licencias, permisos, y certificados también pueden ser reembolsables si son necesarios. Estos gastos tienen que ser aprobados de ante mano por el Agente de Reubicación.

Requisitos:

Antes de que se mueva, usted tiene que proveer a Caltrans con:

• El inventario certificado de toda la propiedad personal que va a mover.
• La fecha que usted intenta desalojar la propiedad.
• La dirección de la propiedad de reemplazo.
• La oportunidad de supervisar e inspeccionar la mudanza desde la propiedad adquirida a la propiedad de reemplazo.

Gastos Relacionados

(1) **Gastos Para la Búsqueda de una Propiedad de Reemplazo** – Negocios, operaciones agrícolas, y organizaciones no-lucrativas tienen derecho a un reembolso por gastos actuales razonables, incurridos en la búsqueda de una propiedad de reemplazo, sin exceder $1,000. Los gastos pueden incluir transporte, alimento y alojamiento cuando esté lejos de su casa, el valor razonable del tiempo que ha gastado buscando una propiedad de reemplazo; los honorarios pagados a agentes de bienes raíces o asesores; y otros gastos determinados por Caltrans como razonables y necesarios.
(2) Pérdidas Directas de Bienes Personales Tangibles: Los negocios, operaciones agrícolas, y organizaciones no-lucrativas desplazadas pueden ser elegibles para un pago por pérdidas directas de bienes personales tangibles incurrido como resultado de la mudanza o descontinuación de la operación. Este pago deberá ser basado en el menor de:

(a) El valor de mercado de un producto para uso contínuo en el sitio de desplazamiento menos la ganancia por su venta.

(b) El costo estimado de mudanza y reinstalación de los objetos reemplazados es basado en la oferta más baja o el estimado obtenido por Caltrans para mudanza elegible y costos relacionados, incluyendo desmantelamiento y reensamblaje, pero sin pago por almacenamiento.

POR EJEMPLO:

Usted determina que el "cortador de documentos" no puede ser movido a la nueva localidad por su condición, y usted no lo va a reemplazar en la nueva localidad.

<table>
<thead>
<tr>
<th>El Valor de Mercado del Cortador de Documentos basado en su uso actual en la localidad actual es de</th>
<th>$1,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganancia: Precio recibido por la venta del Cortador de Documentos</td>
<td>$ - 500</td>
</tr>
<tr>
<td>Valor Neto</td>
<td>$1,000</td>
</tr>
</tbody>
</table>

Ó

| El costo estimado de moverlo Basado en el "menor de", la cantidad de la "Perdida de Propiedad Personal Tangible" | $ 1,050 = $ 1,000 |

**Nota:** Usted también tiene derecho a todos los costos razonables incurrido en su esfuerzo por vender el cortador de documentos (por ejemplo, anuncio comercial)

(3) Compra de Substitución de la Propiedad Personal: Si un objeto de propiedad personal, el cual es usado como parte del negocio, la operación agrícola, o la organización no-lucrativa, no es movido pero es prontamente reemplazado con un objeto substituto que hace una función comparable en el sitio de reemplazo, el desplazado tiene derecho al menor de:
(a) El costo de un objeto substituto, incluyendo los costos de instalación en el sitio de reemplazamiento, menos cualquier ganancia por la venta o intercambio del objeto reemplazado.

O

(b) El costo estimado de mudanza y reinstalación del objeto de reemplazo, basado en la oferta más baja aceptable o el estimado obtenido por Caltrans para una mudanza elegible y gastos relacionados, incluyendo el desmantelamiento y reensamblaje, pero sin pago por almacenamiento.

EJEMPLO A:

Usted puede determinar que la máquina copiadora no puede ser movida a la nueva localidad porque es ahora obsoleta y la va a reemplazar.

Costo de substituir una Máquina Copiadora incluyendo costos de instalación en el sitio de reemplazamiento. $3,000
Pago por el Intercambio $2,500
Valor Neto $500

O

Costo estimado de la mudanza $550
Basado en el “menor de” la cantidad de “La Propiedad Personal Substituida” $500

EJEMPLO B:

Usted determina que las sillas no van a ser usadas en la nueva localidad, porque ya no combinan con la decoración, y usted las quiere reemplazar.

Costo de las sillas substitutas $1,000
Ganancias. Por la venta de las Sillas $100
Valor Neto $900

O

Costo estimado de la mudanza $200
Basado en el “menor de”, la cantidad de “La Propiedad Personal de Substitución” $200
NOTA: Usted también tiene derecho a todos los gastos razonables incurridos en su esfuerzo por vender la copiadora (Ejemplo A) o las sillas (Ejemplo B).

(4) Desconexión y Reinstalación: Usted va a ser reembolsado por los costos actuales y razonables de desconexión, desmantelamiento, mudanza, reensamblaje, e reinstalación de cualquier maquinaria, equipo u otra propiedad personal en relación a la mudanza a su nuevo local. Esto incluye conexión a los servicios públicos disponibles en el lugar y a cualquier modificación de los objetos personales que sean necesario para adaptar a los servicios públicos en el sitio de reemplazamiento.

(5) Cambios Físicos en el nuevo local: Usted puede ser reembolsado por ciertos cambios físicos de la propiedad de reemplazamiento si los cambios son necesarios para permitir la reinstalación de la maquinaria o equipo necesario para la continua operación del negocio.

Nota: Los cambios no pueden incrementar el valor del edificio para propósitos generales, tampoco pueden incrementar la capacidad mecánica de los edificios más allá de los requerimientos normales.

Gastos De Reestablecimiento

Un pequeño negocio, operación agrícola, u organización no-lucrativa puede ser elegible para un pago, que no exceda $10,000, para los gastos actuales incurridos en la reubicación y el reestablecimiento en el sitio de reemplazo.

Gastos de reestablecimiento pueden incluir, pero no están limitados a, lo siguiente:

1. Reparación y mejoramiento de la propiedad de reemplazamiento requerido por las leyes, códigos, u ordenanzas federales, estatales o locales.

2. Modificaciones de la propiedad de reemplazamiento para hacer la estructura(s) apropiado para la operación del negocio.

3. Construcción e instalación de los letreros exteriores para anunciar el negocio.

4. El costo de instalación de servicios públicos desde la línea del derecho de vía a la estructura(s) o mejoramientos en el sitio de reemplazamiento.
5. Redecoración o reemplazamiento como pintura, tapizado de pared, paneles, o carpetas cuando sean requeridas por la condición del sitio de reemplazo o con propósitos estéticos.

6. El costo de licencias, honorarios, y permisos cuando no sean cubiertos como gastos de mudanza.

7. Estudios de mercado, estudios de factibilidad y examen de suelo.

8. Anunciar la localidad del nuevo negocio.

9. Servicios profesionales de bienes raíces necesarios para la compra o la renta de un lugar de reemplazo.

10. El aumento del costo estimado de operación en el lugar de reemplazo durante los primeros dos años, por objetos como:
   a. Cargas de rentas,
   b. Impuestos de propiedad personal o propiedad real
   c. Prima de seguros, y
   d. Carga de servicios públicos (excluyendo honorarios de impacto).

11. Evaluación de una-vez o honorarios de impacto por alta utilización de servicios públicos.

12. Otros objetos que el Departamento considere esenciales para el reestablishimiento del negocio ó operación agrícola.

### Pago De Una Vez (O Pago Fijo)

Negocios que han sido desplazados, operaciones agrícolas, y organizaciones no- lucrativas podrán ser elegibles para un pago fijo (en vez de) por los gastos actuales de mudanza, pérdida de propiedad personal, gastos de búsqueda, y gastos de reestablishimiento. Los pagos fijos no podrán ser menos de $1,000 o más de $20,000.

Para que un negocio sea elegible por un pago fijo, Caltrans debe de determinar lo siguiente:

1. Identificación Agrícola o Organización No Lucrativa.
1. El negocio posee o renta propiedad personal que debe de ser movida debido al desplazamiento.

2. El negocio no puede ser relocalizado sin una pérdida substancial de la clientela existente.

3. El negocio no es parte de un empresa comercial que tiene más de tres otros negocios conectados en una misma o actividad similar, las cuales están bajo el mismo dueño y no están siendo desplazadas por el Departamento.

4. El negocio contribuyó materialmente a las ganancias del operador del negocio desplazado durante los dos años anteriores al desplazamiento.

Cualquier operación del negocio que está conectado solamente en la renta del espacio de otros, no es elegible para un pago fijo. Esto incluye la renta de espacio con propósitos residenciales o de negocios.

Los requerimientos de elegibilidad para las operaciones agrícolas y organizaciones no-lucrativas son un poco diferentes a los requerimientos para negocios. Si usted está siendo desplazado de una granja o usted representa una organización no-lucrativa y está interesado en un pago fijo, por favor consulte con su consejero de reubicación para información adicional.

La computación de Su Pago Fijo

El pago fijo para un negocio desplazado o una operación agrícola es basado en el promedio anual neto de ganancias de la operación por los dos años inmediatamente precedentes al año en el cual fue desplazado. Caltrans puede usar un período de dos años diferentes, si se determina que los dos últimos años no reflejan con certeza las ganancias de la operación.

EJEMPLO: Caltrans adquiere su propiedad y usted se mueve en el 2001:

<table>
<thead>
<tr>
<th>Año de Ganancias Netas Anuales</th>
<th>Propiedad Fija (PFO)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>$10,500</td>
<td>$10,500</td>
</tr>
<tr>
<td>2000</td>
<td>$12,500</td>
<td>$12,500</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$23,000</td>
<td></td>
</tr>
<tr>
<td>Promedio de los dos años</td>
<td>$11,500</td>
<td></td>
</tr>
</tbody>
</table>

Organización Agrícola o Organización No Lucrativa
Este podría ser la cantidad de su pago fijo. Recuerde – esto es “en vez de” todos los otros beneficios de mudanza. Usted tendrá que proveer Caltrans pruebas de las ganancias netas para verificar su reclamo.

Prueba de las ganancias netas pueden ser documentadas con sus declaraciones de impuestos, cartas financieras certificadas, u otra evidencia razonable de las ganancias netas aceptables por Caltrans.

Nota: La computación de las organizaciones no-lucrativas difiere en que los pagos son computados en la base del promedio anual grueso de las ganancias menos los gastos administrativos por el periodo de los dos años especificados arriba.

Antes de que se Mueva:

A. Complete una forma de "Aplicación para Determinación de sus Derechos" que la puede obtener de su Agente de Reubicación, y devuélvala con la mayor prontitud posible.

B. Incluya una declaración escrita de las razones por las cuales su negocio no puede ser reubicado sin una pérdida substancial en la ganancias netas.

C. Provea una copia certificada de su declaración de impuestos de los dos años inmediatamente precedentes al año en el que se va a mover. (Si usted se mueve en cualquier momento en el año 2001, sin importar de cuando comenzaron las negociaciones o cuando el Estado tomó título de su propiedad, los años serán el de 1999 y el 2000.

D. Usted deberá ser notificado de la cantidad a la que tiene derecho después que la aplicación es recibida y aprobada.

E. Usted no puede recibir un pago hasta que se haya movido de la propiedad; Y que haya entregado un reclamo de pago dentro de los 18 meses de la fecha de mudanza.
Asistencia de Asesoría de Reubicación

A cualquier negocio, operación agrícola, u organización no-lucrativa, desplazado por Caltrans debe de ofrecerle los servicios de asistencia de reubicación con el propósito de localizar una propiedad de reemplazo. Los servicios de reubicación deben de ser proveídos por un empleado de Caltrans. Es la meta y el deseo de nosotros de servirle y asistirle en cualquier manera posible para ayudarle a reubicarse exitosamente.

Un Agente de Reubicación de Caltrans se comunicará con usted personalmente. Los servicios de reubicación y los pagos deberán ser explicados a usted de acuerdo con su elegibilidad. Durante la entrevista inicial con usted, sus necesidades y deseos deberán determinarse así como su necesidad de asistencia.

Usted puede esperar recibir los siguientes servicios, consejos, y asistencia de su Agente de Reubicación quien le:

- Determinará sus necesidades y preferencias.
- Explicará los beneficios de reubicación y su elegibilidad.
- Proveerá información en las propiedades de reemplazo para su consideración.
- Proveerá información en aconsejarle como puede obtener ayuda para minimizar la adversidad en ajustarse a su nuevo local.
- Asistirá en completar los documentos de préstamos, aplicaciones de rentas o Formas de Reclamos de Reubicación.

Y puede proveerle información en:

- Depósitos de seguridad
- Tasa de intereses y términos.
- Pagos típicos de enganches.
- Permisos, honorarios, y ordenanzas locales.
- Requirimientos de préstamos SBA
- Impuestos de bienes raíces.
- Literatura de educación al consumidor.
Si usted desea, su Agente de Reubicación le dará una lista actual de otras propiedades de reemplazamiento que estén disponibles. Se le proveerá transporte para inspeccionar la propiedad disponible, especialmente si usted es anciano o desabilitado. Aunque usted puede usar los servicios de un vendedor de bienes raíces, Caltrans no lo puede referir a un agente específico.

Su Agente de Reubicación está familiarizado con los servicios proveídos por otros en su comunidad y le proveerá información de otros programas federales, estatales y locales que ofrecen asistencia a las personas desplazadas. Si usted tiene necesidades especiales, su Agente de Reubicación hará un esfuerzo para asegurar los servicios del personal entrenado de estas agencias que tienen la experiencia para ayudarle.

Si el proyecto de carreteras requiere que un número considerable de personas sean reubicadas, Caltrans establecerá Oficinas temporales de Reubicación en o cerca del proyecto. Las oficinas de proyectos de reubicación serán abiertas durante las horas convenientes y hasta horas de la noche si es necesario.

Además de estos servicios, Caltrans será requerido a coordinar las actividades de reubicación con otras agencias causantes de desplazamiento para asegurar que todas las personas desplazadas reciban beneficios de reubicación iguales y consistentes.

Recuerde – Su Agente de Reubicación está ahí para ofrecer consejos y asistencia. No tenga dudas en preguntar. Y esté seguro que usted entiende completamente todos los derechos y beneficios disponibles.
SUS DERECHOS COMO UNA PERSONA DESPLAZADA

Es importante que recuerde que los beneficios de reubicación no tendrán un efecto adverso en su:

- Elegibilidad para Seguro Social
- Elegibilidad para Asistencia Social
- Declaración de Impuestos,

Además, el Título VIII del Acta de Derechos Civiles de 1968, y las actas anteriores y sus enmiendas hacen ilegal las prácticas en la venta y renta de las unidades residenciales que estén basadas en la raza, color, religión, sexo, u origen nacional.

Los Procedimientos No-Discriminatorios de Caltrans aseguran que todos los servicios y/o beneficios sean administrados al público en general sin diferencia de raza, color, origen nacional, o sexo en cumplimiento con el Título VI del Acta de Derechos Civiles de 1964. (42 USC 2000 (d) et seq.).

Y usted siempre tiene el Derecho de Apelar una decisión de Caltrans en relación a sus beneficios de reubicación y elegibilidad.

Su Derecho de Apelación es garantizado en la “Ley Uniforme” que establece que una persona puede apelar con el responsable de la agencia si esta persona cree que la agencia ha fallado en determinar apropiadamente la elegibilidad de la persona o la cantidad de un pago autorizado por la Ley.

Si usted indica su disatisfacción, ya sea verbalmente o por escrito, Caltrans puede asistirle en entregar su caso y explicar los procedimientos a seguir. A usted le darán la oportunidad de ser oído pronta y totalmente. Usted tiene el derecho de ser representado por un consejero legal u otro representante en conexión con la apelación (pero solamente a su propio costo.)

Caltrans puede considerar todas las justificaciones pertinentes y materiales entregadas por usted y cualquier otra información disponible que sea necesaria para asegurar una revisión justa. Caltrans le proveerá con una determinación de la apelación por escrito con una explicación de la base de la decisión. Si usted todavía no está satisfecho con la asistencia prestada, Caltrans le aconsejará que usted puede buscar una revisión judicial.
Noticiero de la Ley para Americanos con Incapacidades Físicas (ADA):

Para personas con incapacidades físicas, este documento es disponible en formatos alternativos. Para información llame al número (916) 654-5413 Voz, CRS: 1-800-735-2929, o escriba a Derecho de Vía, MS 37, 1120 N Street, Sacramento, CA 95814.
Appendix E  Minimization and/or Mitigation Summary
<table>
<thead>
<tr>
<th>Task and Brief Description</th>
<th>Responsible Branch / Staff</th>
<th>Timing / Phase</th>
<th>NSSP Req.</th>
<th>Action Taken to Comply with Task</th>
<th>Task Completed</th>
<th>Remarks</th>
<th>Environmental Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoidance, Minimization, and/or Mitigation Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FARM-1 The contractor would restrict all construction materials, tools, and vehicles within the right-of-way for the project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FARM-2 The contractor would re-construct irrigation ditches and install irrigation pipelines damaged during construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FARM-3 During final design, the California Department of Transportation would coordinate with property owners and agricultural operators to incorporate design features to maintain property access and operation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FARM-4 The contractor would compensate for the loss or damage to crops resulting from construction activities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI-1 For any person(s) whose real property interests may be impacted by the project, the acquisition of those property interests would comply fully with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended. The act is a federally mandated program that applies to all acquisitions of real property or displacements of persons resulting from federal or federally assisted programs or projects. It was created to provide for and ensure the fair and equitable treatment of all such persons (see Appendix D). Also, the Fifth Amendment of the U.S. Constitution provides that private property may not be taken for a public use without payment of &quot;just compensation.&quot; All impacted owners would be provided notification of the acquiring agency's intent to acquire an interest in their property, including a written offer letter of just compensation specifically describing those property interests. A right-of-way specialist would be assigned to each property owner to assist them with this process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI-2 All impacted owners would be provided notification of the acquiring agency's intent to acquire an interest in their property, including a written offer letter of just compensation specifically describing those property interests. A right-of-way specialist would be assigned to each property owner to assist them with this process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI-3 Caltrans would be responsible for assisting with relocations for individuals and businesses that are undergoing a difficult transition, consistent with the requirements of the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970. Measures would be taken to ensure that nearby adequate, comparable housing for all displaced residents would be utilized before looking beyond the existing neighborhood.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI-4 The Project Engineer would ensure that design refinements are incorporated in the process to minimize impacts to existing land uses related to the temporary use and/or permanent acquisition of property.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI-5 Prior to and during construction, the Project Engineer would ensure that the design refinements to minimize impacts to existing land uses related to temporary use and/or permanent acquisition of property are properly implemented by the contractor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-1 The City of Modesto street tree ordinance stipulates that trees removed within the City's right-of-way would be replaced in kind, if appropriate. The contractor would conform to local tree ordinances for construction projects. The ratios and location of replacement would be determined in coordination with the City of Modesto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-2 Vegetation and trees removed by the contractor would be replaced in accordance with the California Department of Transportation's Project Development Procedures Manual, Chapter 29, which specifies policies for new highway planting, required mitigation planting, highway planting replacement, and highway planting revegetation. The policy specifies conditions under which planting is appropriate. Landscape policies developed as part of the Route 99 Corridor Enhancement Plan within Modesto city limits would also be a guide for tree replacement and new highway planting. Replacement planting and new highway planting would occur as part of Phase 2. Contractor activities would include, but not be limited to, site grading and seeding, trimming trees and shrubs lightly damaged by construction, site clean-up, and replacement of trees, shrubs, and ground cover.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task and Brief Description</td>
<td>Responsible Branch / Staff</td>
<td>Timing / Phase</td>
<td>NSSP Req.</td>
<td>Action Taken to Comply with Task</td>
<td>Task Completed</td>
<td>Remarks</td>
<td>Environmental Compliance</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>VA-3 To minimize glare from State Route 132 lighting, lamps that direct light toward the roadway would be used where required to minimize glare and light spillover. Examples of these features include light shields or low level lighting to redirect light away from motorists, homes, businesses and the sky. If night-time construction is needed, causing a temporary degradation of visual quality, procedures would be taken to direct the light inward toward the construction site and minimize glare for motorists and residents near the site.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-4 The contractor would employ a common aesthetic theme to all proposed structures along the new alignment, as determined during final project design and in coordination with local stakeholders, to visually unify the highway’s image with other Modesto structures (e.g., Needham Bridge and the proposed Pelandale Bridge) and to strengthen the landscape character of districts on either side of the highway.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-5 The contractor would landscape the highway embankment to enhance homeowners’ views of the proposed new alignment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-6 The contractor would replace trees near the relocated intersection of Kansas Avenue and North Dakota Avenue or modify intersection design to preserve trees in their current location.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-7 The contractor would plant street trees at the property edge next to Elm Avenue and align the right-of-way fencing with the noise barriers, which would be set back from the property line.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-8 The contractor would apply a corridor-wide aesthetic theme to proposed project elements (e.g., walls and structures), developed during final design, and implement a functional planting style that respects the visual context of the Agricultural Landscape Unit, which is characterized by orchards, crop fields, grass ditches, and farm buildings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-9 The contractor would install roadway lighting features that direct light downward and away from adjacent residential properties or the night sky.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-10 The contractor would direct light inward toward the construction site during nighttime construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HY-1 All drainage and hydrological improvements would be detailed in the project drainage plan, which would be approved prior to the start of project construction. The plan would include drainage features, where appropriate, such as new drainage inlets, gutters, roadside ditches, pump stations, storm drain pipes, and detention basins.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQ-1 Because dewatering activities may be necessary, the Central Valley Regional Water Quality Control Board and Stanislaus County requirements for dewatering and discharge of non-stormwater would be followed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQ-2 The contractor would conduct groundwater and stormwater monitoring on and adjacent to the soil stockpiles until the proposed project is complete or the California Department of Toxic Substances Control and the Central Valley Regional Water Quality Control Board indicate that it is no longer necessary.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-1 Special Provision 14-7.03 and 19-1.01A for paleontology mitigation would be included in the construction contract special provisions section to advise the construction contractor of the requirement to conduct paleontological salvage. A qualified professional paleontologist would be retained to prepare and implement a final Paleontological Mitigation Plan prior to construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-2 The professional paleontologist would designate a paleontological monitor to be present during qualifying earthmoving activities, as described in the Paleontological Evaluation Report and Preliminary Paleontological Mitigation Plan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-3 The professional paleontologist and paleontological monitor(s) would be notified by the Resident Engineer in advance of the start of construction activity and would attend any safety training programs for the proposed project.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-4 The full-time paleontological monitor would have at least 5 years of paleontological resources construction monitoring experience.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task and Brief Description</td>
<td>Responsible Branch / Staff</td>
<td>Timing / Phase</td>
<td>NSSP Req.</td>
<td>Action Taken to Comply with Task</td>
<td>Task Completed</td>
<td>Remarks</td>
<td>Environmental Compliance</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------------------------------</td>
<td>---------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PR-5 The proposed project paleontologist would meet with the Resident Engineer and construction contractor at a preconstruction meeting to develop an agreed-upon communication plan and provide for worker safety. All project personnel would receive a paleontological awareness training session prior to commencement of work.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-6 If paleontological resources are discovered during earthmoving activities, the construction crew would immediately cease work within a 60-foot radius of the find, and immediately notify the Resident Engineer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-7 For sediments containing microfossils (pollen, freshwater ostracods), the monitor would take bulk samples for off-site processing at a later time to recover any fossils.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-8 Macro fossils (large enough to view with the unaided eye) could include tusks and other vertebrate remains. Some of these resources may be fragile and require hardening before moving, and may require encasing within a plaster jacket for later preparation and conservation in a laboratory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-9 Oriented samples must be preserved for paleomagnetic analysis. Samples of fine matrices would be obtained and stored for pollen analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-10 Recovered specimens would be prepared for identification (not exhibition) and stabilized.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-11 Specimens would be identified by competent qualified specialists to a point of maximum specificity. Ideally, identification is of individual specimens to element, genus, and species.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-12 Where appropriate, specimens would be analyzed by stratigraphic occurrence, and by size, taxa, or taphonomic conditions. The results would be presented in a faunal list, a stratigraphic distribution of taxa, or evolutionary, ecological, or depositional deductions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-13 Adequate storage in a recognized repository institution for the recovered specimens would be required. Specimens would be cataloged and a complete list would be prepared of specimens introduced into the collections or a repository by the curator of the museum or university.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-14 In the event that paleontological resources are discovered, fossil specimens would be properly collected and sufficiently documented to be of scientific value.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR-15 A Paleontological Mitigation Report would be prepared by the project paleontologist, including a summary of the field and laboratory methods, site geology and stratigraphy, faunal list, and a brief statement of the significance and relationship of the site to similar fossil localities. Full copies of the final Paleontological Mitigation Report are deposited with the repository institution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ-1 As soon as access is acquired, but prior to construction, any Building structures that would be renovated or demolished would be investigated for asbestos, lead-based paint, and polychlorinated biphenyls by a certified consultant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ-2 If analytical results indicate Building materials contain asbestos, the contractor would prepare an Asbestos Operations and Maintenance Plan in accordance with applicable regulations. The plan would address worker training and safety measures to be taken when disturbing asbestos-containing materials during abatement activities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ-3 The contractor would ensure that proper removal and disposal of asbestos-containing material is conducted by a licensed contractor registered with the California Occupational Safety and Health Administration for asbestos-related work, or by a licensed and certified asbestos abatement contractor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ-4 If the analytical results indicate that lead-based paint and/or polychlorinated biphenyls are present, the contractor would ensure that demolition materials are handled and disposed of in accordance with applicable regulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task and Brief Description</td>
<td>Responsible Branch / Staff</td>
<td>Timing / Phase</td>
<td>NSSP Req.</td>
<td>Action Taken to Comply with Task</td>
<td>Task Completed</td>
<td>Remarks</td>
<td>Environmental Compliance</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| HAZ-5 Prior to construction, the contractor would prepare a Materials Management Plan that identifies potential recognized environmental conditions, locations, extent of impact, proposed remediation work, waste management procedures, and avoidance measures, investigation measures and a contingency plan for addressing unforeseen conditions. Documentation of completed waste profiles, manifest forms, and bill-of-lading forms for proper transportation and disposal of materials offsite would be maintained by the contractor. The plan would include the following provisions:  
  • Characterization and handling of contaminated soils requiring offsite disposal  
  • Soils to be stockpiled for further characterization  
  • Process for identifying soils with waste concentrations below regulatory thresholds that can be reused without restriction  
  • Process for identifying and handling wastewater requiring offsite disposal and/or treatment  
  • Procedures for handling asbestos-containing material discovered during construction activities | | | | | | | |
| HAZ-6 Prior to initiating construction activities, the contractor would prepare a site-specific Health and Safety Plan that identifies key personnel and provides a summary risk assessment for workers, the community, and the environment. The Health and Safety Plan would include an Air Monitoring Plan and Emergency Response Plan. | | | | | | | |
| HAZ-7 Prior to construction, the contractor would prepare a Sampling and Analysis Plan to identify and characterize potential recognized environmental conditions that may be encountered. The plan would provide for monitoring/screening during construction activities to provide safety controls in areas previously not identified. The plan would include:  
  • Data quality objectives  
  • Sample collection procedures (e.g., field screening, borehole drilling/abatement, monitoring well construction, soil, groundwater, and decontamination)  
  • Quality control  
  • Quality assurance objectives (data) | | | | | | | |
| HAZ-8 Prior to construction, the contractor would prepare a Spill Prevention Control and Countermeasures Plan to ensure that construction best management practices are adequate for site conditions and to prevent discharge of any sediment or pollutants into any storm drains, receiving waters, or drywells. | | | | | | | |
| HAZ-9 Prior to construction, the contractor would inspect all utility pole-mounted and pad-mounted electrical transformers within the project limits for leaks. Leaking transformers would be considered a potential polychlorinated biphenyl hazard (unless tested) and would be handled in accordance with applicable laws and regulations. | | | | | | | |
| HAZ-10 The contractor would ensure that all wooden utility poles that are to be removed or relocated as part of the project, as well as the soils at the bases of the utility poles (unless documentation from the utility company indicates that creosote was not used), would be handled as treated wood waste in accordance with the California Department of Transportation's Standard Special Provision 14-010. | | | | | | | |
| HAZ-11 Before construction, the contractor would notify all utility companies to ensure that the locations of underground transmission lines and facilities are marked. In addition, Underground Service Alert would be contacted at least two working days before subsurface excavation. | | | | | | | |
| HAZ-12 The contractor would adhere to the requirements of San Joaquin Valley Air Pollution Control District and applicable National Emission Standards for Hazardous Air Pollutants during demolition/renovation activities. Any demolition or renovation of a Building structure would require notification and submittal fees to the San Joaquin Valley Air Pollution Control District at least 10 days before proceeding with the demolition work. | | | | | | | |
HAZ-13 The contractor would adhere to the procedures outlined in the California Department of Transportation's Unknown Hazards Procedures for Construction in the event that unknown hazardous contamination from above/below ground oil/motor vehicle fuel tanks and septic tanks is revealed or unknown hazardous waste/material is encountered during construction.

HAZ-14 The contractor would prepare a Lead Compliance Plan to prevent or minimize worker exposure to lead from handling material containing aerially deposited lead (California Code of Regulations, Title 8, and Section 1532.1). The plan would also be required for work performed on painted structures. The contractor would prepare a written, project-specific Excavation and Transportation Plan establishing procedures the contractor would use for excavating, stockpiling, transporting, and placing (or disposing) of material containing aerially deposited lead and lead-based paint. The plan would conform to the California Department of Toxic Substances Control and California Occupational Safety and Health Administration regulations. For samples where lead levels exceed hazardous waste criteria, the excavated soil would be either managed or disposed of as a California hazardous waste or stockpiled and resampled to confirm waste classification and potential to recycle soil onsite. The appropriate Standard Special Provision would be included in the Plans, Specifications, and Estimate. Special handling, treatment, or disposal of aerially deposited lead in soils during construction activities would be consistent with the July 1, 2016, Aerially Deposited Lead Agreement between Caltrans and the California Department of Toxic Substances Control.

SHAZ-1 Prior to any earthmoving or construction activities related to the soil stockpiles, a grading permit from the City of Modesto would be secured by the construction contractor. Additionally, prior to any earthmoving or construction activities related to the soil stockpiles, a Health and Safety Plan that addresses all hazards associated with the movement and disposition of stockpile soil related to construction of the containment features would also be prepared by the construction contractor. The hazards associated with the movement and disposition of stockpile soil to be included in the Health and Safety Plan would be identified in the Remedial Design Implementation Plan that would be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. As described in Section 2.2.6, Air Quality, the contractor would comply with the San Joaquin Valley Air Pollution Control District's Rule 9510. As described in Section 2.2.2, Water Quality, the contractor would prepare and implement construction site best management practices in accordance with the California Department of Transportation's Stormwater Management Plan and National Pollutant Discharge Elimination System Permit (Order No. 99-06-DWQ National Pollutant Discharge Elimination System No. CAS000003).

SHAZ-2 The contractor would remove all debris on or adjacent to the soil stockpiles prior to grading. The contractor would dispose of it according to regulations pertaining to the type of waste encountered.

SHAZ-3 If any vegetation grubbing is required, the contractor would minimize dust generation consistent with standard best management practices described in Section 2.2.6, Air Quality. The contractor would implement the California Department of Transportation's Standard Specifications control measures Section 14-9.02 (Air Pollution Control) and Section 14-9.03 (Dust Control). The contractor would apply water under Section 17 and dust palliative under Section 18.

SHAZ-4 The contractor would minimize reconfiguration of the soil stockpiles to the minimum extent possible to meet project design criteria for fill placement, thereby reducing the potential for stormwater and/or wind erosion and stormwater infiltration into the soil stockpiles.

SHAZ-5 Perimeter air quality monitoring would occur during any earthmoving or construction activities related to the soil stockpiles, including clearing and grubbing or other site grading activities performed by the construction contractor. Perimeter air quality monitoring would occur according to an Air Monitoring Plan that would describe monitoring locations, equipment, sampling and analysis methods, hazardous exposure threshold values, etc. All elements of the Air Quality Monitoring Plan would be identified in the Remedial Design Implementation Plan that would be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. The contractor would provide monitoring results to the California Department of Toxic Substances Control for its review and approval. If the results of air monitoring demonstrate that dust control measures are effective and that there is no exposure to constituents of potential concern in the soil stockpiles via airborne dust, then the frequency of monitoring may be decreased with the California Department of Toxic Substances Control's approval.

SHAZ-6 The contractor would submit requests to the California Department of Toxic Substances Control for approval prior to modifying procedures for soil excavation, relocation, dust control, air monitoring, or other field activities.

<table>
<thead>
<tr>
<th>Task and Brief Description</th>
<th>Responsible Branch / Staff</th>
<th>Timing / Phase</th>
<th>NSSP Req.</th>
<th>Action Taken to Comply with Task</th>
<th>Task Completed</th>
<th>Remarks</th>
<th>Environmental Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZ-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHAZ-7 The contractor would maintain detailed records related to movement, placement, and inspection of the stockpile soil.

SHAZ-8 As required by California Code of Regulations, Title 22, section 67391.1, the California Department of Transportation would prepare and record a land use covenant to restrict the types of land use that are allowed on the site. The land use covenant would identify that the proposed transportation land use is compatible and acceptable with respect to health risk. The land use covenant would be prepared in compliance with California Department of Toxic Substances Control policies and finalized and recorded after remedial measures are implemented and before the soil stockpile site is certified by the California Department of Toxic Substances Control as remediated.

SHAZ-9 A groundwater and storm water quality monitoring program for the contained Caltrans Modesto Soil Stockpiles would be proposed and included in the Remedial Design Implementation Plan to be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. In addition to design specifications for construction of the containment features, the Remedial Design Implementation Plan would address water quality monitoring for the initial and final construction phases of the project. Until the groundwater and surface water quality monitoring program is approved, or if the no-Build alternative is selected, groundwater and storm water quality monitoring would continue as currently conducted in accordance with the 2006 and 2012 (amendment) sampling and analysis plans approved by the California Department of Toxic Substances Control and the Regional Water Quality Control Board.

SHAZ-10 The functionality and condition of each stockpile containment feature (pavement, retaining walls, abutments, vegetated soil cover, etc.) would be evaluated in accordance with an operation and maintenance plan established in accordance with an operation and maintenance agreement between the California Department of Transportation and the California Department of Toxic Substances Control and the California Regional Water Quality Control Board. The proposed operation and maintenance plan and operation and maintenance agreement would be included in the Remedial Design Implementation Plan that would be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. The operation and maintenance plan would address containment feature assessment, management, and reporting to ensure the ongoing integrity of the containment feature for the protection of human health and the environment. The operation and maintenance plan would address containment feature assessment for the initial and final construction phases of the project. If the no-Build alternative is selected, a separate Caltrans-initiated stockpile remediation project would be proposed and remedy selection document prepared under the oversight the California Department of Toxic Substances Control and the Regional Water Quality Control Board.

WET-1 Caltrans will consult with the Central Valley Regional Water Quality Board during the final design and permitting phase. If the seasonal wetland features are determined to be waters of the State, Caltrans will mitigate for their discharge and fill as directed by the Central Valley Regional Water Quality Board under the Porter Cologne Water Quality Act.

AS-1 Burrowing owl surveys would be conducted following the guidelines outlined in the California Department of Fish and Wildlife's 2012 Staff Report on Burrowing Owl Mitigation during the year prior to the initiation of construction. If burrowing owls are detected within the biological study area, the California Department of Fish and Wildlife would be consulted to determine specific avoidance and minimization measures appropriate for the site. Likely avoidance and minimization measures may include preconstruction surveys prior to ground disturbance, establishment of no-work buffer, and/or having a qualified biologist present to monitor an active nest during construction activities to ensure that no interference with the burrowing owl breeding activities would occur. Additional avoidance and minimization for permanent impacts to burrowing owl habitat could also include the preservation of surrounding foraging habitat, passive relocations, and off-site mitigation. Mitigation of nesting burrows and associated burrowing owl habitat may involve purchasing mitigation lands adjacent to the project or purchasing burrowing owl mitigation credits at an approved conservation bank in the region.

AS-2 Shrub and tree trimming and/or tree removal for the proposed project would be conducted outside the nesting season (generally between February 1 and August 31). If shrub and tree removal is scheduled to occur during the nesting season, a qualified wildlife biologist, familiar with the species and habitats in the study area, would conduct preconstruction surveys for nesting birds within suitable nesting habitat in the study area as described in AS-3.

AS-3 Nesting bird surveys would be conducted prior to initiation of construction activities. If no active nests are detected during surveys, construction may proceed. If active nests are detected, then AS-4 would be implemented.

<table>
<thead>
<tr>
<th>Task and Brief Description</th>
<th>Responsible Branch / Staff</th>
<th>Timing / Phase</th>
<th>NSSP Req.</th>
<th>Action Taken to Comply with Task</th>
<th>Task Completed</th>
<th>Remarks</th>
<th>Environmental Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAZ-7 The contractor would maintain detailed records related to movement, placement, and inspection of the stockpile soil.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-8 As required by California Code of Regulations, Title 22, section 67391.1, the California Department of Transportation would prepare and record a land use covenant to restrict the types of land use that are allowed on the site. The land use covenant would identify that the proposed transportation land use is compatible and acceptable with respect to health risk. The land use covenant would be prepared in compliance with California Department of Toxic Substances Control policies and finalized and recorded after remedial measures are implemented and before the soil stockpile site is certified by the California Department of Toxic Substances Control as remediated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-9 A groundwater and storm water quality monitoring program for the contained Caltrans Modesto Soil Stockpiles would be proposed and included in the Remedial Design Implementation Plan to be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. In addition to design specifications for construction of the containment features, the Remedial Design Implementation Plan would address water quality monitoring for the initial and final construction phases of the project. Until the groundwater and surface water quality monitoring program is approved, or if the no-Build alternative is selected, groundwater and storm water quality monitoring would continue as currently conducted in accordance with the 2006 and 2012 (amendment) sampling and analysis plans approved by the California Department of Toxic Substances Control and the Regional Water Quality Control Board.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAZ-10 The functionality and condition of each stockpile containment feature (pavement, retaining walls, abutments, vegetated soil cover, etc.) would be evaluated in accordance with an operation and maintenance plan established in accordance with an operation and maintenance agreement between the California Department of Transportation and the California Department of Toxic Substances Control and the California Regional Water Quality Control Board. The proposed operation and maintenance plan and operation and maintenance agreement would be included in the Remedial Design Implementation Plan that would be submitted to the California Department of Toxic Substances Control and the Regional Water Quality Control Board for review and approval. The operation and maintenance plan would address containment feature assessment, management, and reporting to ensure the ongoing integrity of the containment feature for the protection of human health and the environment. The operation and maintenance plan would address containment feature assessment for the initial and final construction phases of the project. If the no-Build alternative is selected, a separate Caltrans-initiated stockpile remediation project would be proposed and remedy selection document prepared under the oversight the California Department of Toxic Substances Control and the Regional Water Quality Control Board.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WET-1 Caltrans will consult with the Central Valley Regional Water Quality Board during the final design and permitting phase. If the seasonal wetland features are determined to be waters of the State, Caltrans will mitigate for their discharge and fill as directed by the Central Valley Regional Water Quality Board under the Porter Cologne Water Quality Act.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-1 Burrowing owl surveys would be conducted following the guidelines outlined in the California Department of Fish and Wildlife's 2012 Staff Report on Burrowing Owl Mitigation during the year prior to the initiation of construction. If burrowing owls are detected within the biological study area, the California Department of Fish and Wildlife would be consulted to determine specific avoidance and minimization measures appropriate for the site. Likely avoidance and minimization measures may include preconstruction surveys prior to ground disturbance, establishment of no-work buffer, and/or having a qualified biologist present to monitor an active nest during construction activities to ensure that no interference with the burrowing owl breeding activities would occur. Additional avoidance and minimization for permanent impacts to burrowing owl habitat could also include the preservation of surrounding foraging habitat, passive relocations, and off-site mitigation. Mitigation of nesting burrows and associated burrowing owl habitat may involve purchasing mitigation lands adjacent to the project or purchasing burrowing owl mitigation credits at an approved conservation bank in the region.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-2 Shrub and tree trimming and/or tree removal for the proposed project would be conducted outside the nesting season (generally between February 1 and August 31). If shrub and tree removal is scheduled to occur during the nesting season, a qualified wildlife biologist, familiar with the species and habitats in the study area, would conduct preconstruction surveys for nesting birds within suitable nesting habitat in the study area as described in AS-3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-3 Nesting bird surveys would be conducted prior to initiation of construction activities. If no active nests are detected during surveys, construction may proceed. If active nests are detected, then AS-4 would be implemented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task and Brief Description</td>
<td>Responsible Branch / Staff</td>
<td>Timing / Phase</td>
<td>NSSP Req.</td>
<td>Action Taken to Comply with Task</td>
<td>Task Completed</td>
<td>Remarks</td>
<td>Environmental Compliance</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>AS-4 A no-work buffer would be established around nests identified during preconstruction surveys. A 100-ft buffer would be established for migratory birds and a 300-ft buffer would be established for most raptors. In the case of burrowing owl nests and Swainson's hawk see AS-1 and TES-1 respectively. The extent of the no-work buffers would be determined by a wildlife biologist in consultation with California Department of Fish and Wildlife and would depend on the level of noise or construction disturbance, line of sight between the nest and the disturbance, ambient levels of noise and other disturbances, and other topographic or artificial barriers. The purpose of the buffer is to avoid disturbance or destruction of the nest until after the breeding season, or until a wildlife biologist determines that the young have fledged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-5 The City of Modesto Street Tree Ordinance stipulates that trees removed within the City’s right-of-way would be replaced in kind if appropriate. Contractor work would conform to local tree ordinances for construction projects. The ratios and location of replacement would be determined in coordination with the City of Modesto. The specific replacement would be determined during the permit review process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TES-1 Protocol-level surveys will be conducted within a 0.5-mile radius around the biological study area preceding the initiation of construction and would follow the Swainson’s Hawk Technical Advisory Committee’s 2000 Recommended Timing and Methodology for Swainson’s Hawk Nesting Surveys in California’s Central Valley. If an active Swainson’s hawk nest is detected, minimization efforts would be coordinated with the California Department of Fish and Wildlife. Potential minimization measures would include establishing a 600 foot no-work buffer zone around an active nest, and/or having a qualified biologist present to monitor an active nest during construction activities to ensure that no interference with the hawks breeding activities would occur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS-1 To minimize the risk of introducing additional non-native species into the area, weed-free erosion control applications would be used. No dry-farmed straw would be used, and certified weed-free straw would be required where erosion control straw is to be used. In addition, hydro-seed mulch or any other erosion control application must also be certified weed-free. Any revegetation seed mix to be used would also be certified weed-free and contain native species appropriate for the project area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS-2 All off-road construction equipment would be inspected and cleared of potential noxious weed sources (e.g., mud and vegetation) before entry into the project area to prevent noxious weed introduction. The contractor would employ cleaning methods (typically with the use of a high-pressure water hose) to ensure that equipment is free of noxious weeds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix F  Cross-Sections and Engineering Drawings
Appendix F • Cross-Sections and Engineering Drawings

SR-132 West Freeway/Expressway Project
Plan Sheets and Cross Sections
Sheet: 8 of 10
1/32/2018

State Route 132 West Freeway/Expressway Draft EIR/EA
Appendix F • Cross Sections and Engineering Drawings

State Route 132 West Freeway/Expressway EIR/EA

Map: 2 of 3
Appendix G  Final Feasibility Study, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Modesto, Stanislaus County, California
Page Intentionally Left Blank
Caltrans Modesto Soil Stockpiles
State Route 132
West Freeway/Expressway Project
Stanislaus County, California
Appendix G - Final Feasibility Study, Caltrans Modesto Soil Stockpiles

Project No. S9800-01-17
June 24, 2014

Randy Adams, CEG
Department of Toxic Substances Control
8800 Cal Center Drive
Sacramento, California 95826

Subject: FINAL FEASIBILITY STUDY
CALTRANS MODESTO SOIL STOCKPILES
STATE ROUTE 132 WEST FREEWAY/EXPRESSWAY PROJECT
MODESTO, STANISLAUS COUNTY, CALIFORNIA

Dear Mr. Adams:

In accordance with the Interagency Agreement between the California Department of Toxic Substances Control (DTSC), in cooperation with the California Regional Water Quality Control Board, Central Valley Region, and the California Department of Transportation (Caltrans) dated June 22, 2012, we are pleased to submit the enclosed Final Feasibility Study (FS) for the Caltrans Modesto Soil Stockpiles (the Site) located south of the State Route 99/Kansas Avenue interchange in Modesto, Stanislaus County, California. The Final FS incorporates revisions to the Draft Final FS made in accordance with comments provided in DTSC’s letter dated February 11, 2014.

We trust that this Final FS adequately describes the project and the proposed remedial alternative for the Site. Please call if you have any questions.

Sincerely,

GEOCON CONSULTANTS, INC.

Jim Brake, PG
Project Manager

(2+CD) Addressee
TABLE OF CONTENTS

FINAL FEASIBILITY STUDY

1.0 INTRODUCTION .............................................................................................................. 1
  1.1 Purpose and Organization of the FS................................................................. 1
  1.2 Site Description .................................................................................................... 2
  1.3 Site History .......................................................................................................... 3
  1.4 Site Characterization ............................................................................................ 3
  1.5 Previous Removal Actions Taken ....................................................................... 6
  1.6 Site Geology and Hydrogeology ........................................................................ 7
    1.6.1 Topography .................................................................................................... 7
    1.6.2 Geologic and Soil Conditions ....................................................................... 8
    1.6.3 Geotechnical Characteristics ....................................................................... 9
    1.6.4 Hydrogeologic Conditions .......................................................................... 10
    1.6.5 Stockpile Stormwater .................................................................................. 11
  1.7 Background COPC Concentrations .................................................................... 12
  1.8 Background MCLs and PELs .............................................................................. 12

2.0 NATURE AND EXTENT OF impacts ........................................................................... 13
  2.1 Conceptual Site Exposure Model ........................................................................ 13
  2.2 Soil Impacts ......................................................................................................... 13
    2.2.1 Shaw 2004 PSI ............................................................................................. 13
    2.2.2 Shaw 2006 SI .............................................................................................. 14
    2.2.3 Geocon 2012 SSI ......................................................................................... 16
  2.3 Groundwater Impacts .......................................................................................... 18
    2.3.1 Shaw 2004 PSI ............................................................................................. 18
    2.3.2 Shaw 2006 SI .............................................................................................. 19
    2.3.3 Geotechnical Survey .................................................................................... 20

3.0 REMEDIAL ACTION OBJECTIVES ......................................................................... 19
  3.1 Summary of the 2007 HHRA .............................................................................. 19
    3.1.1 Current Offsite Resident and Trespasser ...................................................... 19
    3.1.2 Future Construction Worker ....................................................................... 20
    3.1.3 Future Offsite Resident ............................................................................... 21
    3.1.4 Hypothetical Future Shallow Groundwater User ......................................... 21
  3.2 HHRA Update ...................................................................................................... 21
    3.2.1 Stockpile 1 Current Exposure Assessment .................................................. 22
    3.2.2 Stockpile 2 Current Exposure Assessment .................................................. 22
    3.2.3 Stockpile 3 Current Exposure Assessment .................................................. 23
    3.2.4 Stockpiles 1 through 3 - Future Construction Worker and Offsite Resident 23
    3.2.5 Onsite Shallow Groundwater ...................................................................... 24
    3.2.6 HHRA Update Summary ............................................................................ 24
  3.3 Remedial Action Objective .................................................................................. 25
  3.4 ARARs .................................................................................................................. 26
    3.4.1 Summary of State and Federal ARARs ......................................................... 26
    3.4.2 ARARs for Remediation of the Stockpiles ..................................................... 27
  3.5 Cleanup Goals ...................................................................................................... 27

4.0 IDENTIFICATION AND SCREENING OF TECHNOLOGIES ................................... 29
  4.1 General Response Actions .................................................................................. 29
  4.2 Identification and Screening of Technology Types and Process Options ............ 30
    4.2.1 Institutional Controls ................................................................................... 30
    4.2.2 Removal ....................................................................................................... 32
    4.2.3 Containment ............................................................................................... 32
    4.2.4 Treatment .................................................................................................... 34
    4.2.5 Reuse/Recycle/Reclaim ................................................................................ 34
4.3 Technologies Screening Summary ................................................................. 35

5.0 EVALUATION OF ALTERNATIVES ................................................................. 36
5.1 Evaluation Criteria .......................................................................................... 36
  5.1.1 Threshold Criteria .................................................................................... 37
  5.1.2 Balancing Criteria ................................................................................... 37
  5.1.3 Modifying Criteria .................................................................................. 38
5.2 Evaluation of Alternatives .............................................................................. 38
  5.2.1 Overall Protection of Human Health and the Environment ....................... 38
  5.2.2 Compliance with State and Federal Requirements .................................. 40
  5.2.3 Long-term Effectiveness and Performance .............................................. 40
  5.2.4 Reduction of Toxicity, Mobility, and Volume .......................................... 41
  5.2.5 Short-term Effectiveness ......................................................................... 42
  5.2.6 Implementability ..................................................................................... 43
  5.2.7 Cost ......................................................................................................... 44
  5.2.8 Regulatory Acceptance ........................................................................... 45
  5.2.9 Community Acceptance .......................................................................... 45
5.3 Comparative Analysis ....................................................................................... 46
  5.3.1 Alternative 1 – No Action ....................................................................... 47
  5.3.2 Alternative 2 – Institutional Controls ....................................................... 47
  5.3.3 Alternative 3 – Removal ......................................................................... 47
  5.3.4 Alternative 4 – Containment ................................................................... 47
5.4 Description of Recommended Alternative ..................................................... 48

6.0 REFERENCES ........................................................................................................ 50

FIGURES
1. Vicinity Map
2. Site Plan
  3a – 3b. 1963 and 1967 Aerial Photographs
  4a – 4b. Site Plans – Stockpiles 1 and 2 and Stockpile 3
  5a – 5b. Stockpile Containment by Capping Plans – Interim Progress Build-Out
  6a – 6b. Stockpile Containment by Capping Plans – Ultimate Build-Out
7. Cross-sections – Stockpile #1
8. Cross-sections – Stockpile #2
9. Cross-sections – Stockpile #3

TABLES
1. ARARs and TBCs for Soil Remediation
2. Evaluation of General Response Actions and Process Options for the Caltrans Modesto Soil Stockpiles
3. Remediation Cost Estimate Summary – Alternative No. 2, Institutional Controls
4. Remediation Cost Estimate Summary – Alternative No. 3, Removal
5. Remediation Cost Estimate Summary – Alternative No. 4, Containment by Capping With Planned Construction of the SR-132 Project
6. Remediation Cost Estimate Summary – Alternative No. 4, Containment by Capping With Clean Soil Layer
7. Remediation Cost Estimate Summary – Removal of Stockpile 3
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARARs</td>
<td>Applicable or relevant and appropriate requirements</td>
</tr>
<tr>
<td>BMP</td>
<td>Best management practice</td>
</tr>
<tr>
<td>Cal-OSHA</td>
<td>California Division of Occupational Safety and Health</td>
</tr>
<tr>
<td>Caltrans</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CDMG</td>
<td>California Division of Mines and Geology</td>
</tr>
<tr>
<td>CEG</td>
<td>Certified Engineering Geologist</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CHHSLs</td>
<td>California Human Health Screening Levels</td>
</tr>
<tr>
<td>COPC</td>
<td>Contaminant of potential concern</td>
</tr>
<tr>
<td>CVRWQCB</td>
<td>Central Valley Regional Water Quality Control Board</td>
</tr>
<tr>
<td>CSEM</td>
<td>Conceptual Site Exposure Model</td>
</tr>
<tr>
<td>DI</td>
<td>Deionized water</td>
</tr>
<tr>
<td>DTSC</td>
<td>Department of Toxic Substances Control</td>
</tr>
<tr>
<td>DWR</td>
<td>Department of Water Resources</td>
</tr>
<tr>
<td>EPC</td>
<td>Exposure-point concentrations</td>
</tr>
<tr>
<td>ESL</td>
<td>Environmental Screening Level</td>
</tr>
<tr>
<td>FMC</td>
<td>Food Machinery and Chemical Corporation</td>
</tr>
<tr>
<td>FS</td>
<td>Feasibility Study</td>
</tr>
<tr>
<td>GRA</td>
<td>General Response Action</td>
</tr>
<tr>
<td>HI</td>
<td>Hazard index</td>
</tr>
<tr>
<td>HHRA</td>
<td>Human Health Risk Assessment</td>
</tr>
<tr>
<td>HSP</td>
<td>Health and safety plan</td>
</tr>
<tr>
<td>IA</td>
<td>Interagency Agreement</td>
</tr>
<tr>
<td>IIPP</td>
<td>Injury and illness prevention plan</td>
</tr>
<tr>
<td>ISA</td>
<td>Initial Site Assessment</td>
</tr>
<tr>
<td>kg/m³</td>
<td>Kilograms per cubic meter</td>
</tr>
<tr>
<td>LUC</td>
<td>Land use covenant</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum Contaminant Level</td>
</tr>
<tr>
<td>MDC</td>
<td>Maximum detected concentration</td>
</tr>
<tr>
<td>µg/dL</td>
<td>Micrograms per deciliter</td>
</tr>
<tr>
<td>µg/kg</td>
<td>Micrograms per kilogram</td>
</tr>
<tr>
<td>µg/l</td>
<td>Micrograms per liter</td>
</tr>
<tr>
<td>µg/m³</td>
<td>Micrograms per cubic meter</td>
</tr>
<tr>
<td>mg/kg</td>
<td>Milligrams per kilogram</td>
</tr>
<tr>
<td>mg/l</td>
<td>Milligrams per liter</td>
</tr>
<tr>
<td>mg/m³</td>
<td>Milligrams per cubic meter</td>
</tr>
<tr>
<td>MID</td>
<td>Modesto Irrigation District</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean sea level</td>
</tr>
<tr>
<td>NCP</td>
<td>National Contingency Plan</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollution Discharge Elimination System</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>O&amp;M</td>
<td>Operations and maintenance</td>
</tr>
<tr>
<td>OMP</td>
<td>Operations and maintenance plan</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PAHs</td>
<td>polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>PEA</td>
<td>Preliminary Endangerment Assessment</td>
</tr>
<tr>
<td>PE</td>
<td>Professional Engineer</td>
</tr>
<tr>
<td>PG</td>
<td>Professional Geologist</td>
</tr>
<tr>
<td>PSI</td>
<td>Preliminary Site Investigation</td>
</tr>
<tr>
<td>RAO</td>
<td>Removal Action Objective</td>
</tr>
<tr>
<td>RAOR</td>
<td>Remedial Action Options Report</td>
</tr>
<tr>
<td>RAP</td>
<td>Remedial Action Plan</td>
</tr>
<tr>
<td>ROW</td>
<td>right-of-way</td>
</tr>
<tr>
<td>RSL</td>
<td>Regional Screening Level</td>
</tr>
<tr>
<td>SFBRWQCB</td>
<td>San Francisco Bay Area Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SJVAPCD</td>
<td>San Joaquin Valley Air Pollution Control District</td>
</tr>
<tr>
<td>SI</td>
<td>site investigation</td>
</tr>
<tr>
<td>SR</td>
<td>State Route</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>SSI</td>
<td>Supplemental Site Investigation</td>
</tr>
<tr>
<td>StanCOG</td>
<td>Stanislaus Council of Governments</td>
</tr>
<tr>
<td>STLC</td>
<td>Soluble Threshold Limit Concentration</td>
</tr>
<tr>
<td>TTLC</td>
<td>Total Threshold Limit Concentration</td>
</tr>
<tr>
<td>UCL</td>
<td>upper confidence limit</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>WET</td>
<td>waste extraction test</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yard</td>
</tr>
</tbody>
</table>
FINAL FEASIBILITY STUDY

1.0 INTRODUCTION

This Final Feasibility Study (FS) was prepared on behalf of the California Department of Transportation (Caltrans) for the Caltrans Modesto Soil Stockpiles (the Site) located south of State Route (SR)-99/Kansas Avenue interchange in Modesto, Stanislaus County, California (Figure 1). Caltrans is in the process of finalizing the draft environmental document for the proposed SR-132 West Freeway/Expressway Project (the SR-132 project) that is being developed in coordination with Stanislaus Council of Governments (StanCOG). The SR-132 project is planned to result in the ultimate build-out of a four-lane expressway by 2028. An interim progress phase is planned to include construction of the SR-132 West/6th Street and SR-132/East/5th Street extensions, two of four traffic lanes from east of SR-99 to North Dakota Avenue, the Carpenter Road interchange, and the SR-132 roadway structures across Emerald Avenue and SR-99 by 2018. The ultimate build-out is planned to include highway widening to four traffic lanes, construction of structures to accommodate the roadway widening along SR-132, and the SR-99/SR-132 interchange with related improvements along SR-99 by 2028.

The stockpiles, portions of which contain elevated levels of barium are planned to be contained within the project by utilizing them as embankment material for roadway construction, retaining wall backfill, and bridge abutments. It is anticipated that remedial and contour cut/fill grading will be necessary to achieve final finish grades and to properly consolidate and contain the existing soil stockpiles.

1.1 Purpose and Organization of the FS

The purpose of the FS is to present remedial action objectives (RAOs), general response actions (GRAs), and process options; develop and screen remedial alternatives; and present an individual and comparative analysis of each retained alternative for the stockpiles. As directed in the United States Environmental Protection Agency’s (USEPA’s) Guidance for Conducting Remedial Investigations and Feasibility Studies under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, USEPA, 1988), potentially applicable remedial technologies and process options are screened against the criteria of effectiveness, implementability, and cost, then evaluated based on nine criteria in order to support an informed decision regarding the most appropriate remedy for the stockpiles. The preferred alternative will be identified in a Remedial Action Plan (RAP), which will be made available for public review and comment.

This FS includes the following:

- **Section 1.0 Introduction** – includes a description of the site and its history with respect to the origin of the stockpiles, a summary of previous site characterization activities, and a description of site physical conditions including geologic, hydrogeologic, geotechnical characteristics, stormwater, and background soil conditions.
- **Section 2.0 Nature and Extent of Impacts** - summarizes the results of site characterization to identify and assess the nature and extent of contaminants of potential concern (COPC) at the Site.

- **Section 3.0 Remedial Action Objectives** - summarizes a human health risk assessment (HHRA) and an HHRA Update performed based on COPC concentrations in the soil. Applicable or relevant and appropriate requirements (ARARs) for implementation of the selected remedial alternative are also summarized.

- **Section 4.0 Identification and Screening of Technologies** - in this section GRAs, process options, and remedial technologies are identified, and potential remedial technologies screened against the criteria of effectiveness, implementability, and cost then are either retained for further evaluation or rejected.

- **Section 5.0 Evaluation of Alternatives** - evaluates potential remedial alternatives to address the COPCs retained from the screening process, and selects the most appropriate alternative.

### 1.2 Site Description

The Site consists of three separate soil stockpiles within Caltrans right-of-way (ROW) located south of the SR-99/Kansas Avenue interchange, which are planned to be used for the SR-132 project. The following is a summary of the configuration, orientation, size, and surrounding vicinity of each stockpile:

- **Stockpile #1** is located south of Kansas Avenue and west of Emerald Avenue. It is approximately 600 feet long in the east-west direction, 160 feet wide, and has an estimated volume of approximately 34,000 cubic yards (yd³). It is bounded by commercial/light industrial development to the north and single-family residential to the south. To the west is undeveloped ROW, and to the east is an approximately 240 feet long undeveloped section of ROW and North Emerald Avenue;

- **Stockpile #2** is located south of Kansas Avenue, between Emerald Avenue and SR-99. It is approximately 1,650 feet long in the east-west direction, 160 feet wide, and has an estimated volume of approximately 102,000 yd³. It is bounded by commercial/light industrial development to the north and single-family residential to the south. To the west is North Emerald Avenue, and to the east is SR-99.

- **Stockpile #3** is located south of Kansas Avenue and east of SR-99. It has a curvilinear shape extending northwest to southeast, concave to the southwest, with a length of approximately 1,100 feet and a width of approximately 120 feet. It has an estimated volume of approximately 24,000 yd³. It is bounded by SR-99 to the south and west and commercial/light industrial development to the north and east. The Modesto Irrigation District (MID) Lateral #4 canal concrete box culvert extends beneath its southeastern end.

The stockpiles are enclosed within security fencing and bordered by adjacent property boundary fencing/walls or structures. The stockpiles, ROW boundaries, and surrounding vicinity are depicted on the Site Plan (Figure 2).
1.3 Site History

From the 1930s to 1970s, property beneath and northeast of the SR-99/Kansas Avenue Interchange was occupied by chemical processing facilities operated by Barium Products LTD, Westvaco Chlorine Products Corporation, and Food Machinery and Chemical Corporation (FMC). Ores and minerals including barite (barium sulfate) and celestite (strontium sulfate) were processed for use in greases, lubricating oil and pigment blanks. Sodium sulfide was generated as a by-product and sold as a caustic and reagent.

From the 1950s to the 1970s, liquid residue ("tailings") generated by FMC at this facility was discharged to unlined evaporation ponds. In 1961, the State purchased a 4.3-acre parcel in the southwestern portion of the FMC facility, including a portion of the ponds, for the construction of the SR-99 freeway through Modesto. Pond tailings and underlying soils from the FMC site along with native soils excavated south of the SR-99/Kansas Avenue interchange were placed to create the three stockpiles that exist today.

In order to establish the timing of placement of the stockpile material within the boundaries of Caltrans’ ROW, aerial photographs from 1963 and 1967 (Figures 3a and 3b, respectively) were reviewed. The 1963 photograph shows grading/construction of SR-99 including the southwestern portion of the FMC property, interchange ramps at Kansas Avenue, and placement of Stockpiles 2 and 3. The Kansas Avenue overpass appears to have been completed. Haul roads to Stockpiles 2 and 3 were within Caltrans ROW. Adjacent property conditions included rural residential and agricultural property west of Emerald Avenue in the current location of Stockpile 1. Residential development was adjacent to the south of Stockpile 2. The areas north and northeast of Stockpiles 2 and 3 were rural residential, agricultural land, and commercial/industrial businesses.

The 1967 photograph shows that SR-99 north and south of the Kansas Avenue interchange had been completed and Stockpiles 1, 2 and 3 existed essentially as they do today. Property conditions adjacent to Stockpile 1 consisted of rural agricultural property and recent residential subdivision development along the western half of the southerly stockpile boundary. Haul roads to Stockpile 1 were within Caltrans ROW.

1.4 Site Characterization

Shaw Environmental, Inc. (Shaw) conducted an Initial Site Assessment (ISA) for the planned SR-132 West Freeway/Expressway Project in 2003. The ISA identified a potential for the soil stockpiles within the SR-132 ROW to contain residual chemicals associated with the former FMC impoundments. Shaw then conducted a Preliminary Site Investigation (PSI) in 2004 to characterize the stockpiles. The PSI consisted of drilling 50 borings into the stockpiles, underlying native soil, and background soil from which they collected soil samples and had them analyzed for heavy metals, polycyclic aromatic hydrocarbons (PAHs), nitrate, and pH. The analytical results indicated elevated barium concentrations in stockpile soil samples exceeding commercial/industrial California Human Health Screening Levels.
(CHHSLs). Cadmium concentrations exceeding the commercial/industrial CHHSL were also detected in soil samples collected from 8 of 25 borings in Stockpile 2 and from 2 of 10 borings in Stockpile 3.

In accordance with a Department of Toxic Substances Control (DTSC)/Caltrans 2006 Interagency Agreement (IA) and the requirement to complete a Preliminary Endangerment Assessment (PEA), Shaw conducted additional site investigation (SI) in 2006 to further characterize the soil stockpiles and compare the analytical data to background conditions and CHHSLs. They also installed eight groundwater monitoring wells in order to assess groundwater quality. The 2004 and 2006 Shaw investigations found that the stockpiles are primarily composed of layered, poorly graded sand and silty sand similar to underlying native alluvial deposits of the Modesto Formation. The average maximum stockpile fill thickness was determined to be approximately 20 feet. Groundwater was encountered in the project vicinity at depths between 30 and 40 feet (below natural grade) with flow toward the southeast. The results of analysis of groundwater samples collected from the eight monitoring wells in June and October 2006 indicated that groundwater met drinking water standards (primary and secondary maximum contaminant levels – MCLs) for those constituents analyzed.

Shaw prepared an HHRA in 2007 for the COPCs in the stockpiles and groundwater using multiple exposure scenarios. Metals (notably barium) and PAHs were identified as the primary COPCs in the soil stockpiles and metals and general minerals (i.e. nitrate, total dissolved solids) as the primary COPCs in groundwater. For the purposes of the HHRA, Shaw did not identify cadmium as a COPC due to the lack of elevated cadmium concentrations reported for soil samples collected during the 2006 SI. Shaw also did not identify strontium as a COPC in the HHRA since the maximum strontium concentration of 231 milligrams per kilogram (mg/kg) reported in the Shaw 2004 PSI is more than two orders of magnitude less than the USEPA’s residential Regional Screening Level (RSL) of 47,000 mg/kg. There is no CHHSL for strontium. The results of the HHRA indicated that the soil stockpiles do not pose an unacceptable risk or hazard to current or future offsite residents, trespassers, construction workers or hypothetical future shallow groundwater users.

In response to the HHRA, the DTSC issued an August 2007 letter that requested additional toxicological and site information prior to making a final determination regarding risk or hazard posed by the COPCs in the stockpile material. Shaw prepared a Final PEA and a Response to Comments document in 2009 to summarize the findings of previous reports prepared for the soil stockpiles and to provide the additional information requested by the DTSC. In a letter dated December 17, 2009, the DTSC responded to the Final PEA stating that:
“DTSC finds that the soil stockpiles, as currently managed by Caltrans on Caltrans property, do not pose a risk to human health for: 1) Caltrans workers who access the fenced site to conduct mowing operations, conduct fence repairs, or other routine activities; 2) trespassers; and 3) residents adjacent to the stockpiles. Until such time that the State Route 132/99 Interchange project is constructed and/or the final disposition of the soil stockpiles is determined, Caltrans should continue to manage the soil stockpiles by: 1) limiting access to Caltrans authorized personnel; 2) inspecting and maintaining the chain-link fence; 3) prohibiting any activities involving excavation/grading, off-site removal of soil, or placement of other soil on the Site; and 4) maintaining the current grade and vegetative cover. Caltrans should also maintain the existing groundwater monitoring system associated with the Site.”

In conjunction with activities associated with the planned SR-132 Project, groundwater monitoring was reinitiated and conducted bi-monthly from March 2012 to March 2013. Beginning in June 2013, groundwater monitoring is being conducted on a quarterly basis.

Caltrans and the DTSC, in cooperation with the Central Valley Regional Water Quality Control Board (CVRWQCB), entered into a second IA dated June 22, 2012, to further address the soil in Stockpiles 1 through 3. This IA outlined tasks for additional site characterization, risk evaluation and cleanup level determination, an FS to evaluate remedial alternatives, preparation of a RAP, preparation of the necessary California Environmental Quality Act (CEQA) documents, public participation activities, quality assurance, and quarterly groundwater monitoring and reporting.

Upgradient wells MW-9 and MW-10 were installed immediately south of Kansas Avenue and west and east of SR-99 (Figure 2), respectively, in May 2012. Groundwater samples were initially collected in these wells in June 2012 then incorporated into subsequent bi-monthly sampling rounds.

The analytical results from the 2012 and 2013 groundwater monitoring events are similar to the results from 2006, with primary analytes reported at concentrations less than California MCLs.

On July 26, 2012, a meeting was held with representatives from Geocon, Caltrans, DTSC, and CVRWQCB to review existing site data and discuss potential remedies to address human health exposure and environmental impacts associated with the barium-impacted soil stockpiles. DTSC and the CVRWQCB requested additional sampling to fill potential data gaps in the following areas:

1. Perimeter ROW fenceline stockpile soil sampling to assess potential offsite and vertical migration of contaminants.
2. Perimeter stockpile soil sampling to define the lateral stockpile limits to aid in consolidation during the planned future construction of the SR-132 Project.

3. Additional stockpile soil sampling in areas of elevated cadmium concentrations identified in Stockpiles 2 and 3 during the Shaw 2004 PSI.

Geocon performed a Supplemental Site investigation (SSI) in September 2012 to address these data gaps. Laboratory analysis of 97 soil samples collected from 35 “Fenceline Borings” and 28 “Perimeter Borings” did not detect barium at concentrations exceeding residential or commercial CHHSLs. Barium concentrations in the surface soil samples ranged to a maximum of 4,300 mg/kg. Barium concentrations were consistently lower in the bottom of boring soil samples (2 to 5 feet) collected from the Fenceline Borings compared to those reported for the surface samples. Strontium was detected at concentrations up to 110 mg/kg for the Fenceline Boring surface soil samples, which is within the range of background and orders of magnitude below the residential RSL of 47,000 mg/kg. Cadmium was not detected in any of the soil samples collected from the “Cadmium Borings” advanced in Stockpiles 2 and 3 in areas of elevated cadmium reported in the Shaw 2004 PSI.

1.5 Previous Removal Actions Taken

To date, the only removal action taken on the Site has been excavation and landfill disposal of a portion of Stockpile 3 as part of Caltrans’ rehabilitation of the off-ramp to Kansas Avenue to improve traffic safety and meet current design standards. The highway safety improvement project included widening the off-ramp shoulder areas and associated drainage features. Shoulder widening on the east side of the off-ramp included construction of a retaining wall against the existing Stockpile 3 embankment and laying back the embankment slope.

Geocon previously completed eight direct-push borings and eleven hand-auger borings within the embankment area. Barium was detected in each sample at concentrations ranging from 34 to 1,600 mg/kg, all less than the residential and commercial/industrial CHHSLs for barium of 5,200 and 63,000 mg/kg, respectively. Based on this data, data previously presented in the PEA, and review by DTSC, the excavated soil stockpile materials were designated for offsite disposal as non-hazardous soil to an accepting licensed landfill facility. The DTSC conveyed their finding that offsite management of the soil from Stockpile 3 did not pose a threat to human health or the environment in a letter dated August 30, 2012.

The Stockpile 3 Excavation Monitoring Plan completed in June 2012 described procedures for air monitoring and verification of completed stockpile excavations during construction of the highway off-ramp improvements. Approximately 2,800 yd³ of the Stockpile 3 soil embankment were excavated over ten days between September 7 and 26, 2012. The excavated stockpile material was directly loaded into covered trucks for transport to the Forward Class II landfill facility in Manteca, California, under non-hazardous waste manifests. Dust suppression provided by the Caltrans contractor during the stockpile excavation and loading activities consisted of pre-soaking and water spray during the
stockpile excavation activities. A Geocon project scientist, working under the direct supervision of a California Professional Geologist (PG), oversaw the excavation activities. The individual performing the oversight also prepared and maintained daily field logs that documented the daily quantities of materials excavated. The project scientist provided a determination when the planned construction excavation limits within Stockpile 3 had been completed, exposing native soil of the Modesto Formation (Geocon, June 2012).

Ambient perimeter air was monitored during Stockpile 3 excavation and loading activities to document total airborne particulate concentrations in accordance with the air monitoring plan. The results of air monitoring aided in assessing the effectiveness of the contractor’s dust control measures. Air monitoring tasks included:

- Documenting and photographing the locations of air monitoring stations;
- Monitoring daily meteorological forecast to anticipate onsite wind direction and speed; and
- Verifying that downwind direct-read, real-time particulate counter readings (pDR-1200 monitors) did not exceed the preset Fence Line Total Dust Action Level of 4.0 milligrams per cubic meter (mg/m³).

In addition to the data logging programmed in the real-time monitors, field personnel checked each real-time air monitoring instrument hourly to ensure proper operation and battery capacity and also recorded the time-weighted average airborne dust readings hourly.

Direct read (pDR-1200) and laboratory air sample results for the project indicated that airborne levels of lead and barium were well below levels of concern during excavation activities at Stockpile 3. The removal activities are documented in the Stockpile 3 Excavation Summary Report, Modesto Ramp Rehabilitation Project, State Route 99 Kansas Avenue Northbound Off-Ramp, Modesto, California, March 15, 2013.

1.6 Site Geology and Hydrogeology

The following subsections provide a summary of the regional and local topographic, geologic, soil, and hydrogeologic conditions associated with the Site.

1.6.1 Topography

The United States Geological Survey (USGS) Salida, California, 7.5-minute topographic map indicates the Site is located within Township 3 South, Range 9 East, with Stockpiles 1 and 2 in the southern half of Section 30, and Stockpile 3 in the southwestern quarter of Section 29, Mount Diablo baseline and meridian. Based on contour lines on the topographic map, with the exception of the SR-99 Kansas Avenue underpass, the vicinity surrounding the Site is relatively flat-lying at an elevation of approximately 84 feet
above mean sea level (MSL), and a low westerly-trending surface gradient (USGS, 1987). The stockpiles range in height from approximately 2 to 20 feet above the surrounding ground surface.

1.6.2 Geologic and Soil Conditions

The Site is located within the northern San Joaquin Valley of California’s Great Valley geomorphic province. The San Joaquin Valley is an asymmetrical structural trough bound by the Sacramento Valley to the north, the Coast Ranges to the west, and the Sierra Nevada to the east and south. The base of the Sierra Nevada slopes westward beneath the San Joaquin Valley to its greatest depth near the valley’s western margin. The San Joaquin Valley has been filled with several thousand feet of sedimentary deposits eroded from the Sierra Nevada, which include deposits of sands, silts, clays, and gravels from western-flowing drainages and their tributaries. Sediments in the Modesto region were deposited primarily by the Stanislaus and Tuolumne Rivers to the north and south of the Site, respectively.

The Site is underlain by sediments of the late Pleistocene to early Holocene age Modesto formation, which were derived from granitic rocks of the Sierra Nevada and deposited in an alluvial environment. The Modesto formation is composed primarily of sand, silt, and silty sand, with lesser amounts of laterally discontinuous clay and silty clay. The thickness of the Modesto formation is variable, with a regional thickness of approximately 100 feet in the vicinity of the Site (California Division of Mines and Geology [CDMG], 1962).

The Modesto formation is underlain by Pleistocene age sands and silts of the Riverbank and Turlock Lake formations, and pediment gravels of the North Merced formation. Tertiary age pediment gravels of metamorphic origin, and clays, tuffs, and ash of volcanic origin underlie these formations, with Cretaceous age marine sandstones and shale of the Great Valley sequence beneath the Tertiary formations at regional depths of approximately 3,000 feet (CDMG, 1962).

Shaw’s SI Report (Shaw, 2007a and Appendix A of the HHRA) indicates that the onsite stockpile materials were placed over the native Modesto formation sediments and that there appeared to be some undulation in the original ground surface. The stockpile boring logs and associated cross-sections in Shaw’s report indicate that the Modesto formation is situated beneath the onsite stockpiles at depths ranging from approximately 2 feet near the western end of Stockpile 1 to approximately 20 feet near the western end of Stockpile 3 (Shaw, 2007a). Shaw described the native sedimentary materials encountered in the Modesto formation as primarily consisting of silt, silty sand, and sand, with lesser amounts of laterally discontinuous clay and silty clay. Shaw also indicated that fill materials encountered in the stockpiles were “generally similar” to the native soils; however, distinct layers of gray and bluish-gray non-native materials were encountered in the stockpile materials (Shaw, 2007a).
According to the United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) website (http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx), the soil onsite primarily consists of Dinuba fine sandy loam to a depth of approximately 10 inches that was derived from granitic sediments deposited in an alluvial environment. The Dinuba fine sandy loam is described as moderately well-drained and underlain by sandy loam to a depth of approximately 28 inches, and very fine sand and silt loam to a depth of approximately 60 inches. The NRCS website database also indicates that native soil on the approximate southern one-third of the Site beneath Stockpile 1 consists of Modesto loam to a depth of approximately 12 inches that was also derived from granitic sediments deposited in an alluvial environment. The Modesto loam is described as moderately well-drained and underlain by clay to a depth of approximately 35 inches, sandy clay loam to a depth of approximately 55 inches, and silty clay to a depth of approximately 62 inches.

### 1.6.3 Geotechnical Characteristics

In June 2012, Kleinfelder performed a geotechnical investigation of the stockpiles. The investigation included nine hollow-stem auger borings to a depth of 41.5 feet below the surfaces of the stockpiles. As reported in their September 2012 Final Geotechnical Design Report, stockpile soil was encountered to depths of approximately 10 to 20 feet at each boring location. The soil conditions were reported as loose to very dense, interbedded layers of silty sand, sandy silt with some layers of hard sandy clay. Debris consisting of asphalt, metal and brick at depths between 3 and 10 feet in boring A-12-002 advanced on the eastern portion of Stockpile 1 was also reported. Groundwater was not encountered to the maximum depth explored.

Kleinfelder presented the following specific conclusions and recommendations to assist in design and construction of the proposed SR-132 highway improvements in the vicinity of the soil stockpiles:

- Embankment foundation soil is adequate to support the proposed embankment without adverse consequences.
- Final unpaved slopes should be 2:1 or flatter and be protected from erosion by proper management of drainage, planting drought resistant vegetation, and necessary maintenance.
- No surface water should be allowed to pond near the tops of slopes or discharge over the slope face.
- Remove any debris materials encountered in the stockpile fill soil during planned highway construction excavations.

Kleinfelder concluded that the soil encountered in the stockpiles is “geotechnically adequate” for design to support the planned highway improvements including placement from 5 to 20 feet of additional fill material on top of the stockpiles and the construction of retaining walls along the length of Stockpiles 1 and 2 (Kleinfelder, 2012).
The use of the stockpile material in the planned construction of the SR-132 project is one of five GRAs that can potentially achieve the RAOs for the stockpiles. The RAOs and GRAs are discussed further in Section 3.0.

1.6.4 Hydrogeologic Conditions

The Site is situated within the Modesto Subbasin of the San Joaquin Basin Hydrologic Study Area. The Modesto Subbasin is situated between the Stanislaus and Tuolumne Rivers to the north and south, respectively, and is bounded by the Sierra Nevada foothills to the east, and the San Joaquin River to the west. The San Joaquin Basin Hydrologic Study Area includes the southern two-thirds of the Great Valley. Movement of groundwater within the San Joaquin Valley is generally from the flanks of the valley toward the axis of the trough beneath the western side of the valley, then subsequently north toward the Sacramento – San Joaquin Delta. In the San Joaquin Valley groundwater occurs in unconfined and semi-confined aquifers (California Department of Water Resources [DWR], 1980).

The San Joaquin Valley is an area of substantial groundwater withdrawal and recharge due to municipal, industrial, and agricultural use. Wide fluctuations in groundwater levels are not uncommon due to variations in annual rainfall, municipal pumping, and irrigation practices. The *Lines of Equal Depth to Water in Wells, Unconfined Aquifer, San Joaquin Valley, Spring 2010* issued by the DWR indicates a regional depth to groundwater of approximately 40 feet beneath the Site, with a generally south-southeasterly flow direction.

The hydrogeology of the FMC facility, approximately 1,100 feet north of the Site, has been characterized by several studies since the early 1980s. GeoTrans, Inc’s report: *Addendum to Comprehensive Remedial Investigations Report*, dated January 2005, provides the following description of the hydrogeology associated with FMC facility:

“The site is underlain by laterally discontinuous and unconsolidated sand and silty sand associated with the Modesto and Riverbank Formations. First-encountered groundwater is approximately 30 feet below ground surface (bgs) under confined to semi-confined conditions. A deeper aquifer is present at a depth of 165 feet bgs and separated from the upper zone by a blue clay aquitard. The upper water bearing unit has been divided into two zones: a shallow zone from first encountered groundwater to 120 feet bgs and a deeper zone from 140 feet bgs to the top of the aquitard. Groundwater flow within the upper zone is toward the southeast under a gradient of 0.002 ft/ft.”

As described in Section 1.4, Shaw installed eight groundwater monitoring wells adjacent to the three stockpiles in June 2006. Each well was installed into unconsolidated sand, silty sand, and silt layers within the Modesto formation underlying the Site (Shaw 2007b). The wells were completed within the shallow zone of the upper aquifer as described by GeoTrans. The lithology encountered in the well borings included interbedded (laterally discontinuous) sands, silts, and clays. Shallow zone groundwater beneath the stockpiles was encountered at a depth of approximately 35 feet under unconfined to semi-confined
conditions. Shaw determined that groundwater flow is toward the southeast at a gradient of approximately 0.001. The shallow aquifer conditions beneath the Site and the adjacent FMC facility are similar and representative of the local hydrogeologic conditions (Shaw 2007b).

In June 2013, depth to groundwater at the Site ranged from 31.73 (MW-1) to 40.11 (MW-5) feet below TOC. Based on the groundwater elevation data, the groundwater flow is toward the east-southeast at an average gradient of 0.0005, which is generally consistent with historical flow.

1.6.5 Stockpile Stormwater

Shaw performed stormwater monitoring for the soil stockpiles in March 2006 in general accordance with their Final Surface Water Sampling and Analysis Plan (Shaw, January 2006). Seven stormwater runoff samples were collected from constructed impoundments during a qualifying rain event (visible runoff and 72 hours of prior dry weather). Shaw reported that they did not observe stormwater flowing away from the Caltrans ROW. The samples were analyzed for dissolved metals, PAHs, nitrate, sulfate, and sulfide.

With the sole exception of an elevated barium concentration reported for one stormwater sample collected from the northwestern side of Stockpile 3 (sample SW03), the stormwater samples did not contain target analytes exceeding MCLs or determined site background levels. Barium was reported at a concentration of 2,000 micrograms per liter (µg/l) in sample SW03 exceeding the MCL of 1,000 µg/l. Barium in the six other stormwater samples ranged from 16 to 190 µg/l. Shaw concluded that the elevated barium concentration reported for sample SW03 was isolated and that runoff in that area was confined to Caltrans ROW. Based on these results and due to site topography, vegetation and limited rainfall events, DTSC concluded that stormwater was not a chronic exposure issue. Therefore, surface water was not considered as a pathway in the HHRA.

Geocon prepared an addendum to the Shaw SAP to resume stormwater sampling at the soil stockpiles. The addendum identified revised sampling locations including ponding that was observed at the western end of Stockpile 2 adjacent to Emerald Avenue during a rain event on November 28, 2012.

Stormwater was most recently sampled on April 4, 2013. Stormwater samples were collected from four locations adjacent to the stockpiles and two background locations away from the stockpiles and analyzed for total and dissolved metals, nitrate, sulfate, sulfide and total suspended solids (TSS). The results of this monitoring event were presented by Geocon in a report dated June 17, 2013 (Geocon, June 2013). Analysis results were generally consistent with background values, although some constituents in the runoff sample adjacent to Stockpile 2, as well as the sample from a ponding basin next to Stockpile 3 that receives runoff from the surrounding streets, tended to be slightly higher for some constituents.
Additional stormwater monitoring will be performed at the Site during qualifying rain events in the upcoming wet season (Fall 2013/Winter 2014).

1.7 **Background COPC Concentrations**

Shaw assessed background concentrations of COPCs during the 2006 SI for comparison to COPC concentrations in the stockpiles. Background soil samples were collected from what is reported as undeveloped and relatively undisturbed ground west of Stockpile 1. Eight soil borings were advanced to depths of 15 feet and soil samples were collected at depths of 5, 10, and 15 feet. Shaw reported that the soil encountered in the eight background borings was predominantly sand with varying amounts of silt and clay.

The background soil samples were analyzed for inorganics, PAHs, and other inorganics (e.g., nitrate, sulfate, etc.). Shaw calculated 95th upper confidence limits (UCLs) for inorganics to establish local background concentrations for the Site. The 95th UCLs could not be calculated for the infrequently detected constituents (e.g., beryllium, cadmium, and mercury) due to small population sizes so arithmetic means for those constituents were calculated instead. For inorganics that were not detected, a concentration of one-half the detection limit was used as the background concentration. Shaw reported that the background concentrations of metals calculated for undisturbed soil near the stockpiles were in the general range as those determined for the FMC site.

Four background samples collected from various depths were also analyzed for PAHs, which were not detected (Shaw, 2007a).
2.0 NATURE AND EXTENT OF IMPACTS

This section describes the nature and extent of COPCs in the stockpiles.

2.1. Conceptual Site Exposure Model

Shaw prepared a Conceptual Site Exposure Model (CSEM) as part of their HHRA (Shaw, 2007c). The CSEM identifies primary sources of COPCs, exposure routes, receptor scenarios, and identifies whether they are “complete” or “incomplete.” The CSEM concluded that the offsite resident and trespasser were the current human receptors. Future receptors during the project would include the future construction worker and future offsite resident.

Potential exposure routes for the current resident/trespasser exposure scenario include incidental ingestion, inhalation of dust, and dermal contact. Exposure routes for the future land-use scenario would include incidental ingestion, dermal contact, and inhalation of dust for the construction worker.

An offsite resident or trespasser would not have access to the Site during construction; therefore, direct-contact exposure pathways would not be relevant for the resident/trespasser. However, dust could be carried offsite during construction activities. Therefore, Shaw evaluated inhalation for the offsite resident for the future construction scenario.

2.2 Soil Impacts

As described in Section 1.4, the nature and extent of COPCs in the stockpiles have been characterized through several investigations including the PSI conducted by Shaw in 2004, the SI in 2006, and Geocon’s SSI in September 2012. The results of these investigations are summarized below.

2.2.1 Shaw 2004 PSI

Shaw collected 194 stockpile soil and 49 native soil samples (soil from beneath the stockpiles) from 50 direct-push borings advanced through the soil stockpiles in January 2004 and, as described in Section 1.7, they also collected eight “background” soil samples from four borings completed in assumed non-impacted areas. Each soil sample was analyzed for metals including antimony, arsenic, barium, chromium, iron and strontium. Selected soil samples were further analyzed for PAHs, nitrate and pH.

Shaw identified barium as the only metal detected at elevated concentrations of concern and as the primary COPC (Shaw, 2004). Barium was detected at maximum concentrations of 1,730 mg/kg for Stockpile 1, 60,700 mg/kg for Stockpile 2, and 44,900 mg/kg for Stockpile 3. Barium concentrations reported for the eight background soil samples ranged from 57 to 888 mg/kg.
PAHs were not detected in 125 stockpile soil, native soil, or background soil samples analyzed. Nitrate was detected at a maximum concentration of 310 mg/kg in 42 of 54 stockpile soil, native soil, and background soil samples analyzed, though not at concentrations of concern. Reported soil pH values ranged from 6.6 to 11.2.

In May 2004, 86 of the stockpile soil and 24 of the native soil samples that were collected in January 2004 were reanalyzed for metals. The original analysis data and the reanalysis data were reported together in the July 2004 Remedial Action Options Report (RAOR) (Shaw, 2004). The results of the additional analysis did not identify metals other than barium at concentrations of concern in Stockpiles 2 and 3. However, barium was reported as having been detected in several samples from Stockpiles 2 and 3 at concentrations three to five times higher than were reported for the same samples in February 2004. This increase in reported concentrations occurred mainly with those samples that had the highest barium concentrations to begin with in February 2004. No explanation was provided by the lab or Shaw for the reporting differences. One possibility may be that the material in the stockpiles with the highest concentrations of barium may also have a great degree of heterogeneity such that a sample aliquot taken from one portion of the sample and analyzed may have a much different barium concentration than an aliquot from another portion of the same sample. However, if heterogeneity were the reason for the variability in concentrations, it would be expected then that the variability would manifest itself in both increased and decreased concentrations. In this case there is a strong bias towards large increases in concentrations from the February 2004 results to the May 2004 results, with very few, smaller magnitude decreases. Other possible explanations may be related to laboratory errors.

Lead and arsenic were detected in all three stockpiles at concentrations exceeding background values. As previously discussed, elevated cadmium concentrations exceeding the commercial/industrial CHHSLs were detected in soil samples collected from Stockpiles 2 and 3 in January 2004.

**2.2.2 Shaw 2006 SI**

Shaw completed additional soil stockpile characterization activities in May 2006 as reported in their SI Report (Shaw, 2007a and Appendix A of HHRA). They collected 165 stockpile soil and 89 native soil samples from 51 borings advanced through the stockpiles. Additionally, 24 native soil samples were obtained from eight background borings advanced in Caltrans ROW west of Stockpile 1. Each soil sample was analyzed for total metals. Selected soil samples were further analyzed for soluble barium and lead by the waste extraction test (WET and de-ionized [DI] water-WET), PAHs, and total and soluble (DI-WET) nitrate/sulfate/sulfite.
**Total Metals Analysis Results**

Antimony, selenium and silver were not detected in any of the 278 soil samples analyzed. Beryllium, cadmium, mercury, molybdenum and thallium were detected in the stockpile soil samples at low concentrations. Arsenic, chromium, cobalt and copper were detected in the stockpile soil samples at concentrations slightly exceeding background concentrations. Barium, lead, nickel, vanadium and zinc were detected in the stockpile soil samples at concentrations considerably higher than background values. Barium, the primary COPC, was detected at maximum concentrations of 130 mg/kg in Stockpile 1, 64,000 mg/kg in Stockpile 2, and 72,000 mg/kg in Stockpile 3. Barium concentrations reported for the background soil samples ranged from 17 to 120 mg/kg.

**Soluble Metals Analysis Results**

Thirty-three stockpile soil samples were analyzed for WET and DI-WET soluble barium. Soluble barium concentrations ranged from 39 to 2,300 milligrams per liter (mg/l), 28 of which exceeded the Title 22 California Code of Regulations (CCR) Soluble Threshold Limit Concentration (STLC) for barium of 100 mg/l. Soluble (DI-WET) barium concentrations ranged from 1.8 to 220 mg/l, nine of which exceeded the STLC. The Title 22 criteria cited above for the evaluation of WET and DI-WET analyses applies to non-barite barium compounds. Shaw noted that the barium compounds present at the Site were primarily barite (barium sulfate), and as a result, the Title 22 evaluation criteria are not strictly applicable to the Site.

Only two stockpile soil samples contained total lead concentrations exceeding 50 mg/kg (hazardous waste threshold for requiring WET soluble testing) at concentrations of 150 and 1,500 mg/kg. WET soluble lead was detected in these two samples at 2.9 and 5.7 mg/l, respectively, and DI-WET soluble lead at 0.07 and 0.1 mg/l, respectively.

**Nitrate, Sulfate, and Sulfide Analysis Results**

Sixty-nine soil samples were analyzed for nitrate, sulfate and sulfide. No regulatory screening levels exist for these compounds. Nitrate was detected in the stockpile soil samples at concentrations within the range of background. Sulfate was detected in the stockpile soil samples at concentrations considerably higher than background and appears to correspond to samples with high barium concentrations. Only one stockpile soil sample contained detectable sulfide. DI-WET soluble nitrate concentrations ranged from 0.2 to 2.6 mg/l in 28 of 33 soil samples analyzed, DI-WET soluble sulfate from 0.5 to 14 mg/l in 32 of 33 soil samples analyzed, and DI-WET soluble sulfide was not detected in the 33 soil samples analyzed.

PAHs were detected at low concentrations ranging from 11 to 21 micrograms per kilogram (µg/kg) in 3 of 58 stockpile soil and native soil samples analyzed. PAHs were not detected in the background soil samples.

Shaw utilized the results of the 2006 SI in for the HHRA and summarized the results in the PEA.
2.2.3 Geocon 2012 SSI

Geocon completed an SSI in September 2012, which consisted of advancing 68 soil borings and collecting and analyzing soil samples to address potential stockpile and native soil data gaps to update the risk exposure scenarios from the 2007 HHRA prior to regulatory approval of the planned SR-132 Project. The SSI consisted of following:

- Advancing 35 “Fenceline Borings” at stockpile perimeter/fenceline locations adjacent to residential and commercial/industrial development to assess potential offsite and vertical migration of contaminants. Soil samples were collected from the surface and at maximum boring depths ranging from 3 to 5 feet and analyzed for Title 22 metals and strontium.

- Advancing 28 “Perimeter Borings” at stockpile perimeter and end locations to define the lateral stockpile limits to aid in consolidation during future highway construction. The surface soil sample collected from each 3-foot-deep boring was analyzed for barium.

- Advancing five “Cadmium Borings” in the vicinity of Shaw’s 2004 PSI borings where soil samples were collected and reported to have elevated cadmium concentrations. Soil samples were collected from the Cadmium Borings at the surface and at 5-foot intervals thereafter to the maximum boring depths ranging from 11 to 22 feet. Each soil sample was analyzed for barium and cadmium.

**Fenceline Borings**

None of the metal concentrations reported for the Fenceline Boring soil samples exceeded California hazardous waste thresholds. With the exception of arsenic (within the range of site-specific background), none of the reported metal concentrations exceeded residential CHHSLs. With the exception of barium and lead, the remaining metals concentrations were generally within the range of the site-specific naturally occurring background levels. Barium was detected in each soil sample at concentrations ranging from 140 to 4,300 mg/kg for the surface soil samples and 42 to 680 mg/kg for the deepest soil sample obtained from the Fenceline Borings. At each boring location, the reported barium levels decreased with depth. The majority of the deeper soil samples contained barium within the range of background (47 to 110 mg/kg for 5-foot-deep background soil samples). Surface soil samples collected from five borings located along the north side of Stockpile 2 adjacent to commercial/industrial development contained the highest barium concentrations greater than 1,000 mg/kg. None of the reported barium concentrations exceeded residential or industrial CHHSLs of 5,200 and 63,000 mg/kg, respectively.

**Perimeter Borings**

Barium was detected in each soil sample collected from the Perimeter Borings at concentrations ranging from 76 to 1,600 mg/kg. The majority of the perimeter surface samples contained barium up to 300 mg/kg. Elevated barium concentrations between 710 and 1,600 mg/kg were detected in surface soil samples obtained from borings at the east end of Stockpile 2 and southwest side of Stockpile 3. None of the reported barium concentrations exceeded residential or industrial CHHSLs.
**Cadmium Borings**

Barium was detected in each soil sample obtained from the Cadmium Borings at concentrations ranging from 58 to 130,000 mg/kg. Cadmium was not detected at concentrations exceeding the laboratory reporting limit of 1.0 mg/kg for each soil sample. The results of the Shaw 2004 PSI identified elevated cadmium concentrations (exceeding the industrial CHHSL for cadmium of 7.5 mg/kg) for eleven soil samples collected from Stockpiles 2 and 3 with corresponding elevated barium concentrations (25,800 to 196,000 mg/kg). Cadmium was not detected at concentrations greater than 1.0 mg/kg for all 348 soil samples analyzed during the Shaw 2006 SI and the Geocon 2012 SSI, including 19 soil samples with reported elevated barium concentrations between 25,000 mg/kg and 130,000 mg/kg. The Shaw 2004 PSI data (provided by Sparger Technology, Inc.), Shaw 2006 SI data (Creek Environmental Laboratories, Inc.), and the Geocon 2012 SSI data (Advanced Technology Laboratories) were generated by three different analytical laboratories. Based on the cumulative cadmium data, it appears the Shaw 2004 PSI cadmium data is neither reproducible nor reliable and represents false positives possibly as result of sample interference/dilution effects due to the associated high barium concentrations.

One soil sample obtained from a Stockpile 2 Cadmium Boring was analyzed for petroleum hydrocarbons and PAHs based on field indicators of potential impacts. Gasoline-range organics were not detected at a concentration exceeding the RL of 1.0 mg/kg. Diesel-range organics were detected at a concentration of 120 mg/kg, slightly higher than the residential/industrial Environmental Screening Level (ESL) established by the San Francisco Bay Area Regional Water Quality Control Board (SFBRWQCB) of 83 mg/kg. Petroleum organics concentrations were compared to ESLs because there are no CHHSLs or other regulatory screening levels for petroleum. The ESL of 83 mg/kg for diesel-range organics is the lowest ESL based on potential leaching to groundwater – the direct-exposure ESLs for residential and industrial land use are 110 and 450 mg/kg, respectively. Oil-range organics were detected at a concentration of 82 mg/kg, less than the residential ESL of 370 mg/kg. PAHs 2-methylnaphthalene, fluorene and phenanthrene were detected at concentrations ranging from 23 to 45 µg/kg, significantly less than their respective residential/industrial ESLs.

The results of the Fenceline and Perimeter Boring soil sample analytical data does not suggest lateral or vertical migration of soil containing metals (notably barium) at concentrations exceeding State and Federal residential human health screening levels (or in the case of arsenic, site-specific background levels) along the stockpile perimeters and adjacent property fencelines. The 1963 and 1967 aerial photographs (Figures 3a and 3b) show that transport and placement of barium-impacted soil materials in Stockpiles 2 and 3 occurred within Caltrans ROW.
Cadmium was not detected in any of the soil samples collected from the Cadmium Borings advanced in Stockpiles 2 and 3 where elevated cadmium was identified in the Shaw 2004 PSI. Cadmium is therefore not considered a COPC for the project site. The results of the SSI satisfied regulatory directives to address the remaining potential environmental assessment data gaps and were utilized to update the 2007 HHRA (Geocon 2013 HHRA Update).

### 2.3 Groundwater Impacts

Shaw installed eight groundwater monitoring wells adjacent to the stockpiles in May and June 2006 as reported in the May 2007 *Site Investigation Report Groundwater Assessment* (Shaw 2007b and Appendix B of HHRA). The results of analysis of groundwater samples collected from the eight monitoring wells in June and October 2006 show that the concentrations of COPCs that were analyzed for did not exceed drinking water standards (MCLs).

Caltrans reinitiated groundwater monitoring activities in March 2012 as part of the planned SR-132 Project. To date, Geocon completed bi-monthly groundwater monitoring events in March, May, July, September and November 2012, and January and March 2013. Beginning with the recent monitoring event conducted in June 2013, groundwater monitoring is being performed on a quarterly basis.

Upgradient wells MW-9 and MW-10 immediately south of Kansas Avenue and west and east of SR 99 were installed and incorporated into subsequent sampling events beginning in June 2012. The results of the 2012 and 2013 groundwater monitoring events are similar to those of the 2006 monitoring events. The COPCs are at concentrations less than California MCLs.
3.0 REMEDIAL ACTION OBJECTIVES

Site characterization revealed the presence of COPCs in soil at the Site. This section of the FS summarizes Shaw’s evaluation of COPC concentrations through an HHRA, describes the update of the HHRA using 2012 data, describes the RAOs for the Site, discusses the ARARs related to remediation, and states the cleanup goal for the project.

3.1 Summary of the 2007 HHRA

The 2007 HHRA is included as Appendix A of the PEA (Shaw, 2009). The risk characterization in the HHRA integrated the selected COPCs, exposure assessment, and toxicity assessment to describe risks to individuals (receptors) in terms of the nature and likelihood of potential adverse health risks for current and future land uses. Shaw’s risk characterization integrated exposure intakes and toxicity values to estimate both cancer risk and non-cancer health effects for the various land use scenarios. Using the available soil data from the investigations of the stockpiles and the assumptions described in the HHRA, the HHRA indicated that neither the current land-use nor the proposed future land-use scenario pose an unacceptable risk or hazard to Caltrans workers entering the Site for mowing, for trespassers, or for adjacent residents. Additionally, the estimated non-cancer hazard index (HI) for a hypothetical groundwater user is less than the threshold of concern. Therefore, based on the available data, neither soil nor groundwater at the Site is considered to present an unacceptable risk or hazard under the receptor scenarios evaluated in the HHRA.

Three groups of receptors are considered in the HHRA – a current offsite resident/trespasser, a future construction worker, and a future (during construction) offsite resident. The estimated cancer risk, non-cancer HIs, and blood lead concentrations for each receptor group are summarized in the following subsections.

3.1.1 Current Offsite Resident and Trespasser

The 2007 HHRA evaluated the current offsite resident and trespasser for exposure to the COPCs in soil of Stockpile 1 through incidental ingestion, dermal contact, and dust inhalation. The exposure pathway for the offsite resident would mainly be via inhalation while the trespasser could be exposed through all three pathways. The calculated cancer risk and non-cancer HI for the current offsite resident and trespasser receptors exposed to surface soil on Stockpile 1 is 8E-8 and 4E-2, respectively. The estimated excess cancer risk of 8E-8 is much less than the generally used, conservative criterion of 1E-6 (one in one million excess cancer risk) and the estimated HI for non-cancer effects is well below the threshold of 1.
The health risk related to lead in Stockpile 1 estimated in the HHRA uses the maximum detected concentration of lead in Stockpile 1 surface soil in the LeadSpread model. LeadSpread did not indicate that an offsite resident or trespasser would have a blood lead concentration greater than 10 micrograms per deciliter (μg/dL) in the 95th or 99th percentile. Therefore, lead in surface soil of Stockpile 1 does not pose an unacceptable hazard to a current resident/trespasser.

The calculated cancer risk and non-cancer HI for the offsite resident/trespasser receptor exposed to surface soil on Stockpile 2 is reported in the 2007 HHRA as 1E-5 and 0.1, respectively. While the total estimated non-cancer HI is below the threshold of 1, the total estimated cancer risk exceeds the general risk target of 1E-6 for residential exposures. This cancer risk estimate was driven by the large contribution from arsenic in surface soil. The arsenic cancer risk estimate is 1.45E-5 for the offsite resident/trespasser based on the 95th UCL of arsenic in Stockpile 2 of 1.63 mg/kg. However, the background arsenic 95th UCL of 1.15 mg/kg resulted in an estimated cancer risk of 1.15E-5, which is very similar to that for arsenic in Stockpile 2. Therefore, arsenic in surface soil of Stockpile 2 is not included in the final total risk estimate for Stockpile 2. The revised cancer risk estimate, with arsenic excluded, is 1E-7. Additionally, the estimated HI for non-cancer effects is below the threshold of 1. Therefore, surface soil from Stockpile 2 does not pose an unacceptable risk or hazard to a current resident/trespasser.

The assessment of health risk related to lead in Stockpile 2 as reported in the 2007 HHRA uses the 95th UCL for lead in Stockpile 2 surface soil of 30 mg/kg. The results indicate that all percentiles of adults and children would have blood lead concentrations less than 10 μg/dL. Therefore, lead in Stockpile 2 surface soil does not represent an unacceptable hazard.

Shaw evaluated the current offsite resident/trespasser for exposure to COPCs in soil of Stockpile 3 through incidental ingestion, dermal contact, and dust inhalation. The COPCs in Stockpile 3 surface soil are not considered to be carcinogens; therefore, they were not estimated as a cancer risk. The estimated non-cancer HI for the offsite resident/trespasser receptor exposed to surface soil on Stockpile 3 to be 0.02, which is well below the threshold of 1.

Shaw also evaluated the health risk related to lead in Stockpile 3 using the 95th UCL for lead of 6.7 mg/kg in the LeadSpread model. LeadSpread did not indicate that offsite residents or trespassers would have a blood lead concentration greater than 10 μg/dL. Therefore, lead in surface soil of Stockpile 3 does not pose an unacceptable hazard to a current resident/trespasser.

3.1.2 Future Construction Worker

Shaw evaluated the future construction worker receptor for exposure to COPCs in soil in the future construction soil zone (depths of 0 to 20 feet) through incidental ingestion, dermal contact, and dust inhalation. The cumulative excess lifetime cancer risk was calculated as 9.2E-7, which is below the 1E-06 cancer risk criterion. The cumulative non-cancer HI was calculated to be 0.4, which is less than the threshold of 1.
Shaw also evaluated the health risk related to lead using the 95th UCL for lead in the future construction soil zone of 54 mg/kg. The results indicate that blood lead concentrations would be less than 10 μg/dL for the pica child. Because the pica child exposure is more conservative than a construction worker’s exposure, it is presumed that a construction worker would not have an unacceptable exposure either. Therefore, lead in soil is not considered to pose an unacceptable hazard to construction workers.

3.1.3 Future Offsite Resident

Shaw evaluated the future offsite resident for exposure to COPCs in dust produced from the future construction work (estimated to include 60 days of construction). The excess lifetime cancer risk was calculated to be 6E-10, which is well below the 1E-06 cancer risk criterion. The calculated cumulative non-cancer HI of 0.017 is also well below the threshold of 1.

Shaw also evaluated the health risk related to lead using the LeadSpread model, which indicated that an onsite pica child exposed to the 95th UCL lead concentration would not exceed 10 μg/dL. Shaw indicated that because the offsite resident would only be potentially exposed to soil through dust during the proposed future construction work, the estimated blood lead concentration would be much less than that estimated for the pica child. Additionally, the default lead in respirable dust concentration is 1.5 micrograms per cubic meter (μg/m³) in the LeadSpread model. As calculated using the maximum lead concentration of 1,500 mg/kg from soil (from depths of 0 to 20 feet) multiplied by the offsite dust concentration of 9.95E-8 kilograms per cubic meter (kg/m³), the resulting respirable dust concentration is 0.15 μg/m³, well below the default value.

3.1.4 Hypothetical Future Shallow Groundwater User

Shaw evaluated the health risk for a hypothetical future user of shallow groundwater beneath the Site. According to the results of a well survey, no one within a 1-mile radius is using the shallow aquifer as a source of drinking water. Shaw calculated health risks from ingestion and dermal contact using the maximum detected concentrations (MDCs) from two groundwater sampling events in 2006 as the exposure-point concentrations (EPCs). The resulting cumulative noncancer hazard estimate is 0.9, less than the threshold of 1. For lead, the maximum concentration detected in a groundwater sample was 3.4 μg/l, which is less than the federal action level of 15 μg/l. Therefore, lead in groundwater does not appear to present an unacceptable hazard.

3.2 HHRA Update

Geocon updated the 2007 HHRA by incorporating soil analytical data generated from the fenceline, perimeter, and stockpile sampling as presented in the revised Supplemental Site Investigation dated March 1, 2013, and groundwater analytical data generated from bi-monthly sampling events. The COPC EPCs that Shaw utilized in the 2007 HHRA were compared to the supplemental soil data
collected in September 2012 and groundwater data collected between March 2012 and March 2013. The EPCs utilized in the 2007 HHRA are the MDCs for the selected COPCs for each exposure scenario with the exception of the Stockpile 2 Current Exposure Assessment which utilized the 95% UCLs for the selected COPCs. This information was used to evaluate the validity of the 2007 HHRA cancer risk and non-cancer hazard estimates. The following sections summarize the EPC comparisons and risk/hazard evaluations for each exposure scenario.

3.2.1 Stockpile 1 Current Exposure Assessment

Eight metals (barium, beryllium, chromium, cobalt, copper, lead, mercury and nickel) reported for five surface soil samples from the 2006 SI were used as the COPCs for Stockpile 1 in the 2007 HHRA. The MDCs for these metals detected in surface soil samples collected from the September 2012 Fenceline Borings and Perimeter Borings (first values in brackets) are slightly higher as compared to the 2007 HHRA EPCs (second values in brackets) with relative concentrations as follows: barium (240 vs. 130 mg/kg), copper (24 vs. 13 mg/kg), and lead (17 vs. 12 mg/kg). Zinc was detected at an MDC of 120 mg/kg in the 2012 surface soil samples, exceeding the background MDC of 44 mg/kg. Cadmium was detected in one 2012 surface soil sample at 0.26 mg/kg, slightly above the reporting limit of 0.25 mg/kg and less than the residential CHHSL of 1.7 mg/kg. Strontium was detected in each 2012 surface soil sample with an MDC of 61 mg/kg.

The 2007 HHRA calculated current cancer risk and non-cancer hazard estimates of 8E-8 and 0.04, respectively, for the offsite resident/trespasser receptor exposed to surface soil at Stockpile 1. Because the 2012 metal concentrations are of the same order of magnitude as those used in the 2007 HHRA and that none of the 2012 metal detections exceeded respective residential CHHSLs or RSLs, the 2007 HHRA risk and hazard calculations for the current resident/trespasser remain valid for Stockpile 1. The 2007 HHRA calculated excess cancer risk is orders of magnitude less than the conservative criterion of 1E-6 and the estimated non-cancer HI is orders of magnitude less than the threshold of 1.

3.2.2 Stockpile 2 Current Exposure Assessment

The 95% UCLs for seven metals (arsenic, barium, copper, lead, molybdenum, nickel and zinc) detected in 33 surface soil samples collected during the 2006 SI were selected as the COPCs for Stockpile 2 in the 2007 HHRA. The 2007 HHRA also used the MDC for chromium (divided as chromium III and VI). Of these metals, barium, copper and zinc were detected at higher concentrations in the surface soil samples collected from the September 2012 Fenceline and Perimeter Borings compared to the concentrations detected in the 2006 SI and used in the 2007 HHRA. Specifically barium had an MDC of 4,300 mg/kg in the 2012 samples vs. 1,100 mg/kg for the 2006 SI, copper had an MDC of 41 mg/kg in 2012 vs. 29 mg/kg in 2006, and zinc had an MDC of 200 mg/kg in 2012 vs. 89 mg/kg in 2006.
Cadmium was detected in one 2012 surface soil sample at 0.42 mg/kg, which is less than the residential CHHSL of 1.7 mg/kg. Strontium was detected in each of the 2012 surface soil samples, with an MDC of 110 mg/kg.

The 2007 HHRA calculated current cancer risk and non-cancer hazard estimates of 1E-7 (background arsenic not considered) and 0.1, respectively, for the offsite resident/trespasser receptor exposed to surface soil at Stockpile 2. Because the 2012 metal concentrations are the same order of magnitude as those used in the 2007 HHRA and none of 2012 metal detections exceeded respective residential CHHSLs or RSLs, the 2007 HHRA risk and hazard calculations for the current resident/trespasser remain valid for Stockpile 2. The 2007 HHRA calculated excess cancer risk is less than the conservative criterion of 1E-6, and the estimated non-cancer HI is an order of magnitude less than the threshold of 1.

### 3.2.3 Stockpile 3 Current Exposure Assessment

Shaw selected the MDCs for three metals (barium, lead, and molybdenum) reported for 13 surface soil samples from the 2006 SI as the COPCs for Stockpile 3. Of these metals, barium (1,600 vs. 250 mg/kg) and lead (34 vs. 12 mg/kg) were detected at higher levels in the surface soil samples obtained from the September 2012 Fenceline Borings and Perimeter Borings (first values in brackets) compared to the 2007 HHRA EPCs (second values in brackets). Copper and zinc were further detected at maximum concentrations of 17 and 190 mg/kg, respectively, in the 2012 surface soil samples, which exceed the respective background MDCs of 11 and 44 mg/kg. Cadmium was detected in four 2012 surface soil samples at a MDC of 0.78 mg/kg, less than the residential CHHSL of 1.7 mg/kg. Strontium was detected in all but one of the 2012 surface soil samples with an MDC of 100 mg/kg.

The 2007 HHRA calculated a current non-cancer hazard estimate of 0.02 for the offsite resident/trespasser receptor exposed to surface soil at Stockpile 3. Shaw considered one of the COPCs for Stockpile 3 to be a carcinogen, and therefore they calculated no cancer risk. Based on the 2012 metal concentrations being the same order of magnitude as those used in the 2007 HHRA, the lack of any 2012 metal detections exceeding respective residential CHHSLs or RSLs, and the estimated non-cancer HI being orders of magnitude less than the threshold of 1, the 2007 HHRA risk and hazard calculations for the current resident/trespasser remain valid for Stockpile 3.

### 3.2.4 Stockpiles 1 through 3 - Future Construction Worker and Offsite Resident

The MDCs for ten metals (arsenic, barium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium and zinc) reported for 165 soil samples from the 2006 SI as the COPCs for Stockpiles 1 through 3 and the PAH benzo(a)pyrene as a COPC were used in the 2007 HHRA. The metals barium (130,000 vs. 72,000 mg/kg), copper (41 vs. 29 mg/kg), and zinc (200 vs. 110 mg/kg) were detected at higher concentrations in the soil samples obtained from the September 2012 Fenceline Borings and Cadmium
Borings (first values in brackets) as compared to the 2007 HHRA EPCs (second values in brackets). The calculated 95% UCL for the 2012 barium data is 7,556 mg/kg, significantly less than the MDC of 130,000 mg/kg and the EPC of 72,000 mg/kg used in the 2007 HHRA. Strontium was detected in all but one of the 2012 soil samples with an MDC of 270 mg/kg.

The 2007 HHRA calculated current cancer risk and non-cancer hazard estimates of 9.2E-7 and 0.4, respectively, for the construction worker receptor exposed to soil at Stockpiles 1 through 3. The calculated current cancer risk and non-cancer HI were 6E-10 and 0.017, respectively, for the future offsite resident receptor exposed to soil at Stockpiles 1 through 3. Based on the conservative approach of using MDCs of each metal versus the 95% UCLs, the 2007 HHRA risk and hazard calculations for future conditions for construction workers and offsite residents remain valid for Stockpiles 1 through 3. The 2007 HHRA calculated excess cancer risks is order(s) of magnitude less than the conservative criterion of 1E-6, and the estimated non-cancer HI is significantly less than the threshold of 1.

### 3.2.5 Onsite Shallow Groundwater

The MDCs for twelve metals (barium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, vanadium and zinc) reported for groundwater samples collected in June and October 2006 were identified as the COPCs for evaluation of the hypothetical shallow groundwater user. The maximum 2006 metal concentrations were reported for samples obtained from wells MW-5 and MW-6. Of these metals, cobalt (5.3 vs. 3.0 µg/l), copper (7.4 vs. 6.2 µg/l), manganese (290 vs. 260 µg/l), nickel (9.6 vs. 7.1 µg/l), selenium (4.4 vs. 3.0 µg/l), vanadium (42 vs. 34 µg/l) and zinc (120 vs. 15 µg/l) were detected at slightly higher concentrations in the 2012 groundwater samples (primarily from upgradient well MW-10) compared to the 2007 HHRA EPCs. Strontium was detected in all of the 2012 groundwater samples with an MDC of 1,400 µg/l.

The 2007 HHRA calculated a then current non-cancer HI for the hypothetical shallow groundwater user at 0.9. None of the selected groundwater COPCs are considered to be carcinogens and therefore the 2007 HHRA did not calculate a cancer risk. Based on the similar metals data with the majority of the higher concentrations reported for samples collected from upgradient well MW-10, and the estimated non-cancer HI being less than the threshold of 1, the 2007 HHRA risk and hazard calculations for the hypothetical groundwater user remain valid.

### 3.2.6 HHRA Update Summary

The 2007 HHRA conservatively utilized MDC or 95% UCL soil and groundwater COPC concentrations obtained during the Shaw 2006 SI and groundwater monitoring events. Geocon compared the 2012 soil and groundwater data collected at the Site to the 2007 HHRA EPCs, which indicates that the 2012 soil and groundwater data is similar to the 2006 data utilized in the 2007 HHRA and do not significantly increase the conservative cancer risk and non-cancer HIs. The HHRA Update concluded that the 2007
HHRA remains valid with respect to exposure potential for the current resident/trespasser, future construction worker and offsite resident, and hypothetical shallow groundwater user at the Caltrans Modesto Soil Stockpile Site.

The DTSC commented on the HHRA update in a letter dated February 15, 2013, which included a memorandum from the Human and Ecological Risk Office (HERO) dated February 14, 2013. The HERO memorandum stated: “the soil stockpiles do not pose a cancer risk or noncancer hazard to persons in the vicinity of these stockpiles as long as the stockpiles remain in place and are properly managed. The evaluation presented here is based on concentrations measured in surface soil. There are areas in the stockpiles with elevated concentrations of chemicals at depths greater than one foot below ground surface. Therefore, if there is substantial grading or reworking of the stockpiles or if the stockpiles are removed, these elevated concentrations at depth will have to be evaluated with respect to the potential for exposure by residents living adjacent or near the stockpiles during the period when the soil is being moved.” Being “properly managed” implies that Caltrans would continue the current management which includes: maintaining fencing and signage around the stockpiles thereby limiting access to the stockpiles, not disturbing or exposing soil in the stockpiles, maintaining vegetative cover to reduce potential wind and rain soil erosion and transport off-site (i.e. soil dust transport from wind and sediment laden surface water runoff), mowing the vegetative cover to minimize fire danger, and groundwater and stormwater runoff monitoring.

In a letter dated April 4, 2013, DTSC stated their concurrence with the findings of the HHRA Update as follows: “DTSC concurs with reports titled “SSI, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Stanislaus County, California” (Geocon, March 1, 2013) and “HHRA Update, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Stanislaus County, California”.

3.3 Remedial Action Objectives

RAOs are medium or site-specific goals for protecting human health and the environment. RAOs are developed as a basis for evaluating the ability of remedial alternatives to comply with ARARs and to protect human health and the environment.

As summarized in Sections 3.1 and 3.2, the 2007 HHRA found that potential exposure to COPCs in surface soil of the stockpiles under the current land-use and proposed future land-use scenarios does not pose an unacceptable risk or hazard. Additionally, the hazard for a hypothetical future groundwater user is less than the threshold of concern. The update to the 2007 HHRA supported these findings and conclusions and the DTSC concurred with the HHRA update under the condition that the stockpiles be properly managed and potential receptors not be exposed to COPCs in deeper soil within the stockpiles. The potential for the stockpiles to impact groundwater from a water quality degradation standpoint remains a concern of the CVRWQCB.
Therefore, the RAOs for the Site are to protect the health of neighboring residents, onsite trespassers, and Caltrans-authorized personnel and prevent future impact to groundwater by managing the stockpiles either in-place or by removing them from the Site. GRAs to accomplish the RAOs are discussed in Section 4.0.

3.4 ARARs

ARARs are used to determine the extent of site cleanup and govern the implementation and operation of the selected action. ARARs are necessary to establish RAOs in order to support subsequent remediation alternatives screening. ARARs consist of three categories.

- Chemical Specific ARARs are either health or environmentally based numerical values or methodologies limiting the amount of a contaminant that may be released to or allowed to remain in the environment during and upon successful completion of a remedial action, including establishing clean up levels for soil or groundwater at an affected site. Examples include drinking water maximum contaminant levels (MCLs) and waste classification thresholds.

- Action specific ARARs are remedial, technology, or activity based requirements or limitations on specific remedial actions at a site. Examples include prohibitions or restrictions for the discharge of chemicals or contaminants to the air, water, or soil and the proper transfer, treatment, or storage of chemicals and contaminants.

- Location Specific ARARs are restrictions or prohibitions placed on remedial actions at a given location due to features, such as a flood plain, wetland, sensitive ecosystem, seismic, or historic area. Examples include the National Historic Preservation Act and Endangered Species Act.

Additionally, "To Be Considered" (TBC) standards are non-promulgated advisories or guidance issued by federal or state agencies that complement ARARs. Both the USEPA and DTSC have guidance materials. For example: USEPA has guidance on assessing risk and identifying preliminary remediation goals including the Human Health Evaluation Manual (Parts A & B) Risk Assessment Guidance for Superfund and Regional Screening levels and the California Environmental Protection Agency/DTSC has Supplemental Guidance for Human Health Risk Assessment and California Human Health Screening Levels.

3.4.1 Summary of State and Federal ARARs

Applicable requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or State law that specifically apply to cleanup at a site. The process for determining applicable standards is set forth in Section 121(d) of CERCLA. In part, CERCLA states that the more stringent of State or Federal requirements will apply to cleanup sites. Typically, California requirements are more stringent than Federal requirements.
Relevant and appropriate requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or State law that, while not applicable, address problems or circumstances similar to those found where the proposed removal action will be performed, and are well suited to the conditions of the cleanup site. Requirements that are determined to not be legally applicable are evaluated to determine whether they are relevant and appropriate. A requirement must be both relevant and appropriate to be an ARAR. Criteria for determining relevance and appropriateness are listed in Part 40, Code of Federal Regulation (CFR) Section 300.400(g)(2).

According to CERCLA ARAR guidance, requirements may be “applicable” or “relevant and appropriate,” but not both. ARARs are identified on a site-specific basis, using a two-part analysis to determine first if a requirement is applicable, and then, if not applicable, whether it is both relevant and appropriate. Based on CERCLA ARAR guidance, an ARAR qualifies as a State ARAR if it meets the following requirements:

- It is a State law;
- It is an environmental, or facility siting law;
- It is promulgated, and thus generally applicable and legally enforceable;
- It is substantive rather than procedural or administrative;
- It is more stringent than the Federal requirement;
- It is identified in a timely manner; and
- It is consistently applied.

3.4.2 ARARs for Remediation of the Stockpiles

Table 1 is a compilation of ARARs for remediation of the stockpiles.

3.5 Cleanup Goals

Cleanup goals are numerical or performance-based goals to which a cleanup (remedial) action can be compared to determine when the action has been performed to an extent that it can be considered complete. Numerical-based goals are quantitative limits (units of concentrations, volumes, etc.) that a cleanup action must meet in order to be considered complete. An example of a numerical-based goal is a COPC concentration in affected media (e.g., soil, soil vapor, groundwater, surface water, air) that has been determined to represent an acceptable health risk or other regulatory level and which cleanup must achieve in order to be considered complete. A performance-based goal is an action such as removal, capping, or treatment which a cleanup action must achieve in order to be considered complete. An example of a performance-based goal would be the placement of a one-foot-thick layer of clean soil over an area of contaminated soil to minimize potential exposure to COPCs in the soil.
The HHRA demonstrated that the excess cancer risk related to exposure to COPCs in surface soil of the stockpiles is orders of magnitude less than the conservative criterion of 1E-6 and the non-cancer HI is orders of magnitude less than the threshold of 1. The DTSC concurred with the findings of the HHRA and HHRA update under the condition that the stockpiles continue to be properly managed and not graded or reworked to expose COPCs in deeper soil within the stockpiles.

Based on the current level of health risk and stockpile management practices, it is not necessary to achieve a numerical-based cleanup goal to be protective of human health. Therefore, the cleanup goal for the project will be performance-based to assure that there is no route of exposure to COPCs in the stockpiles and to reduce the potential threat to groundwater. The GRAs which could be implemented to manage the stockpiles are discussed in Section 4.0. The remedial action that is selected by this FS will be implemented with DTSC and CVRWQCB oversight and these agencies will provide a final determination as to when the action is complete.
4.0 IDENTIFICATION AND SCREENING OF TECHNOLOGIES

This section identifies GRAs, various remediation technologies under each GRA, and process options for each remedial technology. The remediation technologies and process options are screened to determine which are applicable and may achieve the RAOs.

4.1 General Response Actions

GRAs are actions that can potentially achieve the RAOs that are stated in Section 3.3. Identifying the GRAs is the first step in developing and selecting the remedial alternatives. GRAs to address the stockpiles include:

- No action - no action is included as a baseline for comparing other potential GRAs. Consideration of a no action approach is required by the National Oil and Hazardous Substances Pollution Contingency Plan (NCP - 40 CFR 300.430).
- Institutional controls - are used to restrict access to the stockpiles thereby limiting exposure to COPCs in the soil. Institutional controls may include legal or administrative land use restrictions, access restrictions, informational and/or communication devices, monitoring, and/or a combination of these to minimize the potential for exposure to COPCs.
- Removal - consists of excavating and removing all or portions of the stockpiles and disposal at an off-site permitted disposal facility.
- Containment - restricts COPC mobility via technologies such as stormwater run-on/runoff controls and capping, thus reducing or eliminating potential exposure pathways and infiltration of water into the stockpiles.
- Treatment - includes physical, chemical, or biological processes to treat the soil and fixate or reduce COPC concentrations. Treatment could be conducted in-situ or ex-situ.
- Reuse/recycle/reclaim - of these three options only reuse of the stockpile soil offsite as fill is considered.

For most projects, “no action” implies that a site would be left “as is.” However, in the case of the stockpiles it should be noted that they are not currently in a state of “no action,” but are being actively managed under institutional controls. The Site is enclosed within a maintained perimeter chain-link fence and has access restriction signage posted in visibly conspicuous locations. The vegetative cover is mowed twice yearly to reduce fire danger. Groundwater monitoring and reporting is performed on a quarterly basis, and stormwater monitoring is performed on a storm-specific basis. Therefore, “no action” would mean discontinuing the maintenance of the fence, signage, and the stockpile vegetative cover and no monitoring of groundwater, stormwater, or site conditions.

The remedial technologies and process options that comprise the GRAs are described in greater detail in the following sections.
4.2 Identification and Screening of Technology Types and Process Options

This section identifies and evaluates the technologies that were considered potentially viable for each GRA and, where appropriate, identifies and evaluates process options. A general description of each technology and process option is followed by the rationale for retaining or eliminating it from further consideration.

“Process option” is a CERCLA term used for technologies that are being pre-screened. The potential for a process option to treat the stockpiles and to achieve the RAOs is evaluated, as are the potential impacts on human health and the environment during implementation of the process option. The no action alternative is evaluated as required by the NCP and is carried through to the detailed analysis of alternatives (Section 5) as a baseline for comparison with other alternatives.

The criteria for screening the applicable technologies and process options include effectiveness, implementability, and cost as follows:

- **Effectiveness** - the degree to which the alternative reduces the toxicity, mobility, or volume of COPCs; complies with ARARs; minimizes short-term impacts and residual risks, and provides long-term protection; and the speed at which the alternative accomplishes these benefits.

- **Implementability** - the technical feasibility and availability of the technologies and the administrative feasibility of implementing the alternative.

- **Cost** - the cost of construction, operation, and maintenance of the alternative.

Response actions, technologies, and process options that do not satisfy the RAOs and/or are not consistent with the above three evaluation criteria are not retained for further consideration and analysis. Table 2 lists the GRAs and the associated remedial technologies and process options.

4.2.1 Institutional Controls

Technologies considered for the stockpiles under institutional controls are governmental and administrative controls; site-access restrictions; informational and/or communication devices; and monitoring. Certain institutional actions and controls could partially meet the RAOs. Although no reduction in the toxicity or volume of COPCs would result from the implementation of institutional controls, institutional controls could be implemented in conjunction with other remedial actions to achieve the RAOs.

**Governmental and Administrative Controls**

Governmental and administrative controls use the regulatory authority of a government entity to impose restrictions under its jurisdiction, custody, or control. The process option considered for governmental and administrative controls is deed restrictions and covenants that limit land uses to those that have less potential for exposure based on the nature of the development and the types of site
occupants/users associated with the acceptable land uses. Governmental and administrative controls may be used in conjunction with other remedial technologies. This process option may provide some limitations on the present and future land use; however, the stockpiles would remain at the site in their current condition. No technical issues are present that would adversely affect the feasibility of implementing this process option and is considered to have low capital costs and negligible-to-low operations and maintenance (O&M) costs.

**Site Access Restrictions**

This technology consists of one process option - maintaining the existing physical barrier to site access (fencing) with controlled access to Caltrans-authorized personnel only. This option will minimize human receptor contact with COPCs in the soil.

Fencing and access control can be effective in mitigating exposure to COPCs, but does not reduce toxicity or volume. Ongoing O&M would be required to ensure continuing effectiveness. There are no technical issues that would adversely affect the feasibility of implementing this process option. However, site-access restrictions may not effectively deter all trespassers. There also may be problems gaining public acceptance for this process option. Capital and O&M costs associated with this process option are considered low.

**Informational and Communication Devices**

Informational and communication devices are process options include posting advisories (signage) at the Site, deed notices, public awareness meetings, and fact sheets to inform the public about potential risks at the Site.

It is difficult to ensure that informational and/or communication devices will be effective in reducing exposure to COPCs in the stockpiles as not all members of the community may receive the information and, as with access restrictions, may not deter trespassing. There are no technical issues that would adversely affect the feasibility of implementing this process option, but there may be problems gaining public acceptance for this process option as the sole remedial action at the site. Capital and O&M costs associated with this process option are considered to be low.

**Monitoring**

Process options for this technology can include monitoring of air, groundwater, stormwater, and site conditions. Monitoring COPCs in ambient air would likely be performed in combination with other technologies such as governmental and administrative controls, access restrictions, and informational technologies. However, the stockpiles are vegetated with seasonal grasses, and airborne dust has not been an issue. Monitoring COPCs in air would be performed in combination with other remedial technologies that involve excavation or grading such as removal or containment. In this way air monitoring would be an effective process option when implemented in combination with other remedial technology process options.
Other types of monitoring that have been ongoing and would continue in combination with certain other GRAs such as institutional controls or containment include site monitoring, groundwater monitoring, and stormwater monitoring. Site monitoring consists of fence inspection, repair, and maintenance, and mowing of the grass cover on the stockpiles to reduce fire danger. Under certain future technologies such as containment, site monitoring would continue for features such as soil caps, revegetation, and runoff controls. Groundwater monitoring currently consists of quarterly groundwater elevation measurement and groundwater sample collection for ten wells, laboratory analysis of samples, and reporting. Stormwater monitoring has been conducted and would continue as long as the stockpiles or portions of them are exposed to precipitation. Capital and O&M costs associated with this process option are considered low to moderate.

### 4.2.2 Removal

Removal is the excavation, loading, transportation, and offsite disposal in a permitted landfill of the stockpiled soil. Excavation would typically be performed using mechanical equipment such as a backhoe, front-end loader, or bulldozer and transportation would be by truck. The removed soil would have to meet a receiving landfill’s waste-acceptance criteria.

Removal of the stockpiles would reduce COPC mobility, toxicity, and volume for the Site thereby eliminating routes of exposure for any future land use on the Site. Engineering controls and monitoring would be used to limit exposure to onsite workers during excavation and loading of soil. During excavation, air would be monitored to confirm that dust suppression methods (water spray) are effective in preventing airborne dust so that workers and offsite residents would not be exposed to COPCs.

There are no significant barriers to implementing this process option administratively. However, this option would require that the removed soil be replaced by importing an even larger volume of clean fill soil in order to construct the SR-132 Project. Capital costs for soil removal and replacement would be prohibitively high and no funding source is available. There would be no O&M of the stockpile area following removal and therefore no O&M costs. O&M of the facility where the stockpiles are disposed would be the responsibility of the facility operator.

### 4.2.3 Containment

The containment GRA includes technologies of stormwater runoff/infiltrations controls and capping. These technologies could be implemented individually or in combination and would eliminate exposure pathways and minimize potential stormwater infiltration. Each of the containment technologies is further described below.
Runoff/Infiltration Controls

Runoff/infiltrations controls process options considered for the stockpiles include grading and revegetation. Stormwater contact with stockpile soil and subsequent COPC transport can be reduced by grading for drainage. The surface topography of the stockpiles would be modified to direct stormwater off of the stockpiles into adjacent drainage swales, thus reducing potential infiltration into the stockpiles. Grading would reduce COPC mobility via potential leaching; however, it would not reduce COPC toxicity or volume. Grading, when applied in conjunction with other remedial actions (such as capping), could achieve the RAOs. There are no technical or administrative issues that would adversely affect the feasibility of implementing this process option. Capital and O&M costs associated with this process option would be moderate.

Revegetation may be an effective method of stabilizing surface soils, especially when performed in conjunction with (following) grading and capping. Revegetation would decrease erosion by wind and stormwater and, in combination with grading and capping, would minimize infiltration. There are no administrative issues that would adversely affect the feasibility of implementing this process option. Capital and O&M costs associated with this process option are considered to be low to moderate.

Capping

Soil in the stockpiles could be contained by placing a physical barrier (cap) over a portion or all of the stockpiles to minimize exposure and stormwater infiltration. As described in Section 1, the stockpiles were originally placed to be used as embankment fill as part of the planned construction of the SR-132 Project. Therefore, a cap over the stockpiles could consist of the components of the planned SR-132 Project including: roadways, retaining walls, and bridge abutments. Figures 4a and 4b show the current footprint of the stockpiles overlain by design drawings of the planned SR-132 Project. Figure 4a shows that Stockpiles 1 and 2 are situated such that, with minor consolidation of soil along the northern and southern edges of the stockpiles, they are planned to be covered by the SR-132 roadways and contained behind retaining walls and bridge abutments. Figure 4b shows that Stockpile 3, in its current configuration, will have to be partially relocated/consolidated to be capped by and contained within project roadways.

If the planned SR-132 project were not constructed, an alternative form of cap could consist of constructing a layer of clean soil (typically one foot thick) over the stockpiles. Prior to constructing the cap, the surface of the stockpiles would be graded for drainage to ensure primarily that stormwater did not pond on top of the stockpiles. Following construction, the cap surface would be vegetated to protect against stormwater and wind erosion.

Capping the stockpiles by either method would eliminate exposure pathways and reduce the mobility of COPCs in the soil; however, it would not reduce their toxicity or volume. This technology would be effective in meeting the RAOs for the project. This remedial technology is readily implementable from...
a technical standpoint and there are no foreseeable administrative problems with implementation. Capital costs associated with either capping process option would range from moderate to high. O&M costs would range from low to moderate.

4.2.4 Treatment

The technology considered for the stockpiles under the treatment GRA is active chemical treatment of the soil by the process options of soil washing or soil mixing. Other types of treatment such as physical (i.e., separation) and biological were not considered because they are not applicable to the COPCs in the soil.

**Soil Washing**

This process option would be conducted ex-situ following excavation of the soil. Soil washing is a water-based process for removing COPCs from soil by dissolving or suspending them in the wash solution. The liquid stream may require additional treatment before disposal. This process option could be effective in reducing the toxicity and mobility of COPCs but would not reduce the volume. Soil washing is not a highly commercialized technology, and appropriate equipment and trained personnel are required. Such equipment and personnel may be available; however, this process option is considered difficult to implement technically. Capital costs for a soil washing system, including material handling equipment, process equipment, process materials, and labor, would be high. Additionally, space for the processing and transportation of the soil from its current location to a suitable processing location and then back would be problematic. As such, soil washing was not retained for further evaluation.

**Soil Mixing**

Soil mixing involves adding cement, fly ash, or other fixing agents to the soil to reduce the potential for COPC mobility through leaching. This process option would increase the volume of waste material. This process option is technically implementable but would require specialized equipment to perform the soil mixing. There are no significant administrative barriers to implementing this technology. Because of the large volume of soil that would be amended with a stabilizing agent, the capital costs for soil mixing for all stockpiled soil at the Site would be prohibitively high. Therefore, soil mixing was not retained for further evaluation.

4.2.5 Reuse/Recycle/Reclaim

This process option would consist of reuse of the soil as fill in an offsite location(s). There are no legitimate recycling or reclamation options for the soil. This option would be effective in eliminating the mobility and volume of the COPCs at the Site but would transfer the mobility, toxicity, and volume to an offsite, non-landfill location. This option would likely not receive regulatory approval and, as with removal to a landfill, would require replacement by importing an even greater volume of imported clean fill to the Site. Reuse/recycling/reclamation was not retained for further evaluation.
4.3 Technologies Screening Summary

Section 4.2 identified GRAs, remedial technologies for each GRA, and identified and evaluated process options that could be applicable under each technology in order to meet the RAOs. The criteria for screening of technologies and process options included cost, effectiveness, and implementability. Table 2 summarizes the screening methodology and results of the evaluation of each process option. “No action,” institutional controls, removal, and containment were retained as alternatives for analysis and evaluation in Section 5.
5.0 EVALUATION OF ALTERNATIVES

In accordance with CERCLA guidance and the remedial technology screening in Section 4, four alternatives are retained for further evaluation in this FS:

- Alternative 1 - No action;
- Alternative 2 - Institutional controls;
- Alternative 3 - Removal (excavation and offsite disposal); and
- Alternative 4 - Containment.

Each of these alternatives is described in the following subsections then evaluated against the nine NCP criteria.

5.1 Evaluation Criteria

The nine NCP evaluation criteria are as follows:

Threshold Criteria:

1. Overall Protection of Human Health and the Environment
2. Compliance with ARARs

Balancing Criteria:

3. Long-Term Effectiveness and Permanence
4. Reduction of Toxicity, Mobility, and Volume through Treatment
5. Short-Term Effectiveness
6. Implementability
7. Cost

Modifying Criteria:

8. Regulatory Acceptance
9. Community Acceptance

A description of each evaluation criterion is provided below. Remedial alternatives for the stockpiles were compared to the first seven of the nine criteria listed. Regulatory and community acceptance will be evaluated after the FS has been finalized and the preferred alternative is approved by the DTSC and CVRWQCB. The RAOs are stated in Section 3.3 and include building the planned SR-132 Project using the stockpiles as embankment fill as originally intended, which in turn will provide a greater degree of protection of human health and the environment than currently exists. Therefore each alternative’s attainment of the RAOs is presented in the evaluation of Overall Protection of Human Health and the Environment.
5.1.1 Threshold Criteria

Threshold criteria relate to statutory requirements that each alternative must satisfy in order to be eligible for selection.

**Overall Protection of Human Health and the Environment**

This criterion is used to assess each alternative’s ability to protect human health and the environment. The assessment of overall protection describes how risks to human health and the environment are eliminated, reduced, or controlled through treatment, engineering controls, or institutional controls. While the HHRA and update to the HHRA found that potential exposure of onsite trespassers and offsite residents to COPCs under the current land-use and of construction workers and adjacent residents during the planned construction of the SR-132 Project does not pose an unacceptable risk or hazard, the detailed evaluation will still consider potential further reductions in risks to human health and the environment afforded by each alternative.

**Compliance with ARARs**

This evaluation criterion is used to determine whether each alternative would meet the Federal and State ARARs identified in Section 3. The ability of a remedial alternative to comply with certain ARARs that have been identified for the remedial action would depend entirely on the manner in which the remedy is implemented. For evaluation purposes, it is assumed that any remedy selected would be implemented in a manner that would meet these ARARs.

5.1.2 Balancing Criteria

Balancing criteria are used to evaluate the technical aspects of a remedial alternative and include the following:

**Long-Term Effectiveness and Permanence**

This criterion is used to assess the long-term ability of the remedial alternative to address the threshold criteria by (1) assessing the risk remaining at the site after implementation of the remedial alternative, and (2) evaluating the long-term adequacy and reliability of the remedial alternative, including requirements for management and monitoring.

**Reductions in Toxicity, Mobility, and Volume of COPCs**

This criterion is used to assess a remedial alternative’s ability to reduce the inherent risk of the waste material. Technologies that permanently and significantly reduce toxicity, mobility, or volume are preferred over alternatives that only manage the stockpiles left in place. However, the degree of toxicity, mobility, or volume reduction achieved for the cost to achieve it is heavily weighted. Therefore, technologies that may have a significant effect on one or more of the criteria, but not necessarily all three, are strongly considered.
**Short-Term Effectiveness**

This criterion is used to assess the risks posed to the community, workers, and the environment during the implementation of a remedial action. Measures that would be taken to mitigate these risks will be addressed under this criterion. This criterion also considers the time required to achieve RAOs.

**Implementability**

This criterion is used to assess the technical feasibility (constructability, reliability of technology, operation, and monitoring requirements), administrative feasibility (coordination with other agencies), and availability of services and materials (labor, equipment, and materials) to implement an alternative.

**Cost**

This criterion is used to assess the anticipated capital and annual O&M and monitoring costs associated with each alternative over a 30-year period. Capital and annual costs in this FS are presented in 2013 dollars. Cost estimates are provided in Tables 3 through 7.

5.1.3 **Modifying Criteria**

The modifying criteria, regulatory and community acceptance, are as follows:

- Regulatory acceptance - this assessment evaluates the technical and administrative issues and concerns the DTSC and CVRWQCB may have regarding each of the alternatives.

- Community acceptance - this assessment evaluates the issues and concerns the public may have regarding each of the alternatives. These criteria will be addressed after the public comment period for the RAP and are not addressed or evaluated as part of this FS.

5.2 **Evaluation of Alternatives**

The remedial alternatives for the stockpiles are assessed with regard to their ability to meet the seven applicable NCP criteria.

5.2.1 **Overall Protection of Human Health and the Environment**

This criterion is an evaluation of the effect that each of the alternatives would have on human health and the environment. The evaluation of this criterion primarily addresses both existing and post-construction conditions, except where onsite construction activities have a potentially significant offsite impact (i.e., airborne dust generation).

**Alternative 1 - No action**

Under a no-action scenario the stockpiles would remain in place. There would be no access restrictions, no fencing, and no monitoring and maintenance. However, as long as Caltrans continues to own and control the property as State right-of-way they would maintain the perimeter fence and continue restricting access to Caltrans-authorized personnel. Therefore, the most likely site occupant would be a trespasser. The 2007 HHRA and recent update to the HHRA concluded that the concentrations of COPCs
in the stockpiles do not pose an unacceptable level of health risk to an onsite trespasser. The no action alternative can therefore be considered protective of human health as long as land use remains the same and access is restricted.

The no action alternative would be the least protective of the environment in that it would not reduce the contaminant mass or the potential of the COPCs to impact surface or groundwater quality.

**Alternative 2 – Institutional Controls**

In their memo of December 17, 2009, the DTSC indicated that the stockpiles in their current condition do not pose an unacceptable risk to human health for: Caltrans workers, trespassers, or offsite residents adjacent to the stockpiles based on continued management of the stockpiles. Management of the stockpiles consists of: limiting access to only Caltrans-authorized personnel, inspecting and maintaining the chain-link fence, prohibiting any activities involving excavation/grading, off-site removal of soil, or placement of other soil on the Site, and maintaining the current vegetative cover. They also stated that Caltrans should continue to maintain the groundwater monitoring system at the Site. These management activities and site conditions constitute institutional controls. Based on the DTSC’s statement, this alternative is protective of human health and the environment.

**Alternative 3 - Removal**

Excavation and offsite disposal of the stockpiles would provide good overall protection of human health and the environment with respect to eliminating potential exposure to COPCs in the soil. However, excavation and transportation of the soil could increase the short-term risk of exposure to receptors adjacent to the Site and along the transportation route from airborne dust and diesel exhaust emissions from construction equipment and trucks hauling soil from the project and clean replacement fill back to the project. Engineering controls (e.g., water spray and air monitoring) would mitigate airborne dust generation. Diesel exhaust and greenhouse gas emissions (GHGEs) could be limited by use of certain practices during construction (e.g., use of high efficiency engines, proper equipment maintenance, no idling of equipment, etc.), but not eliminated as use of heavy equipment is required and the only means of transportation of stockpile soil to landfills and clean fill soil back to the Site would be by truck. GHGEs for removal of the stockpiles and replacement with clean fill have been calculated to be 529,200 pounds of CO₂. GHGE calculations are shown in Appendix A.

**Alternative 4 – Containment**

This alternative will provide an improved level of protection of human health and the environment over Alternatives 1 and 2 through further elimination of the exposure routes to COPCs in the stockpiles and by decreasing the potential for stormwater to contact COPCs and impact surface or groundwater quality. Construction of the project will ultimately cap and encapsulate the soil completely by containing it behind retaining walls, bridge abutments, slope pavements, and beneath roadway pavement, and either pavement or a synthetic liner and clean soil cap in median areas. During the interim progress phase of the project, not all of the retaining walls will be constructed and the
northern portions of Stockpiles and 1 and 2 will be graded for drainage and a clean soil cap placed over the stockpiles and vegetated. This temporary cap will remain in place and be maintained until the ultimate build-out.

If the SR-132 project were not constructed, then the containment alternative could be implemented by placing a clean soil cap over the stockpiles. This form of a cap would provide a similar degree of protection of human health and the environment as capping by the SR-132 project.

5.2.2 Compliance with State and Federal Requirements

This criterion is an evaluation of whether each of the three alternatives will comply with applicable State, and/or Federal regulations.

**Alternative No. 1 - No action**

This alternative would not meet State or Federal regulations with respect to hazardous waste levels of COPCs in soil on the Site because of the lack of site control and public notification.

**Alternative 2 – Institutional Controls**

This alternative complies with State and/or Federal regulations under the Site’s current inactive (but maintained and monitored) use as long as the Site remains fenced, its vegetative cover maintained, and groundwater quality monitoring continues.

**Alternative 3 - Removal**

This alternative would comply with State and Federal regulations as the soil would be removed from the Site and potential for exposure to COPCs and threat to the environment would be mitigated. This alternative would comply with the SJVAPCD’s Rule 8021 regarding fugitive dust emissions during construction as long as dust suppression (water spray) was adequately performed during earthmoving activities. A dust control plan would have to be prepared and submitted to and approved by the SJVAPCD’s Air Pollution Control Officer and must provide the required notification prior to commencing earthmoving activities.

**Alternative 4 – Containment**

This alternative by either type of cap (the planned construction of the SR-132 Project or placement of a vegetated clean soil layer) would comply with State and Federal regulations in that either form of cap would be protective of human health and the environment (groundwater).

5.2.3 Long-term Effectiveness and Performance

This criterion evaluates whether each of the three alternatives will provide long-term protection of human health and the environment from exposure to COPCs in the stockpiles.
**Alternative 1 - No action**

This alternative would not be effective in the long-term because access to the stockpiles would not be controlled and therefore potential exposure to COPCs not mitigated. Additionally, stormwater contact with COPCs and impact to surface or groundwater quality would not be mitigated.

**Alternative 2 – Institutional Controls**

This alternative would be effective in the long-term because the COPCs do not pose a threat to human health of an onsite trespasser or offsite residents as long as access continues to be controlled. Under this alternative, the site perimeter fence would be monitored and maintained to restrict access, and the vegetative cover would continue to minimize erosion and potential offsite transport via wind or stormwater. Informational technologies such as public notification via site signage, published notices, and public meetings, if warranted, could help to keep the public informed of the site conditions and status. Governmental and administrative controls such as a deed restriction and land use covenant would prevent the site from being developed for uses that may not be suitable under the current site conditions such as residential or other “sensitive” land uses.

**Alternative 3 - Removal**

This alternative would be effective in the long-term, because removal of the stockpiles would mitigate any potential for exposure to COPCs in the stockpiles.

**Alternative 4 – Containment**

This alternative would also be effective in the long-term as either form of a cap would isolate and encapsulate the soil for the indefinite future. A vegetated clean soil layer cap would likely require a greater degree of long-term monitoring and maintenance to ensure that the cap and vegetative cover remain viable and effective.

### 5.2.4 Reduction of Toxicity, Mobility, and Volume

This criterion is used to assess the ability of each alternative to reduce the toxicity, mobility, or volume of COPCs in the stockpiles.

**Alternative 1 - No action**

This alternative will not reduce the toxicity, mobility, and/or volume of COPCs in the stockpiles. Regarding toxicity, the 2007 HHRA and 2013 update demonstrated that the concentrations of COPCs do not pose an unacceptable level of health risk to an onsite trespasser, offsite resident, or future user of shallow groundwater. Therefore, the concentrations of COPCs are not considered to be toxic for those users. If under no action, other land uses occurred (unlikely given Caltrans’ ownership of the property), then the potential health risk specific to those uses would have to be evaluated.
With respect to mobility of the COPCs in the stockpiles, mobility via erosion from wind or stormwater infiltration is limited by the vegetative cover. Further, COPC concentrations in groundwater samples collected from monitoring wells adjacent to and downgradient of, and native soil samples collected from beneath, the stockpiles are inconclusive with respect to COPC migration from the stockpiles.

**Alternative 2 – Institutional Controls**

This alternative will also not reduce the toxicity (low), mobility, or volume of COPCs in the stockpiles. However, as stated above, the health risks associated with the COPC concentrations have been demonstrated to be at acceptable levels for site trespassers and offsite residents under the current site conditions and controls.

**Alternative 3 - Removal**

This alternative would be the most effective in reducing the toxicity, mobility and volume of COPCs as the stockpiles would be completely removed from the Site and disposed of in an appropriate, permitted landfill.

**Alternative 4 – Containment**

This alternative by either form of cap will further reduce the potential mobility of the COPCs in the stockpiles via an impermeable surface that would preclude infiltration, but will have no effect on toxicity (low) or volume. The stockpiles would be isolated and encapsulated either within the planned SR-132 project behind retaining walls, bridge abutments, beneath roadway pavement, and either pavement or a synthetic liner and vegetated clean soil layer in the median areas or beneath a vegetated clean soil layer over all of the stockpiles. The toxicity and volume of COPCs would not change. This alternative would be the second-most effective in reducing the mobility of the COPCs in the stockpiles.

**5.2.5 Short-term Effectiveness**

This criterion evaluates the impacts of each alternative prior to and during construction of the project.

**Alternative 1 - No action**

This alternative would be effective for the period of time in which the site remained fenced thereby continuing to limit access to the Site. Without fence monitoring and maintenance, however, it would become the least effective of the four alternatives in the short-term.

**Alternative 2 - Institutional Controls**

This alternative would be effective in the short-term as the current fencing, vegetative cover, and stockpile configurations/slopes and top deck slope grade would remain as-is continuing to provide sufficient protection of human health and the environment.
Alternative 3 - Removal

With implementation of best management practices (BMPs) such as dust control (water spray application) and air monitoring, soil track-off controls, and transportation planning (e.g., route planning, load tarping, etc.) during soil handling activities (excavation, loading, and transportation), removal would be effective in the short-term. However, under this alternative, truck traffic on roads in the site vicinity would increase dramatically for both removal of the material and replacement with imported fill material. Removal of the stockpiled soil for offsite disposal is estimated to require 175 truckloads per day over an approximate 30-day period. A similar number of loads and time would be required to import clean fill material to replace the stockpiles. Air emissions from heavy equipment (e.g., graders, excavators, loaders) and trucking will be significantly increased for this alternative relative to all other alternatives and the work would fall under the SJVAPCD’s Indirect Source Review Rule 9510. The short-term impact to air quality from airborne dust and diesel exhaust emissions, local traffic, and roads may not be acceptable to the community and local government. In addition, as described in Section 5.2.1, GHGEs attributable to heavy equipment operations and truck transportation during removal of the stockpiles and replacement with clean fill are estimated at 529,200 pounds of CO₂.

Alternative 4 – Containment

Similar to the removal alternative, with implementation of BMPs, either form of capping of the stockpiles should be effective in the short-term.

5.2.6 Implementability

This criterion evaluates the implementability of each of the alternatives.

Alternative 1 - No action

No action is readily implementable because it requires no labor, materials, or equipment.

Alternative 2 – Institutional Controls

This alternative is also readily implementable in that it requires minimal labor, materials, and equipment to monitor the Site and maintain fencing and the vegetative cover and is currently ongoing. Groundwater and stormwater monitoring are also ongoing, so there would be no change in those activities.

Alternative 3 - Removal

This alternative is technically implementable. However, other constraints to this alternative exist that decrease its implementability. Those constraints include a significant increase in truck traffic on adjacent and nearby roads for a period of approximately 60 days, an increased potential for offsite exposure due to generation of airborne dust from truck loads or spillage, and prohibitively high cost with no funding source. Potential landfill capacity to accept the soil has been confirmed and should not affect the implementability of this alternative.
**Alternative 4 – Containment**

This alternative in either form is readily implementable. The SR-132 project is currently being planned and designed by Caltrans and StanCOG. The volume of soil requiring excavation from Stockpiles 1 and 2 for consolidation behind retaining walls and bridge abutments is not significant. The cross-sections shown on Figures 7, 8, and 9 depict the portions of the stockpiles that are outside where project retaining walls will be constructed and therefore will be excavated and placed on top of the stockpiles where additional fill is needed. As shown on Figures 5b (plan view) and 9 (cross-section) Stockpile 3 will be nearly entirely removed from its location and placed in the embankment for the eastern side of the SR-99 bridge (Figure 5b).

### 5.2.7 Cost

**Alternative 1 - No action**

There is no cost associated with this alternative.

**Alternative 2 – Institutional Controls**

The costs associated with ongoing maintenance and monitoring, which includes as-necessary fence maintenance, annual mowing of the vegetative cover to reduce fire danger, and quarterly groundwater monitoring and weather-dependent stormwater monitoring is on the order of $50,000 per year (Table 3). This cost is considered to be low to moderate and is the second least costly of the four alternatives.

**Alternative 3 - Removal**

Removal of the stockpiles through excavation, loading, transportation, and disposal at an offsite landfill is the most costly of the alternatives at approximately $21.5 million (Table 4). Disposal cost assumes disposal of a portion of the stockpile soil (primarily from Stockpile 1) in a Class II (non-hazardous) facility and a portion (primarily from Stockpile 2) in a Class I (California hazardous). The cost of this alternative also includes replacement of the stockpiles by importing clean fill material. There is no funding available for removal.

The cost of removal of Stockpile 3 only was estimated at $2.65 million (Table 7). The cost assumes that all of the soil in Stockpile 3 would be disposed of in a Class II (non-hazardous) facility. As stated above, there is no funding available for removal.

**Alternative 4 – Containment**

The cost of containment by capping beneath the planned SR-132 project, including excavation of portions of the stockpiles and consolidation behind retaining walls, bridge abutments, and beneath a vegetated clean soil cap and roadway pavement, is considered to be moderate to high for capital costs and moderate in terms of ongoing monitoring and maintenance (Table 5). The bulk of the capital cost of this alternative will be in grading of the soil for the interim progress phase of the project, placement of the
clean soil cap over the northern portions of Stockpiles 1 and 2, and placement of paving or a synthetic liner and clean soil cap over median areas for the ultimate build-out of the SR-132 Project.

The cost of containment by capping beneath a vegetated clean soil layer if the SR-132 project were not constructed is considered to be moderate to high for capital costs and moderate in terms of ongoing monitoring and maintenance (Table 6). The bulk of the capital cost of this alternative will be in grading of the stockpiles for drainage, placement of a one-foot-thick layer of clean soil over the stockpiles, and revegetation.

Monitoring costs for groundwater and stormwater monitoring will likely continue at levels similar to current costs until the ultimate build-out is complete. If the CVRWQCB approves a decrease in monitoring frequency, then annual monitoring costs would decrease.

5.2.8 Regulatory Acceptance

Each of the four alternatives is evaluated against this criterion to determine whether it meets legal and technical standards for regulatory acceptance.

**Alternative 1 - No Action**
This alternative would not be acceptable to the regulatory agencies because access to the Site would not be controlled, and groundwater quality monitoring would not continue.

**Alternative 2 – Institutional Controls**
This alternative currently has acceptance from the DTSC and CVRWQCB for the short-term with the understanding that Caltrans is moving forward with planned construction of the SR-132 project, which will encapsulate the stockpiles (Alternative 4).

**Alternative 3 - Removal**
This alternative also would likely receive regulatory acceptance from the DTSC and CVRWQCB because removal and offsite disposal of the stockpiles would reduce the level of health risk for any future land use and threat to the environment to the greatest extent possible. It would also receive regulatory acceptance from the SJVAPCD as long as dust suppression measures in accordance with a dust control plan were appropriately implemented.

**Alternative 4 – Containment**
This alternative is anticipated to receive regulatory acceptance by further eliminating exposure pathways to COPCs in the soil and reducing their mobility through encapsulation either within the planned SR-132 project or beneath a vegetated clean soil cap if the SR-132 project is not constructed.

5.2.9 Community Acceptance

This criterion involves the evaluation of whether each of the alternatives would be acceptable to the community.
Alternative 1 - No Action
Although the presence of the stockpiles has been generally acceptable to the community for five decades, this alternative would likely not remain acceptable to the public due to an increased perception of risk to human health and the environment associated with the stockpiles.

Alternative 2 – Institutional Controls
This alternative may be acceptable to the community if the current institutional controls (e.g., access restrictions, continued site monitoring and maintenance, and communication regarding the low level of risk to human health and the environment) continue to be implemented.

Alternative 3 - Removal
This alternative may be acceptable to the community because removing the stockpiles would likely eliminate any residual concern regarding health risk related to the stockpiles. In the short-term, the community may be averse to the perception of potential exposure to COPCs in airborne dust as soil is being excavated then transported along public roads to disposal facilities. There may also be some concern regarding increased truck traffic over an approximate 60-day period for offhaul of soil from the Site and import of new clean fill to replace the stockpiles. However, dust suppression and monitoring during excavation and loading by water spray, proper covering of waste loads, and appropriate routing of truck traffic would likely help the community to accept this alternative.

Alternative 4 – Containment
This alternative in either form of cap would likely be acceptable to the community because of the reduced potential for exposure to COPCs as a result of containment of the stockpile soil beneath the project. Some community opposition to the project exists which is unrelated to the stockpiles. Caltrans and StanCOG are moving forward with the planned SR-132 project, and public participation will continue through additional public informational meetings and a public hearing during public review of the draft environmental document and RAP. The public participation process will continue to afford the community opportunities to comment on the project and for StanCOG and Caltrans to respond to those comments with the intent of increasing community support for the project.

If the SR-132 project were not constructed, the alternative of constructing a vegetated clean soil cap over the stockpiles would likely receive the same community acceptance because of the same reduced potential for exposure to COPCs. The public participation process could proceed as planned for the SR-132 project. However, an environmental document would likely not need to be prepared, therefore a public hearing would not likely be necessary. An additional public meeting could be held to discuss the difference between the clean soil cap and the SR-132 project.

5.3 Comparative Analysis
This section provides a comparative analysis of the four alternatives which forms the basis for selection of the preferred alternative.
5.3.1 Alternative 1 – No Action

This alternative would provide the lowest level of overall protection of human health and the environment of the four alternatives. The level of protection for the onsite trespasser and offsite resident would remain the same as the current controlled condition, but the health risk for other land uses and receptors would need to be further evaluated. This alternative would have the lowest level of regulatory acceptance because of the lack of site controls and monitoring and maintenance. It also would likely have the lowest level of community acceptance due to the perceived threat to human health and the environment. This is the least costly of the alternatives and is the most implementable.

5.3.2 Alternative 2 – Institutional Controls

This alternative provides a higher level of protection to human health and the environment than no action and has regulatory acceptance by the DTSC. Although the DTSC has stated that the stockpiles do not pose a risk to human health for Caltrans workers, trespassers, or offsite residents under the current controlled and monitored conditions, the CVRWQCB has indicated that the stockpiles would need to be maintained in order to protect groundwater quality if the SR-132 Project were not constructed. Due to the perception by the public of some degree of health risk or threat to the environment, a more proactive remedial action is likely preferred by the community. This alternative is the second lowest in cost and the second most implementable.

5.3.3 Alternative 3 – Removal

Removal of the stockpiles and disposal in an offsite landfill would provide the greatest degree of protection of human health and the environment and may be the most acceptable to the DTSC, CVRWQCB, and the community. Short-term impacts would be the greatest with this alternative due to potential air quality and traffic impacts. Air emissions from soil removal equipment (e.g., graders, excavators, loaders) and trucking will be greatest with this alternative. This alternative could be performed in compliance with State and Federal requirements. Although technically implementable, it is the least implementable of the four alternatives due to the cost for which there is no funding. In addition, if the stockpiles, which were placed specifically for the planned SR-132 Project, were removed, they would have to be replaced with an even greater amount of clean soil fill in order to complete the project making the cost even greater. The cost of removal and replacement is not warranted for the degree of protection of human health and the environment achieved.

5.3.4 Alternative 4 – Containment

Containment of the soil by either form of cap will provide the second highest level of protection of human health and the environment of the four alternatives. Capping will eliminate routes of exposure to COPCs in the soil and minimize the potential for storm water infiltration. Short-term exposure to construction personnel and adjacent residents could be minimized through the implementation of
dust controls (e.g., water spray of disturbed areas). Long-term protection of human health and the environment would be provided by containment of the soil beneath either type of cap. This alternative can be performed in compliance with State and Federal requirements. This alternative would be implemented with DTSC and CVRWQCB oversight; therefore, regulatory acceptance is anticipated. This alternative should also be acceptable to the community as it is protective of human health and the environment. It is the third most costly of the alternatives, but significantly less than removal. It is the third most implementable of the alternatives, but its implementability is considered to be good as the stockpiles would be used for their originally intended purpose.

5.4 Description of Recommended Alternative

Based on the screening of alternatives and comparative analysis, Alternative 4 – Containment is the recommended alternative. Containment will be achieved by use of the stockpiles in construction of the SR-132 Project, which requires a significant amount of fill for the embankments of the SR-132/SR-99 interchange portion of the project and is the reason the stockpiles were placed on the Site in the early 1960s.

For the SR-132 project the stockpiled soil will be contained behind retaining walls and bridge abutments and beneath roadway pavements of the project. As described in Section 1, the project will be constructed in two phases – the interim progress phase to be completed by 2018 and the ultimate build-out to be completed by 2028. The interim progress phase of the project will consist of a two-lane roadway, which will be constructed over the southern portions of Stockpiles 1 and 2. The northern portions of Stockpiles 1 and 2, which will not be contained beneath roadways and behind retaining walls and bridge abutments, will be graded for drainage and capped with a minimum 6- to 12-inch-thick vegetated, clean soil cap. Figures 5a and 5b show the interim progress phase of the project in plan view and indicate the portion of the stockpiles which will be temporarily covered by the clean soil cap until the ultimate build-out of the project is completed. Figures 6a and 6b show the ultimate project build-out in plan view and depict the complete containment of the stockpiles within the project retaining walls and beneath roadway pavements. Also shown on Figures 6a and 6b is that the median between the eastbound and westbound lanes of SR-132 will be covered by either pavement or a synthetic liner and clean soil layer.

Figures 7, 8, and 9 show cross-section views of the interim progress and ultimate build-out phases of the project for Stockpiles 1, 2, and 3, respectively. The cross-sections show:

- the sloping for drainage and clean soil cap over the northern portions of Stockpiles 1 and 2 during the interim progress phase and the complete containment of the stockpiles by the ultimate build-out;
- the pavement or liner cover over the median areas of the ultimate build-out;
- where the outer edges of the current stockpiles will be cut (in yellow) and placed on top of the stockpiles in the “stockpile fill consolidation zone.”
Stockpile 3 will be treated differently than Stockpiles 1 and 2 in that it is planned to be entirely contained within the interim progress phase of the project. As much of Stockpile 3 as possible will be placed in the stockpile fill consolidation zone within the eastern abutment for the SR-132 bridge over SR-99 (Figures 5b and 9). The remainder of Stockpile 3 will then be placed in the stockpile fill consolidation zone of Stockpile 2 (Figure 8). At the request of the CVRWQCB, the costs were estimated to completely remove Stockpile 3, dispose of it offsite in an appropriate landfill, and import an equal volume of clean replacement fill (Table 7).

Once approved, this alternative will be described in greater detail in the RAP, which will be made available for public review and comment as part of the environmental document for the project. After approval of the RAP, the details of construction of the project will be presented in a Remedial Design Implementation Plan.
6.0 REFERENCES

Websites


Shaw Environmental, Inc.

Heavy Metal Contamination Preliminary Site Investigation Report, Modesto, California, June 1, 2004.


Human Health Risk Assessment, Caltrans Modesto Soil Stockpile, Stanislaus County, California, May 14, 2007c.
Particulate Matter Test Report, Mowing Simulation, State Route 99/132 Project, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, June 5, 2007d.

Final Preliminary Endangerment Assessment, Caltrans Modesto Soil Stockpiles, State Route 132/99 Interchange, Stanislaus County, California, June 30, 2009.

Geocon Consultants, Inc.

Kansas Avenue Ramp Project

Site Investigation Workplan, Modesto Ramp Rehabilitation Project, State Route 99 Kansas Avenue Northbound Off-ramp, Modesto, California, April 13, 2012.

Transmittal of Site Investigation Data, Modesto Ramp Rehabilitation Project, State Route 99 Kansas Avenue Northbound Off-ramp, Modesto, California, April 24, 2012.


Transmittal of Stockpile 3 Excavation Monitoring Data, Modesto Ramp Rehabilitation Project, State Route 99 Kansas Avenue Northbound Off-ramp, Modesto, California, October 22, 2012.


Groundwater Monitoring

Monitoring Well Installation Workplan, Modesto Stockpiles, State Route 99 and 132, Stanislaus County, California, May 8, 2012.


**Stormwater Monitoring**

Addendum to Surface Water Sampling and Analysis Plan, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, February 20, 2013.

Surface Water Sampling Report, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, June 27, 2013.

**Supplemental Site Investigation**

Response to DTSC 09-12-12 Comments on Draft Supplemental Site Investigation Workplan, Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, September 18, 2012.

Supplemental Site Investigation Workplan, Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, September 18, 2012.

Supplemental Site Investigation, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Stanislaus County, California, revised March 1, 2013.

**Human Health Risk Assessment**

Human Health Risk Assessment Update, Caltrans Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, revised March 1, 2013.

**Kleinfelder**

Final Geotechnical Design Report, Modesto Soil Stockpiles, State Routes 99 and 132, Modesto, California, September 6, 2012.

**General References**

California Division of Mines and Geology, 1962.


Figure 3a Task Order No. 17 June 2014

GEOCON Proj. No. S9800-01-17 Stanislaus County, California

Caltrans Modesto Soil Stockpiles

Appendix G - Final Feasibility Study, Caltrans Modesto Soil Stockpiles

State Route 132 West Freeway/Expressway Draft EIR/EA
Soil Stockpile

SITE PLAN

STOCKPILES 1 AND 2

State Route 132 West Freeway/Expressway Draft EIR/EA

Caltrans Modesto Soil Stockpiles

Stanislaus County, California

GEOCON Proj. No. S9800-01-17

Task Order No. 17

June 2014

Figure 4a
Stanislaus County, California
Caltrans Modesto Soil Stockpiles

Match Line (See Figure 6b)

Figure 6a

Stockpile Containment
by Capping Plan –
Ultimate Project Build-Out

State Route 132 West Freeway/Expressway Draft EIR/EA

June 2014
Interim Progress Phase and Ultimate Build-Out Cross-Section – Stockpile #3 (Typical)

- Flyover (Bridge)
- Retaining Wall
- Stockpile Fill Consolidation Zone
- Native Soil
- Structural Pavement Section
- Stockpile Soil to be Removed
- Existing Grade
- Finish Grade
- 132/Needham Roadway
- Stockpile Material to be Excavated and Consolidated Behind Retaining Wall
- ROW Fence

Caltrans Modesto Soil Stockpiles
Stanislaus County, California
GEOCON Proj. No. S9800-01-17
Task Order No. 17
State Route 132 West Freeway/Expressway Draft EIR/EA
June 2014
Figure 9
### Table 1
ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13240, 13241, 13242, 13243)</td>
<td>Water Quality Control Plan (Basin Plan) for the RWQCB, CVR.</td>
<td>Establishes water quality objectives, including narrative and numerical standards, that protect the beneficial uses of surface and ground waters in the region. Describes implementation plans and other control measures designed to ensure compliance with statewide plans and policies and provide comprehensive water quality planning. Also includes implementation actions for setting soil cleanup levels for soils which threaten water quality. Unless otherwise designated by the Regional Water Board, all ground waters in the Region are considered as suitable or potentially suitable, at a minimum, for municipal and domestic water supply (MUN), agricultural supply (AGR), industrial service supply (IND), and industrial process supply (PRO).</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Specific applicable portions of the Basin Plan include beneficial uses of affected water bodies and water quality objectives to protect those uses. Any activity, including, for example, a new discharge of contaminated soils or in-situ treatment or containment of contaminated soils, that may affect water quality must not result in water quality exceeding water quality objectives. Implementation plans and other policies and requirements may also apply.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13000, 13304, 13240, 13241, 13242, 13243)</td>
<td>RWQCB, CVR Basin Plan, &quot;Policy for Investigation and Cleanup of Contaminated Sites.&quot;</td>
<td>Establishes and describes policy for investigation and remediation of contaminated sites. Also includes implementation actions for setting groundwater and soil cleanup levels.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Cleanup levels for soils should be equal to levels that would achieve background concentrations in groundwater unless such levels are technically and economically infeasible to achieve. In such cases, soil cleanup levels are such that groundwater will not exceed applicable groundwater quality objectives.</td>
</tr>
</tbody>
</table>
### Table 1

**ARARs and TBCs for Soil Remediation**  
**Caltrans Modesto Soil Stockpiles**  
**Modesto, Stanislaus County, California**

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13240, 13241, 13242, 13243)</td>
<td>RWQCB, CVR Basin Plan, &quot;Policy for Application of Water Quality Objectives&quot;</td>
<td>This policy defines water quality objectives and explains how the Regional Water Board applies numerical and narrative water quality objectives to ensure the reasonable protection of beneficial uses of water and how the Regional Water Board applies Resolution No. 68-16 to promote the maintenance of existing high quality waters.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to all cleanups of discharges that may affect water quality.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13000, 13140, 13263, 13304)</td>
<td>State Water Resources Control Board Resolution No. 68-16 (&quot;Antidegradation Policy&quot;)</td>
<td>Requires that high quality surface and ground waters be maintained to the maximum extent possible. Degradation of waters will be allowed (or allowed to remain) only if it is consistent with the maximum benefit to the people of the state, will not unreasonably affect present and anticipated beneficial uses, and will not result in water quality less than that prescribed in RWQCB and SWRCB policies. If degradation is allowed, the discharge must meet best practicable treatment or control, which must prevent pollution or nuisance and result in the highest water quality consistent with maximum benefit to the people of the state.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to discharges of waste to waters, including discharges to soil that may affect surface or ground waters. In-situ cleanup levels for contaminated soils must be set so that ground waters will not be degraded, unless degradation is consistent with the maximum benefit of the people of the state. If degradation is allowed, the discharge must meet best practicable treatment or control, and result in the highest water quality possible consistent with the maximum benefit to the people of the state. In no case may water quality objectives be exceeded.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 92-49 (As</td>
<td>State Water Resources Control Board Resolution No.</td>
<td>Establishes requirements for investigation and cleanup and abatement of discharges. Among other requirements, dischargers must clean up and abate the effects of discharges in a manner that</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to all cleanups of discharges that may affect water quality.</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>13000, 13140, 13240, 13260, 13263, 13267, 13300, 13304, 13307) amended April 21, 1994)</td>
<td>promotes the attainment of either background water quality, or the best water quality that is reasonable if background water quality cannot be restored. Requires the application of Title 23, CCR, Section 2550.4 requirements to cleanups.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies in determining beneficial uses for waters that may be affected by dischargers of waste.</td>
<td></td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13000, 13140, 13240)</td>
<td>State Water Resources Control Board Resolution No. 88-63 (“Sources of Drinking Water Policy”) (as contained in the RWQCB’s Water Quality Control Plan)</td>
<td>Specifies that, with certain exceptions, all ground and surface waters have the beneficial use of municipal or domestic water supply.</td>
<td>Applicable</td>
<td>Chemical</td>
<td></td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13260, 13263, 13370.5, 13372, 13373, 13374, 13375, 13376, 13377, 13383).</td>
<td>40 CFR Parts 122, 123, 124, National Pollutant Discharge Elimination System, implemented by California Storm water Permit for Industrial Activities, State Water Resources Control Board Order #97-03-DWQ.</td>
<td>Regulates pollutants in discharge of storm water associated with hazardous waste treatment, storage, and disposal facilities, wastewater treatment plants, landfills, land application sites, and open dumps. Requirements to ensure storm water discharges do not contribute to a violation of surface water quality standards.</td>
<td>Applicable</td>
<td>Action and Chemical</td>
<td>Applies to storm water discharges from industrial areas. Includes measures to minimize and/or eliminate pollutants in storm water discharges and monitoring to demonstrate compliance.</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13260, 13263, 13370.5, 13372, 13373, 13374, 13375, 13376, 13377, 13383).</td>
<td>40 CFR Parts 122, 123, 124, National Pollutant discharge elimination system, implemented by State Water Resources Control Board Order No. 92-08 DWQ.</td>
<td>Regulates pollutants in discharge of storm water associated with construction activity (clearing, grading, or excavation) involving the disturbance of 5 acres or more. Requirements to ensure storm water discharges do not contribute to a violation of surface water quality standards.</td>
<td>Applicable</td>
<td>Action and Chemical</td>
<td>Applies to construction areas over 5 acres in size. Includes measures to minimize and/or eliminate pollutants in storm water discharges and monitoring to demonstrate compliance.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13304).</td>
<td>Title 27, CCR, Section 20080(g), Title 23, CCR, Section 2510(g)</td>
<td>Requires monitoring. If water quality is threatened, corrective action consistent with Title 27, Title 23 is required.</td>
<td>Applicable</td>
<td>Action</td>
<td>Applies to areas of land where discharges had ceased as of November 27, 1984 (the effective date of the revised Title 27/Title 23 regulations).</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20385, Title 23, CCR, Section 2550.1</td>
<td>Requires detection monitoring. Once a significant release has occurred, evaluation or corrective action monitoring is required.</td>
<td>Applicable</td>
<td>Action and Chemical</td>
<td>Applies to all areas in which waste has been discharged to land to determine the threat to water quality.</td>
</tr>
</tbody>
</table>
### Table 1
ARARs and TBCs for Soil Remediation  
Caltrans Modesto Soil Stockpiles  
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20390, Title 23, CCR, Section 2550.2</td>
<td>Requires establishment of a water quality protection standard consisting of a list of constituents of concern, concentration limits, compliance monitoring points and all monitoring points. This section further specifies the time period that the standard shall apply.</td>
<td>Applicable</td>
<td>Action and Chemical</td>
<td>Applies to all areas in which waste has been discharged to land where groundwater is threatened.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20395, Title 23, CCR, Section 2550.3</td>
<td>Requires development of a list of constituents of concern which include all waste constituents, that are reasonably expected to be present in the soil from discharges to land, and could adversely affect water quality.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to all areas in which waste has been discharged to land where groundwater is threatened.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20400, Title 23, CCR, Section 2550.4</td>
<td>Concentration limits must be established for groundwater, surface water, and the unsaturated zone. Must be based on background, equal to background, or for corrective actions, may be greater than background, not to exceed the lower of the applicable water quality objective or the concentration technologically or economically achievable. Specific factors must be considered in setting cleanup standards above background levels.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>If water quality is threatened, this section applies in setting soil cleanup levels for all cleanups of discharges of waste to land.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20405, Title 23, CCR, Section 2550.5</td>
<td>Requires identification of the point of compliance, hydraulically down gradient from the area where waste was discharged to land.</td>
<td>Applicable</td>
<td>Action</td>
<td>Applies to all areas in which waste has been discharged to land where groundwater is threatened.</td>
</tr>
</tbody>
</table>
### Table 1

ARARs and TBCs for Soil Remediation  
Caltrans Modesto Soil Stockpiles  
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269) | Title 27, CCR, Section 20410  
Title 23, CCR, Section 2550.6 | Requires monitoring for compliance with remedial action objectives for three years from the date of achieving cleanup levels. | Relevant and Appropriate. | Action | Applies to all soil cleanup activities. |
| Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269) | Title 27, CCR, Section 20415  
Title 23, CCR, Section 2550.7. | Requires general soil, surface water, and ground water monitoring. | Relevant and Appropriate. | Action | Applies to all areas in which waste has been discharged to land. |
| Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269) | Title 27, CCR, Section 20420  
Title 23, CCR, Section 2550.8 | Requires detection monitoring to determine if a release has occurred. | Applicable | Chemical | Applies to all areas where waste has been discharged to land and groundwater is threatened. |
<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13172, 13260, 13263, 13267, 13269)</td>
<td>Title 27, CCR, Section 20425 Title 23, CCR, Section 2550.9</td>
<td>Requires an assessment of the nature and extent of the release, including a determination of the spatial distribution and concentration of each constituent.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to sites at which monitoring results show statistically significant evidence of a release.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269)</td>
<td>Title 27, CCR, Section 20430 Title 23, CCR, Section 2550.10</td>
<td>Requires implementation of corrective action measures that ensure that cleanup levels (i.e., water quality protection standard established under section 2550.2) are achieved throughout the zone affected by the release by removing the waste constituents or treating them in place. Source control may be required. Also requires monitoring to determine the effectiveness of the corrective actions.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>If water quality is threatened, this section applies to all soil cleanup activities.</td>
</tr>
<tr>
<td>Office of Scientific Affairs, Cal EPA, DTSC Supplemental Guidance for Human Health Multimedia Risk</td>
<td></td>
<td>Provides recommendations on specific technical or scientific issues that may be encountered when preparing multimedia risk assessment reports for submittal and</td>
<td>To Be Considered</td>
<td>Action</td>
<td>Performance standard for conducting quantitative human health risk assessments.</td>
</tr>
</tbody>
</table>
## Table 1

### ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment of Hazardous Waste Sites and Permitted Facilities</td>
<td>review by the DTSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidance</td>
<td>USEPA Risk Reference Doses (RfDs)</td>
<td>RfDs are dose levels developed USEPA for evaluating human non-carcinogenic risk from exposure to carcinogens.</td>
<td>To Be Considered</td>
<td>Chemical</td>
<td>RfDs are used to evaluate human health risks from exposure to non-carcinogenic Site contaminants. RfDs are also employed to develop Site cleanup levels.</td>
</tr>
<tr>
<td>Guidance</td>
<td>USEPA Human Health Assessment Cancer Slope Factors (CSFs)</td>
<td>CSFs are developed by USEPA for evaluating incremental human carcinogenic risk from exposure to carcinogens.</td>
<td>To Be Considered</td>
<td>Chemical</td>
<td>CSFs are used to evaluate human cancer risk resulting from exposure to carcinogenic Site contaminants. CSFs are also employed to develop Site cleanup levels.</td>
</tr>
<tr>
<td>Staff Report of the RWQCB, CVR</td>
<td>The Designated Level Methodology for Waste Classification and Cleanup Level Determination</td>
<td>Provides guidance on how to classify wastes according to Title 27, CCR, Division 2, Subdiv.1/ Title 23, CCR, Division 3, Chapter 15, Article 10. Provides a methodology for establishing &quot;Designated Levels&quot; for specific constituents of a waste which provides a numerical value that would indicate the water quality impairment potential of the waste.</td>
<td>To Be Considered</td>
<td>Action</td>
<td>Performance standard to be considered in determining the classification of wastes and contaminated soils.</td>
</tr>
<tr>
<td>Staff Report of the RWQCB, CVR</td>
<td>&quot;A Compilation of Water Quality Goals&quot;</td>
<td>Provides guidance on selecting numerical values to implement narrative water quality objectives contained in the Basin Plan.</td>
<td>To Be Considered</td>
<td>Action</td>
<td>Performance standard to be considered in selecting appropriate numerical values to implement the Basin Plan for setting cleanup levels and discharge limits. The numerical</td>
</tr>
</tbody>
</table>
### Table 1
ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff Report of the RWQCB, CVR</td>
<td>“Water Quality Site Assessment for Soils and Ground Water”</td>
<td>Provides guidance on how a site-wide water quality site assessment should be conducted to evaluate the impact of soil contaminants on groundwater quality. Guidance uses background soil and groundwater quality data to determine if Site soil and groundwater have been impacted by site activities and uses groundwater Water Quality Goals to determine if the beneficial use of groundwater has been impacted or whether concentrations of site constituents have the potential to affect beneficial groundwater uses.</td>
<td>To Be Considered</td>
<td>Action</td>
<td>Used to determine to identify Site soil and groundwater constituents of concern.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13269).</td>
<td>Title 23, CCR, Section, 2520, 2521</td>
<td>Requires that hazardous waste be discharged to Class I waste management units that meet certain design and monitoring standards.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Applies to discharges of hazardous waste to land for treatment, storage or disposal.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections</td>
<td>Title 27, CCR, Section, 20200(c), 20210</td>
<td>Requires that designated waste be discharged to Class I or Class II waste management units.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Applies to discharges of designated waste (nonhazardous waste that could cause degradation of surface or ground waters) to land for treatment,</td>
</tr>
</tbody>
</table>
## Table 1
ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 13140-13147  
13172, 13260, 13263, 13269). | | | | | storage, or disposal. |
| Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147  
13172, 13260, 13263, 13269). | Title 27, CCR, Section 20230 | Requires that inert waste does not need to be discharged at classified units. | Relevant and Appropriate Action | Applies to discharges of inert waste to land for treatment, storage, or disposal. |
| Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147  
13172, 13260, 13263, 13269). | Title 27, CCR, Section 20200(c), 20220 | Requires that nonhazardous solid waste be discharged to a classified waste management unit. | Relevant and Appropriate Action | Applies to discharges of nonhazardous solid waste to land for treatment, storage, or disposal. |
### Table 1

**ARARs and TBCs for Soil Remediation**  
**Caltrans Modesto Soil Stockpiles**  
**Modesto, Stanislaus County, California**

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Section 20090(d) Title 23 CCR, Section 2511(d)</td>
<td>Actions taken by public agencies to cleanup unauthorized releases are exempt from Title 27/Title 23 except that wastes removed from immediate place of release and discharged to land must be managed in accordance with classification (Title 27 CCR, Section 20200/ Title 23 CCR, Sections 2520) and siting requirements of Title 27 or Title 23 and wastes contained or left in place must comply with Title 27 or Title 23 to the extent feasible.</td>
<td>Applicable Action</td>
<td>Action</td>
<td>Applies to remediation and monitoring of sites.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Section 20080 (d) Title 23, CCR, Section 2510(d)</td>
<td>Requires closure of existing waste management units according to Title 27/Title 23.</td>
<td>Applicable Action</td>
<td>Action</td>
<td>Applies to existing waste management units (i.e., areas where waste was discharged to land on or before 27 November 1984, but that were not closed, abandoned, or inactive prior to that date).</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Section 21400, Title 23, CCR, Section 2582.</td>
<td>Requires surface impoundments to be closed by removing and treating all free liquid and either removing all remaining contamination or closing the surface impoundment as a landfill.</td>
<td>Applicable Action</td>
<td>Action</td>
<td>If water quality is threatened, this section is relevant and appropriate for natural topographic depressions, excavations, and diked areas where wastes containing free liquids were discharged.</td>
</tr>
</tbody>
</table>
### Table 1
**ARARs and TBCs for Soil Remediation**  
**Caltrans Modesto Soil Stockpiles**  
**Modesto, Stanislaus County, California**

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Sections 20385-20435 Title 23, CCR, Section 2550.</td>
<td>Where groundwater monitoring is required under 2510 or 2511 of Ch 15 (and equivalent for Title 27), applies to authorized waste management units as well as unauthorized discharges of waste to land and to closed abandoned or inactive units.</td>
<td>Applicable</td>
<td>Chemical and Action</td>
<td>Applies to all areas in which waste has been discharged to land to determine the threat to water quality.</td>
</tr>
<tr>
<td>(California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Section 20950; 22207 (a); 22212 (a), and 22222. Title 23, CCR, Section 2550.0 (b); 2580; 2580(f).</td>
<td>General closure requirements, including continued maintenance of waste containment, drainage controls, and groundwater monitoring throughout the closure and post closure maintenance periods.</td>
<td>Applicable</td>
<td>Action</td>
<td>Applies to partial or final closure of waste management units.</td>
</tr>
<tr>
<td>(California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Section 21090</td>
<td>Requires a final cover for landfills constructed in accordance with specific prescriptive standards, to be maintained as long as wastes pose a threat to water quality.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>If water quality is threatened, this section is relevant and appropriate for wastes contained or left in place at the end of remedial actions that could affect water quality. Includes closure of landfills and other areas where wastes have been discharged to land.</td>
</tr>
<tr>
<td>(California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff Report of the RWQCB, CVR</td>
<td>Items to be included in a Feasibility</td>
<td>Provides an outline presenting the minimum requirement for items to be included and discussed in the text of all.</td>
<td>To be Considered</td>
<td>Chemical, Action, and Location</td>
<td>Applies to preparation of a feasibility study and remedial options evaluation for submittal to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Table 1
**ARARs and TBCs for Soil Remediation**
**Caltrans Modesto Soil Stockpiles**
**Modesto, Stanislaus County, California**

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study/Remedial Options Evaluation Report</td>
<td>feasibility studies/remedial option evaluation reports submitted to the RWQCB.</td>
<td></td>
<td></td>
<td></td>
<td>RWQCB.</td>
</tr>
<tr>
<td>Hazardous Waste Control Law (Health and Safety Code, Division 20, Chapter 6.5)</td>
<td>Title 22, California Code of Regulations, Division 4.5, Section 66260.1 et seq</td>
<td>Regulates the generation, storage, transportation, treatment and disposal of hazardous waste in the State.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to material that may be hazardous waste.</td>
</tr>
<tr>
<td>Hazardous Waste Control Law (Health and Safety Code, Division 20, Chapter 6.5)</td>
<td>Title 22, California Code of Regulations, Division 4.5, 22 CCR §§66261-66261.126</td>
<td>Identifies those wastes that are subject to regulation as hazardous wastes. Provides definition of “wastes” and “hazardous wastes”.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to material that would be transported from the Site for disposal, treatment or storage. Determination of material as “waste” and “hazardous waste” is required prior to removal from Site.</td>
</tr>
<tr>
<td>NCP</td>
<td>55 FR 8758-8760, March 8, 1990</td>
<td>Area of Contamination – Allows wastes to be consolidated and treated in situ within an AOC without triggering land disposal restrictions or minimum technology requirements. For an AOC, contamination must be contiguous but does not have to be homogeneous.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Allows for movement of impacted soil to be moved within the footprint of impacted soil.</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>Municipal Code Section 5-10.301</td>
<td>Requires a grading and erosion control permit to grade, fill, excavation, store or dispose of 350 cubic yards or more of soil or earth material or clear and grub more than .5 acre of land within the City limits.</td>
<td>Applicable</td>
<td>Action</td>
<td>Would apply for remedial actions that included excavation of impacted soil.</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>Municipal Code Section 5-10.303</td>
<td>Provides requirements for information to be included in a grading and erosion control permit.</td>
<td>Applicable</td>
<td>Action</td>
<td>Would apply for remedial actions that included excavation of impacted soil.</td>
</tr>
</tbody>
</table>
### Table: Standards, Requirements, Criteria, or Limitations

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Modesto</td>
<td>Municipal Code Section 5-10.304</td>
<td>Provides requirements for grading plans required as part of the grading and erosion permit.</td>
<td>Applicable</td>
<td>Action</td>
<td>Would apply for remedial actions that included excavation of impacted soil.</td>
</tr>
<tr>
<td>San Joaquin Valley Unified Air Protection Control District</td>
<td>Rule 8021</td>
<td>Provides requirements for to limit fugitive dust emissions from construction, demolition, excavation, extraction, and other earthmoving activities.</td>
<td>Applicable</td>
<td>Action</td>
<td>Would apply for remedial actions that included excavation of impacted soil. Permit is required if area subject to construction, demolition, etc is greater than five acres.</td>
</tr>
<tr>
<td>National Contingency Plan (40 CFR Part 300.430)</td>
<td>USEPA’s regulations for implementing CERCLA</td>
<td>Identifies the development and evaluation process for remedial alternatives.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Applies to investigation and remediation of uncontrolled hazardous waste sites.</td>
</tr>
<tr>
<td>USEPA</td>
<td>Interim Final Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, October 1988, (EPA/540-G-89/004)</td>
<td>Presents the methodology that the Superfund program has established for characterizing the nature and extent of risks posed by uncontrolled hazardous waste sites and for evaluating potential remedial options.</td>
<td>To be Considered</td>
<td>Action</td>
<td>Voluntary Cleanup Agreement, FMC-Modesto Site, Stanislaus County, Modesto, California requires the RI/FS Process to follow CERCLA guidance, specifically this guidance document.</td>
</tr>
</tbody>
</table>

*Page 14 of 14*
<table>
<thead>
<tr>
<th>Soil Specific General Response Actions</th>
<th>Remedial Technology</th>
<th>Process Option</th>
<th>Effectiveness</th>
<th>Implementability</th>
<th>Cost</th>
<th>Screening Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>None</td>
<td>Not applicable</td>
<td>Does not meet RAO and does not reduce toxicity, mobility, or volume of contaminants.</td>
<td>Readily implementable as no actions are required.</td>
<td>Negligible to very low</td>
<td>Retained as required by NCP</td>
</tr>
<tr>
<td>Institutional Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governmental and Administrative Controls</td>
<td>Deed restrictions and covenants</td>
<td>Contaminant mass unchanged. Establishes land use restrictions and limitations protective of human health.</td>
<td>Readily implementable with most of the activities being performed by DTSC.</td>
<td>Low capital and O&amp;M costs</td>
<td>Potentially applicable (deed restriction and covenants) in combination with other response actions. Retained.</td>
<td></td>
</tr>
<tr>
<td>Access Restrictions</td>
<td>Physical barrier and access control</td>
<td>Contaminant mass unchanged. Prevents unauthorized access to protect human health.</td>
<td>Readily implementable as fencing is currently maintained around the Site.</td>
<td>Low capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
<td></td>
</tr>
<tr>
<td>Informational</td>
<td>Signage, public notices</td>
<td>Contaminant mass unchanged. Signage and notices raise public awareness.</td>
<td>Readily implementable at the Site and will be maintained</td>
<td>Low capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td>Air monitoring</td>
<td>Contaminant mass unchanged. Monitors airborne COC’s.</td>
<td>Implementable</td>
<td>Low to moderate capital and O&amp;M costs</td>
<td>Air is not a medium of concern for the final remedy, but is a short-term concern during construction so retained for consideration with other options.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site monitoring</td>
<td>Contaminant mass unchanged. Documents physical conditions of Site.</td>
<td>Readily implementable as this is currently ongoing at the Site.</td>
<td>Low to moderate capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groundwater monitoring</td>
<td>Contaminant mass unchanged. Documents groundwater conditions/quality surrounding Site.</td>
<td>Readily implementable as this is currently ongoing at the Site.</td>
<td>Moderate capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
<td></td>
</tr>
<tr>
<td>Containment</td>
<td>Grading</td>
<td>Contaminant mass unchanged. Directs, collects, and transports runoff away from Site. Decreases infiltration and contaminant mobility.</td>
<td>Readily implementable</td>
<td>Moderate capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
<td></td>
</tr>
<tr>
<td>Reuse, Recycle, and/or Reclaim</td>
<td>Reuse at offsite location</td>
<td>Off-site non-landfill placement as fill</td>
<td>Would be effective in reducing mobility of contaminants for the Site, but would just transfer issues and concerns to another property.</td>
<td>Not implementable due to hazardous waste levels in soil.</td>
<td>Not applicable</td>
<td>Not retained after initial screening</td>
</tr>
</tbody>
</table>

Notes: Shaded Cells = Shaded cells represent process technology options that were not retained after initial screening. NCP = National Oil and Hazardous Substance Pollution Contingency Plan O&M = Operations and Maintenance RAO = Remedial action objective
## REMEDIATION COST ESTIMATE SUMMARY

### ALTERNATIVE NO. 2 – INSTITUTIONAL CONTROLS

**CALTRANS MODESTO SOIL STOCKPILES**

**MODESTO, STANISLAUS COUNTY, CALIFORNIA**

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Activity</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management ¹</td>
<td>15</td>
<td>Annual</td>
<td>$5,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>2</td>
<td>Public Communications ²</td>
<td>5</td>
<td>As-needed</td>
<td>$2,500</td>
<td>$12,500</td>
</tr>
<tr>
<td>2</td>
<td>Fence Maintenance ¹</td>
<td>15</td>
<td>Annual</td>
<td>$5,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>3</td>
<td>Mowing ¹</td>
<td>30</td>
<td>Bi-annual</td>
<td>$2,500</td>
<td>$75,000</td>
</tr>
<tr>
<td>5</td>
<td>Groundwater Monitoring ³</td>
<td>20</td>
<td>Quarterly</td>
<td>$12,500</td>
<td>$250,000</td>
</tr>
<tr>
<td>6</td>
<td>Surfacewater Monitoring</td>
<td>3</td>
<td>Weather-dependent</td>
<td>$2,500</td>
<td>$7,500</td>
</tr>
</tbody>
</table>

Total Estimated Cost: $495,000

Notes:

1. assumed to be necessary from present until planned completion of ultimate build-out in 2028.
2. could include public meetings, fact sheets, public notices, and other forms of information dissemination to the public.
3. assumed that will be discontinued after interim progress phase is completed in 2018.
### TABLE 4

**REMEDIATION COST ESTIMATE SUMMARY**

**ALTERNATIVE NO. 3 – REMOVAL**

**CALTRANS MODESTO SOIL STOCKPILES**

**MODESTO, STANISLAUS COUNTY, CALIFORNIA**

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Site Work</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>1</td>
<td>Lump Sum</td>
<td>$53,000</td>
<td>$53,000</td>
</tr>
<tr>
<td>2</td>
<td>Pre-Field Planning/Permits</td>
<td>1</td>
<td>Lump Sum</td>
<td>$35,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>3</td>
<td>SWPPP, BMPs, Trackout(^1), Security</td>
<td>1</td>
<td>Lump Sum</td>
<td>$63,000</td>
<td>$63,000</td>
</tr>
<tr>
<td>4</td>
<td>Truck Decontamination Station(^2)</td>
<td>47</td>
<td>Day</td>
<td>$1,200</td>
<td>$56,400</td>
</tr>
<tr>
<td>5</td>
<td>Air Monitoring</td>
<td>1</td>
<td>Lump Sum</td>
<td>$215,000</td>
<td>$215,000</td>
</tr>
<tr>
<td>6</td>
<td>Waste Profiling of Soil</td>
<td>1</td>
<td>Lump Sum</td>
<td>$36,500</td>
<td>$36,500</td>
</tr>
<tr>
<td>7</td>
<td>Traffic Control</td>
<td>47</td>
<td>Day</td>
<td>$800</td>
<td>$37,600</td>
</tr>
<tr>
<td>8</td>
<td>Excavation and Loading</td>
<td>216,000</td>
<td>Ton</td>
<td>$9</td>
<td>$1,944,000</td>
</tr>
<tr>
<td>9</td>
<td>Transportation and Disposal (Class II)</td>
<td>191,000</td>
<td>Ton</td>
<td>$35</td>
<td>$6,589,500</td>
</tr>
<tr>
<td>10</td>
<td>Transportation and Disposal (Class I)</td>
<td>25,000</td>
<td>Ton</td>
<td>$242</td>
<td>$6,050,000</td>
</tr>
<tr>
<td>11</td>
<td>Fill Placement</td>
<td>160,000</td>
<td>Cubic Yard</td>
<td>$40</td>
<td>$6,400,000</td>
</tr>
</tbody>
</table>

**Total Estimated Cost:** $21,480,000

**Notes:**

1 = trackout includes placement of rock for truck tire rough cleaning for each trip.

2 = truck decontamination includes daily washout and operation and maintenance of station
## TABLE 5

REMEDIATION COST ESTIMATE SUMMARY
ALTERNATIVE NO. 4 – CONTAINMENT BY CAPPING WITH THE SR-132 PROJECT
CALTRANS MODESTO SOIL STOCKPILES
MODESTO, STANISLAUS COUNTY, CALIFORNIA

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Site Work</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>1</td>
<td>Lump Sum</td>
<td>$20,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>2</td>
<td>Pre-Field Planning/Permits</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>3</td>
<td>SWPPP, BMPs, Trackout(^1), Security</td>
<td>1</td>
<td>Lump Sum</td>
<td>$30,000</td>
<td>$30,000</td>
</tr>
<tr>
<td>4</td>
<td>Air Monitoring (^2)</td>
<td>1</td>
<td>Lump Sum</td>
<td>$150,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>5</td>
<td>Excavation and Consolidation of Soil from South Side of Stockpiles 1 and 2 (Interim Progress Phase)</td>
<td>15,000</td>
<td>Cubic Yard</td>
<td>$5</td>
<td>$75,000</td>
</tr>
<tr>
<td>6</td>
<td>Excavation and Consolidation of Soil from Stockpile 3 (Interim Progress Phase)</td>
<td>20,000</td>
<td>Cubic Yard</td>
<td>$5</td>
<td>$100,000</td>
</tr>
<tr>
<td>7</td>
<td>Grading of North Side Stockpiles 1 and 2</td>
<td>40,000</td>
<td>Cubic Yard</td>
<td>$5</td>
<td>$200,000</td>
</tr>
<tr>
<td>8</td>
<td>Clean Soil Cap - North Side of Stockpiles 1 and 2</td>
<td>8,000</td>
<td>Cubic Yard</td>
<td>$10</td>
<td>$80,000</td>
</tr>
<tr>
<td>9</td>
<td>Excavation and Consolidation of Soil - North Side of Stockpiles 1 and 2 (Ultimate Build-Out)</td>
<td>10,000</td>
<td>Cubic Yard</td>
<td>$10</td>
<td>$100,000</td>
</tr>
<tr>
<td>10</td>
<td>Pave Median of Ultimate Build-out</td>
<td>2,700</td>
<td>Ton</td>
<td>$150</td>
<td>$405,000</td>
</tr>
<tr>
<td>11</td>
<td>Revegetation - North Side of Stockpiles 1 and 2</td>
<td>200,000</td>
<td>Square Feet</td>
<td>$2</td>
<td>$400,000</td>
</tr>
</tbody>
</table>

**Total Estimated Cost:** $1,570,000

**Notes:**
\(^1\) = trackout includes placement of rock for truck tire rough cleaning for each trip.
\(^2\) = air monitoring to be conducted during all earthmoving activities during interim progress phase and ultimate build-out.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Site Work</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>1</td>
<td>Lump Sum</td>
<td>$20,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>2</td>
<td>Pre-Field Planning/Permits</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>3</td>
<td>SWPPP, BMPs, Trackout(^1), Security</td>
<td>1</td>
<td>Lump Sum</td>
<td>$30,000</td>
<td>$30,000</td>
</tr>
<tr>
<td>4</td>
<td>Air Monitoring(^2)</td>
<td>1</td>
<td>Lump Sum</td>
<td>$150,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>5</td>
<td>Grading of Stockpiles</td>
<td>25,000</td>
<td>Cubic Yard</td>
<td>$5</td>
<td>$125,000</td>
</tr>
<tr>
<td>6</td>
<td>Clean Soil Cap</td>
<td>20,000</td>
<td>Cubic Yard</td>
<td>$10</td>
<td>$200,000</td>
</tr>
<tr>
<td>7</td>
<td>Revegetation</td>
<td>400,000</td>
<td>Square Feet</td>
<td>$2</td>
<td>$800,000</td>
</tr>
<tr>
<td></td>
<td><strong>Total Estimated Cost</strong></td>
<td></td>
<td></td>
<td></td>
<td>$1,335,000</td>
</tr>
</tbody>
</table>

Notes:  
\(^1\) Trackout includes placement of rock for truck tire rough cleaning for each trip.  
\(^2\) Air monitoring to be conducted during all earthmoving activities during interim progress phase and ultimate build-out.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Site Work</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>2</td>
<td>Pre-Field Planning/Permits</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>3</td>
<td>SWPPP, BMPs, Trackout(^1), Security</td>
<td>1</td>
<td>Lump Sum</td>
<td>$20,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>4</td>
<td>Truck Decontamination Station(^2)</td>
<td>30</td>
<td>Day</td>
<td>$1,200</td>
<td>$36,000</td>
</tr>
<tr>
<td>5</td>
<td>Air Monitoring</td>
<td>1</td>
<td>Lump Sum</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>6</td>
<td>Waste Profiling of Soil</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>7</td>
<td>Traffic Control</td>
<td>30</td>
<td>Day</td>
<td>$800</td>
<td>$24,000</td>
</tr>
<tr>
<td>8</td>
<td>Excavation and Loading</td>
<td>34,000</td>
<td>Ton</td>
<td>$9</td>
<td>$306,000</td>
</tr>
<tr>
<td>9</td>
<td>Transportation and Disposal (Class II)</td>
<td>34,000</td>
<td>Ton</td>
<td>$35</td>
<td>$1,173,000</td>
</tr>
<tr>
<td>10</td>
<td>Fill Placement</td>
<td>24,000</td>
<td>Cubic Yard</td>
<td>$40</td>
<td>$960,000</td>
</tr>
</tbody>
</table>

Total Estimated Cost: $2,649,000

Notes:
1 = trackout includes placement of rock for truck tire rough cleaning for each trip.
2 = truck decontamination includes daily washout and operation and maintenance of station.
Appendix H  Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Modesto, Stanislaus County, California
Appendix H  -  Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles

STATE ROUTE 132 WEST FREEWAY/EXPRESSWAY PROJECT
MODESTO, STANISLAUS COUNTY, CALIFORNIA

Project No. S9800-01-17
October 27, 2014

Randy Adams, CEG
Department of Toxic Substances Control
8800 Cal Center Drive
Sacramento, California 95826

Subject: REVISED DRAFT FINAL REMEDIAL ACTION PLAN
CALTRANS MODESTO SOIL STOCKPILES
STATE ROUTE 132 WEST FREEWAY/EXPRESSWAY PROJECT
MODESTO, STANISLAUS COUNTY, CALIFORNIA

Dear Mr. Adams:

In accordance with the Interagency Agreement between the California Department of Toxic Substances Control (DTSC) and the California Department of Transportation (Caltrans) dated June 22, 2012, we are pleased to submit the enclosed revised Draft Final Remedial Action Plan (RAP) for the Caltrans Modesto Soil Stockpiles (the Site) located south of the State Route 99/Kansas Avenue interchange in Modesto, Stanislaus County, California. This Draft Final RAP includes revisions made in response to comments on the Draft RAP provided by the DTSC in their letter to Caltrans dated September 18, 2014.

We trust that the Draft Final RAP adequately addresses the DTSC’s comments and that the document is ready for public review. Please call the undersigned if you have any questions regarding the Draft Final RAP.

Sincerely,

Geocon Consultants, Inc.

Jim Brake, PG
Project Manager

John E. Juhrend, PE, CEG
Principal/Senior Engineer

1. Addressee
2. Caltrans, Ms. Sam Haack
3. California Regional Water Quality Control Board, Central Valley Region, Mr. Steve Meeks
TABLE OF CONTENTS

DRAFT FINAL REMEDIAL ACTION PLAN PAGE

EXECUTIVE SUMMARY .......................................................................................................................... i

1.0 INTRODUCTION ................................................................................................................................... 1
  1.1 Purpose and Organization of the RAP .......................................................................................... 1
  1.2 Site Description .............................................................................................................................. 2
  1.3 Site History ..................................................................................................................................... 3
  1.4 Site Characterization ....................................................................................................................... 4
  1.5 Previous Removal Actions Taken ............................................................................................... 6
  1.6 Site Geology and Hydrogeology .................................................................................................... 7
    1.6.1 Topography .......................................................................................................................... 8
    1.6.2 Geologic and Soil Conditions ............................................................................................. 8
    1.6.3 Geotechnical Characteristics ............................................................................................. 9
    1.6.4 Hydrogeologic Conditions .................................................................................................. 10
    1.6.5 Stockpile Stormwater .......................................................................................................... 11
  1.7 Background COPC Concentrations .............................................................................................. 12

2.0 NATURE AND EXTENT OF IMPACTS ............................................................................................. 13
  2.1 Conceptual Site Exposure Model ............................................................................................. 13
  2.2 Soil Impacts ................................................................................................................................ 13
    2.2.1 Shaw 2004 PSI .................................................................................................................. 13
    2.2.2 Shaw 2006 SI ................................................................................................................... 14
    2.2.3 Geocon 2012 SSI ............................................................................................................. 15
  2.3 Groundwater Impacts .................................................................................................................... 17

3.0 REMEDIAL ACTION OBJECTIVE ................................................................................................. 19
  3.1 Summary of the 2007 HHRA ...................................................................................................... 19
    3.1.1 Current Offsite Resident and Trespasser ............................................................................ 19
    3.1.2 Future Construction Worker ............................................................................................ 20
    3.1.3 Future Offsite Resident ...................................................................................................... 21
    3.1.4 Hypothetical Future Shallow Groundwater User ............................................................. 21
  3.2 HHRA Update ............................................................................................................................... 21
    3.2.1 Stockpile 1 Current Exposure Assessment ....................................................................... 22
    3.2.2 Stockpile 2 Current Exposure Assessment ....................................................................... 22
    3.2.3 Stockpile 3 Current Exposure Assessment ....................................................................... 23
    3.2.4 Stockpiles 1 through 3 - Future Construction Worker and Offsite Resident .................. 23
    3.2.5 Onsite Shallow Groundwater ........................................................................................... 24
    3.2.6 HHRA Update Summary .................................................................................................. 24
  3.3 Remedial Action Objective ........................................................................................................... 25
  3.4 ARARs ......................................................................................................................................... 26
    3.4.1 Summary of State and Federal ARARs ............................................................................. 26
    3.4.2 ARARs for Remediation of the Stockpiles ........................................................................ 27
  3.5 Cleanup Goals ............................................................................................................................... 27

4.0 SUMMARY OF FEASIBILITY STUDY ......................................................................................... 29
  4.1 Identification and Screening of Technologies ........................................................................... 29
  4.2 Identification of Alternatives for Soil ......................................................................................... 32
    4.2.1 Alternative 1 - No Action ................................................................................................. 32
    4.2.2 Alternative 2 – Institutional Controls ............................................................................ 32
  4.3 Evaluation of Alternatives ........................................................................................................... 37
APPENDICES
A. Evaluation of Alternatives
B. Administrative Record
C. Statement of Reasons
D. Preliminary Nonbinding Allocation of Responsibility
### ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>ABBREVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIA</td>
<td>air impact assessment</td>
</tr>
<tr>
<td>ARAR</td>
<td>applicable or relevant and appropriate requirement</td>
</tr>
<tr>
<td>Cal-EPA</td>
<td>California Environmental Protection Agency</td>
</tr>
<tr>
<td>Caltrans</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CDMG</td>
<td>California Division of Mines and Geology</td>
</tr>
<tr>
<td>CEG</td>
<td>Certified Engineering Geologist</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CHHSL</td>
<td>California Human Health Screening Level</td>
</tr>
<tr>
<td>COPC</td>
<td>contaminant of potential concern</td>
</tr>
<tr>
<td>CVRWQCB</td>
<td>Central Valley Regional Water Quality Control Board</td>
</tr>
<tr>
<td>CSEM</td>
<td>Conceptual Site Exposure Model</td>
</tr>
<tr>
<td>DI</td>
<td>de-ionized water</td>
</tr>
<tr>
<td>DTSC</td>
<td>Department of Toxic Substances Control</td>
</tr>
<tr>
<td>DWR</td>
<td>Department of Water Resources</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>EPC</td>
<td>exposure-point concentrations</td>
</tr>
<tr>
<td>ESL</td>
<td>Environmental Screening Level</td>
</tr>
<tr>
<td>FMC</td>
<td>Food Machinery and Chemical Corporation</td>
</tr>
<tr>
<td>FS</td>
<td>feasibility study</td>
</tr>
<tr>
<td>GRA</td>
<td>general response action</td>
</tr>
<tr>
<td>HERO</td>
<td>Human and Ecological Risk Office</td>
</tr>
<tr>
<td>HI</td>
<td>hazard index</td>
</tr>
<tr>
<td>HHRA</td>
<td>Human Health Risk Assessment</td>
</tr>
<tr>
<td>HSP</td>
<td>health and safety plan</td>
</tr>
<tr>
<td>IA</td>
<td>Interagency Agreement</td>
</tr>
<tr>
<td>ISA</td>
<td>Initial Site Assessment</td>
</tr>
<tr>
<td>kg/m³</td>
<td>kilograms per cubic meter</td>
</tr>
<tr>
<td>LUC</td>
<td>land use covenant</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum Contaminant Level</td>
</tr>
<tr>
<td>MDC</td>
<td>maximum detected concentration</td>
</tr>
<tr>
<td>µg/dL</td>
<td>micrograms per deciliter</td>
</tr>
<tr>
<td>µg/kg</td>
<td>micrograms per kilogram</td>
</tr>
<tr>
<td>µg/l</td>
<td>micrograms per liter</td>
</tr>
<tr>
<td>µg/m³</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>mg/kg</td>
<td>milligrams per kilogram</td>
</tr>
<tr>
<td>mg/l</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>mg/m³</td>
<td>milligrams per cubic meter</td>
</tr>
<tr>
<td>MID</td>
<td>Modesto Irrigation District</td>
</tr>
<tr>
<td>MSL</td>
<td>mean sea level</td>
</tr>
<tr>
<td>NCP</td>
<td>National Contingency Plan</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>O&amp;M</td>
<td>operation and maintenance</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbon</td>
</tr>
</tbody>
</table>
PEA  Preliminary Endangerment Assessment
PE  Professional Engineer
PG  Professional Geologist
PSI  Preliminary Site Investigation
PTR  Proven Technologies and Remedies
RAO  Removal Action Objective
RAOR  Remedial Action Options Report
RAP  Remedial Action Plan
RDIP  Remedial Design Implementation Plan
RL  reporting limit
ROW  right-of-way
RSL  Regional Screening Level
SFBRWQCB  San Francisco Bay Area Regional Water Quality Control Board
SJVAPCD  San Joaquin Valley Air Pollution Control District
SI  site investigation
SR  State Route
SWPPP  Stormwater Pollution Prevention Plan
SSI  Supplemental Site Investigation
STLC  Soluble Threshold Limit Concentration
StanCOG  Stanislaus Council of Governments
TBC  to be considered
TOC  top of casing
TSS  total suspended solids
UCL  upper confidence limit
USA  Underground Service Alert
USDA  United States Department of Agriculture
USEPA  United States Environmental Protection Agency
USGS  United States Geological Survey
WET  waste extraction test
yd³  cubic yard
DRAFT FINAL REMEDIAL ACTION PLAN

EXECUTIVE SUMMARY

This Draft Final Remedial Action Plan (RAP) was prepared on behalf of the California Department of Transportation (Caltrans) for the Caltrans Modesto Soil Stockpiles (the Site) located south of the State Route (SR)-99/Kansas Avenue interchange in Modesto, Stanislaus County, California. Caltrans is in the process of finalizing a draft Environmental Impact Report (EIR) for the proposed SR-132 West Freeway/Expressway Project (the SR-132 Project), which is being developed in coordination with Stanislaus Council of Governments (StanCOG). The draft EIR is being prepared in accordance and to comply with the California Environmental Quality Act (CEQA) with Caltrans as the lead agency. This RAP will be a supplement to the EIR and therefore, the California Department of Toxic Substances Control (DTSC) and the Central Valley Regional Water Quality Control Board (CVRWQCB) in their capacity as oversight agencies for the RAP, are also reviewing agencies for the EIR.

The stockpiles were created in the early-1960s by importing soil from an FMC facility that was located less than 500 feet north of the Site. FMC and its predecessors operated a chemical processing facility at that location from 1929 to approximately 1985. The facility processed barium and strontium minerals (barite and celestite) and other materials to produce a variety of industrial chemicals. From the early 1950s to the late 1970s, liquid wastes were discharged to seven unlined ponds at the FMC facility. During construction of SR-99, soil in and around one of the former FMC ponds was excavated and stockpiled in their current configuration within the current Caltrans right-of-way for a planned SR-99/SR-132 interchange. This RAP summarizes the assessments of the contaminants and the recommendation and implementation of the recommended remedial action.

Purpose of the RAP

The purpose of the RAP is to summarize in one document the results of characterization of contaminant impacts at the Site, an assessment of potential risks to human health and the environment associated with the impacts, the development of a remedial action alternative to reduce those risks, and to make this information available to the public for review and comment. This RAP provides the following specific information:

- A description of the Site’s physical characteristics including location, size, configuration, its geologic, hydrogeologic, and geotechnical characteristics, stormwater runoff, and background soil conditions.
- The results of characterization to identify and assess the nature and extent of contaminants of potential concern (COPCs) at the Site.
- The results of a human health risk assessment (HHRA) and an HHRA Update for the Site performed based on COPC concentrations in the stockpiles.
- Applicable or relevant and appropriate requirements (ARAR) for implementation of the
recommended remedial alternative.

- A summary of a Feasibility Study (FS) which evaluated potential remedial alternatives to address the COPCs. The FS has been reviewed and approved by the DTSC and CVRWQCB.
- A conceptual design for the recommended remedial alternative.
- Land use controls that would be required to limit land use on the Site.
- Monitoring that would be performed to ensure that the implemented remedial alternative continues to be effective.
- A schedule for implementation of the recommended remedial alternative.
- A Health and Safety Plan (HSP) for use during implementation of the selected remedial alternative.
- The measures taken to satisfy CEQA.
- Public participation efforts including public notices, fact sheets, public hearings, and public comment on the Draft Final RAP.

Site Name and Location

Site Name: Caltrans Modesto Soil Stockpiles, Stockpiles #1, #2, and #3, and collectively “the Site”.

Site Location: The stockpiles occupy a portion of Caltrans’ right-of-way (ROW) approximately 350 feet south of the Kansas Avenue overcrossing of SR-99 in Modesto, Stanislaus County, California. The stockpiles extend approximately 2,500 feet west of SR-99 and approximately 500 feet east of SR-99.

Site Description

The Site consists of three separate soil stockpiles within Caltrans ROW, which were placed to be used for the planned SR-132 Project. The following is a summary of the configuration, orientation, size, and surrounding vicinity of each stockpile:

- **Stockpile #1** is located south of Kansas Avenue and west of Emerald Avenue. It is rectangular in shape, approximately 600 feet long in the east-west direction and 160 feet wide, with a flat top and sloped sides. Stockpile #1 has an estimated volume of approximately 34,000 cubic yards (yd³). It is bounded by commercial/light industrial development to the north and single-family residential to the south. To the west is undeveloped ROW, and to the east is an approximately 240 feet long undeveloped section of ROW and North Emerald Avenue.

- **Stockpile #2** is located south of Kansas Avenue, between Emerald Avenue and SR-99. It is also rectangular - approximately 1,650 feet long in the east-west direction, 160 feet wide, and flat-topped with sloped sides. Stockpile #2 has an estimated volume of approximately 102,000 yd³. It is bounded by commercial/light industrial development to the north and single-family residential to the south. To the west is North Emerald Avenue, and to the east is SR-99.
Stockpile #3 is located south of Kansas Avenue and east of SR-99. It has a curvilinear shape extending northwest to southeast (concave to the southwest) with a length of approximately 1,100 feet and a width of approximately 120 feet. It has an estimated volume of approximately 24,000 yd³. It is bounded by SR-99 to the south and west and commercial/light industrial development to the north and east. The Modesto Irrigation District (MID) Lateral #4 canal concrete box culvert extends beneath its southeastern end.

The stockpiles are enclosed within perimeter fencing and bordered by adjacent property boundary fencing/walls or structures. There are no operations on the stockpiles other than site maintenance, which consists of seasonal mowing of the vegetative (grass) cover on the stockpiles and maintaining the perimeter fencing. Groundwater beneath and in the vicinity of the stockpiles is monitored quarterly through a system of ten groundwater monitoring wells. Stormwater is monitored at six locations (four adjacent and two background) around the stockpiles on a precipitation-dependent basis.

Site Characterization and Contaminants Involved

An Initial Site Assessment (ISA) was conducted for the SR-132 West Freeway/Expressway Project in 2003, which identified the stockpiles as potentially containing COPCs associated with the FMC facility. The ISA was followed by a Preliminary Site Investigation (PSI) in 2004 to characterize the stockpiles. The PSI identified the presence of barium in stockpile soil samples at concentrations exceeding commercial/industrial California Human Health Screening Levels (CHHSLs) and cadmium at concentrations exceeding the commercial/industrial CHHSL in Stockpiles #2 and #3.

Additional site investigation was performed in 2006 to further characterize the soil stockpiles, compare analytical results to background conditions and CHHSLs, and included the installation of eight groundwater monitoring wells to assess groundwater quality. The results of analysis of groundwater samples initially collected from the wells in June and October 2006 indicated that groundwater met drinking water standards (primary and secondary Maximum Contaminant Levels – MCL) for those constituents analyzed.

A human health risk assessment (HHRA) was performed in 2007 for the COPCs in the stockpiles and groundwater using multiple exposure scenarios. Metals (notably barium) and polynuclear aromatic hydrocarbons (PAHs) were identified as the primary COPCs in the soil stockpiles and metals and general minerals (e.g. nitrate, total dissolved solids) as the primary COPCs in groundwater. Cadmium was not considered a COPC in the HHRA due to the lack of elevated cadmium concentrations identified during the 2006 SI. Strontium was also not considered a COPC in the HHRA since the maximum strontium concentration was more than two orders of magnitude less than the United States Environmental Protection Agency’s (USEPA) residential Regional Screening Level (RSL) of 47,000 mg/kg. The HHRA concluded that the soil stockpiles do not pose an unacceptable risk or hazard to current or future offsite residents, trespassers, construction workers or hypothetical future shallow groundwater users.
In response to the HHRA, the DTSC requested additional toxicological and site information prior to making a final determination regarding risk or hazard posed by the COPCs in the stockpile soil. A Final Preliminary Endangerment Assessment (PEA) was prepared in 2009 providing the additional information requested by the DTSC. The DTSC concluded that the soil stockpiles, as managed by Caltrans, do not pose a risk to human health for Caltrans workers, trespassers, or residents adjacent to the stockpiles and that Caltrans should continue to limit access to Caltrans-authorized personnel, maintain the perimeter fence, not excavate, grade, remove, or add soil to the Site, and maintain the vegetative cover. They also commented that Caltrans should continue to maintain the groundwater monitoring system associated with the Site.

In 2012, Caltrans entered into a second interagency agreement (IA) with the DTSC to further address the soil in Stockpiles 1 through 3. This IA outlined tasks for additional site characterization, risk evaluation and cleanup level determination, preparation of an FS to evaluate remedial alternatives, this Draft Final RAP to convey site information and remediation plans to the public for review and comment, the necessary CEQA documents, and to conduct public participation activities, quality assurance, and quarterly groundwater monitoring and reporting.

In conjunction with the planned SR-132 Project, groundwater monitoring was reinitiated and conducted bi-monthly from March 2012 to March 2013. Since June 2013, groundwater monitoring has been conducted on a quarterly basis. Two additional groundwater monitoring wells were installed in May 2012 and incorporated into the monitoring program.

The additional site characterization requested by DTSC and CVRWQCB in the IA was intended to fill potential data gaps including perimeter ROW fenceline stockpile soil sampling to assess potential offsite and vertical migration of contaminants, perimeter stockpile soil sampling to define the lateral stockpile limits to aid in consolidation during future construction of the SR-132 Project, and additional stockpile soil sampling in areas of elevated cadmium concentrations identified in Stockpiles 2 and 3 during the 2004 PSI. A Supplemental Site investigation (SSI) was performed in September 2012 to address these data gaps. Laboratory analysis of soil samples collected from “Fenceline Borings” and “Perimeter Borings” did not detect barium at concentrations exceeding residential or commercial CHHSLs. Strontium was detected at concentrations within the range of background and orders of magnitude below the residential RSL. Cadmium was not detected in any of the soil samples collected from the “Cadmium Borings” advanced in Stockpiles 2 and 3 in areas of elevated cadmium reported in the 2004 PSI.

In 2013 the 2007 HHRA was updated by incorporating soil analytical data generated from the fenceline, perimeter, and additional stockpile sampling and groundwater analytical data generated from bi-monthly sampling events. The SSI data collected in September 2012 and groundwater data collected between March 2012 and March 2013 were compared to the data used in the 2007 HHRA. The 2012
soil and groundwater data was found to be similar to that utilized in the 2007 HHRA and therefore did not increase the conservative risk estimates. The 2007 HHRA was found to still be valid with respect to exposure potential for the resident/trespasser, construction worker and offsite resident, and hypothetical shallow groundwater user. DTSC concurred with the findings of the HHRA Update.

**Scope and Role of the Remediation**

Based on the 2007 HHRA and 2013 update, the DTSC confirmed that the soil stockpiles do not pose a risk to persons on or in the vicinity of the stockpiles as long as the stockpiles are maintained by: continuing to maintain fencing and signage around the stockpiles, to not disturb soil in the stockpiles, to keep a vegetative cover, and to continue to monitor groundwater.

**Proposed Remedial Alternative**

Based on the CERCLA nine-criteria analysis performed in the FS, Alternative 4 – Containment is the recommended alternative. Containment of the stockpiles will be achieved by incorporating the stockpiles as fill in the construction of the SR-132/SR-99 interchange portion of the planned SR-132 Project. The SR-132 Project requires a significant amount of embankment fill and is the reason the stockpiles were placed on the Site in the early 1960s. The stockpile soil will be contained behind retaining walls and bridge abutments and beneath roadway pavement thereby preventing potential exposure to the soil and stormwater infiltration or erosion.

The project will be constructed in two phases – an interim progress phase to be completed by 2018 and ultimate build-out phase to be completed by 2028. The interim progress phase will consist of a two-lane roadway, which will be constructed over the southern portions of Stockpiles 1 and 2. During this phase, the northern portions of Stockpiles 1 and 2 will not be contained beneath roadways and behind retaining walls and bridge abutments, but will be graded for drainage and capped with a minimum 6- to 12-inch-thick vegetated, clean soil cap. The ultimate build-out will include complete containment of the stockpiles within the project behind retaining walls, bridge abutments, and beneath roadway pavement. The median between the eastbound and westbound lanes of SR-132 will be covered either by pavement or a synthetic liner and clean soil layer.

Stockpile 3 is planned to be entirely contained within the interim progress phase of the Project. As much of Stockpile 3 as possible will be placed in the stockpile fill consolidation zone within the eastern abutment for the SR-132 bridge over SR-99. The remainder of Stockpile 3 will then be placed in the stockpile fill consolidation zone of Stockpile 2.

The primary factors which support containment as the preferred remedy are: (1) it is effective in providing long-term, overall protection of human health and the environment; (2) it is technically feasible; (3) it is cost-effective because funding is available for construction of the SR-132 Project;
and (4) it will help minimize the potential for contaminants to migrate to groundwater or to be eroded by stormwater runoff.

**Other Remedial Alternatives Considered**

Other alternatives that were considered in the FS include:

- No action,
- Institutional controls, and
- Removal of the stockpiles and offsite disposal.

No action would provide the lowest level of overall protection of human health and the environment of the four alternatives considered. No action would have the lowest level of regulatory acceptance because of the lack of site management and monitoring and would likely have the lowest level of community acceptance due to the perceived threat to human health and the environment. This is the least costly of the alternatives and is the most implementable.

Institutional controls include the site management activities that DTSC stated would be necessary to ensure that the stockpiles in their current condition do not represent a risk to human health or the environment. Management includes limiting access to only Caltrans-authorized personnel, regularly inspecting and maintaining the perimeter fence, prohibiting any soil disturbing activities or placement of other soil on the Site, maintaining the current vegetative cover, and continuing to maintain the groundwater monitoring programs for the Site. Maintaining the institutional controls would provide a higher level of protection to human health and the environment than no action and has regulatory acceptance by the DTSC. Similar to no action, though, this alternative may not be acceptable to the community due to the perceived threat to human health and the environment. This alternative is the second lowest in cost and the second most implementable.

Removal of the stockpiles and disposal at an offsite landfill would provide the greatest degree of overall protection of human health and the environment and may be the most acceptable to the community. Short-term impacts would be the greatest with this alternative due to potential air quality and traffic impacts. Air emissions from soil removal equipment (e.g., graders, excavators, loaders) and trucking will be greatest with this alternative. This alternative would also have the highest cost of the four, and funding is not currently identified for removal. This alternative could be performed in compliance with State and Federal requirements. Although technically implementable, it is the least implementable of the four because with construction of the SR-132 Project and removal of the stockpiles, which were placed specifically for the project, they would have to be replaced with an even greater amount of clean soil fill in order to build the project. This would pose an impact to funding and delay in the construction of the project.
This Draft Final RAP will be made available to the public for a 30-day review and comment period. The Draft Final RAP will be available at public repositories including DTSC offices and a local public repository to be determined. Notification of the schedule of the public review and comment period will also be made in local newspapers and posted at the Site. The public is invited to review the Draft Final RAP and provide input during this time. The DTSC and CRWQCB will review all comments and provide responses in a responsiveness summary. In addition, a public meeting will be held during the 30-day public review and comment period to further describe the project, the remedy selection process, the selected remedy, and to hear community input. The place and schedule for the public meeting will also be noticed in local newspapers, via a fact sheet that will mailed to nearby residents and other interested parties, and posted at the Site.
1.0 INTRODUCTION

This Draft Final Remedial Action Plan (RAP) was prepared on behalf of the California Department of Transportation (Caltrans) for the Caltrans Modesto Soil Stockpiles (the Site) located south of State Route (SR)-99/Kansas Avenue interchange in Modesto, Stanislaus County, California (Figure 1). Caltrans is in the process of finalizing the draft environmental impact report (EIR) in accordance with the California Environmental Quality Act (CEQA) for the proposed SR-132 West Freeway/Expressway Project (the SR-132 Project) that is being developed in coordination with Stanislaus Council of Governments (StanCOG). Both the California Environmental Protection Agency (Cal-EPA), Department of Toxic Substances Control (DTSC) and the Central Valley Regional Water Quality Control Board (CVRWQCB) will be reviewing agencies for the EIR.

The SR-132 Project will result in the ultimate build-out of a four-lane expressway by 2028. An interim progress phase will include construction of the SR-132 West/6th Street and SR-132/East/5th Street extensions, two of four traffic lanes from east of SR-99 to North Dakota Avenue, the Carpenter Road interchange, and the SR-132 roadway structures across Emerald Avenue and SR-99 by 2018. The ultimate build-out phase will include highway widening to four traffic lanes, construction of structures to accommodate the roadway widening along SR-132, and the SR-99/SR-132 interchange with related improvements along SR-99 by 2028.

The stockpiles, portions of which contain elevated levels of barium, are planned to be contained within the project by utilizing them as embankment material for roadway construction, retaining wall backfill, and bridge abutments. It is anticipated that remedial and contour cut/fill grading will be necessary to achieve final finish grades and to properly consolidate and contain the existing soil stockpiles.

1.1 Purpose and Organization of the RAP

The purpose of this Draft Final RAP is to describe the remedial action evaluation and selection process for the Site, explain the preferred remedial action alternative and the reasons for the preference; describe other remedial alternatives considered, and solicit public review and comments. The Draft Final RAP is organized as follows:

- **Section 1.0 Introduction** – includes a description of the Site and its history with respect to the origin of the stockpiles, a summary of previous site characterization activities, and a description of site physical conditions including geologic, hydrogeologic, geotechnical characteristics, stormwater, and background soil conditions.

- **Section 2.0 Nature and Extent of Impacts** - summarizes the results of characterization to identify and assess the nature and extent of contaminants of potential concern (COPC) at the Site. A conceptual site exposure model (CSEM) depicting sources of COPCs, release mechanisms, exposure routes, and receptors is presented in this section.
Section 3.0 Remedial Action Objective - summarizes a human health risk assessment (HHRA) and an HHRA Update for the Site performed based on COPC concentrations in the stockpiles. Applicable or relevant and appropriate requirements (ARAR) for implementation of the selected remedial alternative are also summarized.

Section 4.0 Summary of Feasibility Study - summarizes a Feasibility Study (FS) which evaluated potential remedial alternatives to address the COPCs and selected the most appropriate one.

Section 5.0 Preliminary Remedial Design for Soil Remedy – presents a conceptual design for the recommended remedial alternative.

Section 6.0 Land Use Controls – summarizes land use controls that would be put in place to limit land use on the Site.

Section 7.0 Monitoring and Reporting – describes monitoring that would be performed to ensure that the implemented remedial alternative continues to be effective.

Section 8.0 Implementation Schedule – provides a schedule for implementation of the recommended remedial alternative.

Section 9.0 – Health and Safety Plan includes a Health and Safety Plan (HSP) for use during implementation of the recommended remedial alternative.

Section 10.0 – CEQA summarizes the measures taken to satisfy the California Environmental Quality Act (CEQA)

Section 11.0 – Public Participation describes public participation efforts including a Public Participation Plan (currently being prepared by the DTSC), public notices, fact sheets, public hearings, and public comment on the Draft Final RAP.

This Draft Final RAP has been prepared in general accordance with Appendix C2 (Remedial Action Plan Sample) of the DTSC’s Proven Technologies and Remedies Guidance, Remediation of Metals in Soil dated August 29, 2008.

1.2 Site Description

The Site consists of three separate soil stockpiles within Caltrans right-of-way (ROW) located south of the SR-99/Kansas Avenue interchange, which are planned to be used for the SR-132 Project. The following is a summary of the configuration, orientation, size, and surrounding vicinity of each stockpile:

- **Stockpile #1** is located south of Kansas Avenue and west of Emerald Avenue. It is approximately 600 feet long in the east-west direction, 160 feet wide, and has an estimated volume of approximately 34,000 cubic yards (yd³). It is bounded by commercial/light industrial development to the north and single-family residential to the south. To the west is undeveloped ROW, and to the east is an approximately 240 feet long undeveloped section of ROW and North Emerald Avenue.

- **Stockpile #2** is located south of Kansas Avenue, between Emerald Avenue and SR-99. It is approximately 1,650 feet long in the east-west direction, 160 feet wide, and has an estimated volume of approximately 102,000 yd³. It is bounded by commercial/light
industrial development to the north and single-family residential to the south. To the west is North Emerald Avenue, and to the east is SR-99.

- **Stockpile #3** is located south of Kansas Avenue and east of SR-99. It has a curvilinear shape extending northwest to southeast, concave to the southwest, with a length of approximately 1,100 feet and a width of approximately 120 feet. It has an estimated volume of approximately 24,000 yd³. It is bounded by SR-99 to the south and west and commercial/light industrial development to the north and east. The Modesto Irrigation District (MID) Lateral #4 canal concrete box culvert extends beneath its southeastern end.

The stockpiles are enclosed within security fencing and bordered by adjacent property boundary fencing/walls or structures. The stockpiles, ROW boundaries, and surrounding vicinity are depicted on the Site Plan (Figure 2).

### 1.3 Site History

From the 1930s to 1970s, property beneath and northeast of the SR-99/Kansas Avenue Interchange was occupied by chemical processing facilities operated by Barium Products LTD, Westvaco Chlorine Products Corporation, and Food Machinery and Chemical Corporation (FMC). Ores and minerals including barite (barium sulfate) and celestite (strontium sulfate) were processed for use in greases, lubricating oil and pigment blanks. Sodium sulfide was generated as a by-product and sold as a caustic and reagent.

From the 1950s to the 1970s, liquid residue (“tailings”) generated by FMC at this facility was discharged to unlined evaporation ponds. In 1961, the State purchased a 4.3-acre parcel in the southwestern portion of the FMC facility, including a portion of the ponds, for the construction of the SR-99 freeway through Modesto. Pond tailings and underlying soils from the FMC site along with native soils excavated south of the SR-99/Kansas Avenue interchange were placed to create the three stockpiles that exist today.

In order to establish the timing of placement of the stockpile material within the boundaries of Caltrans’ ROW, aerial photographs from 1963 and 1967 (Figures 3a and 3b, respectively) were reviewed. The 1963 photograph shows grading/construction of SR-99 including the southwestern portion of the FMC property, interchange ramps at Kansas Avenue, and placement of Stockpiles 2 and 3. The Kansas Avenue overpass appears to have been completed. Haul roads to Stockpiles 2 and 3 were within Caltrans ROW. Adjacent property conditions included rural residential and agricultural property west of Emerald Avenue in the current location of Stockpile 1. Residential development was adjacent to the south of Stockpile 2. The areas north and northeast of Stockpiles 2 and 3 were rural residential, agricultural land, and commercial/industrial businesses.

The 1967 photograph shows that SR-99 north and south of the Kansas Avenue interchange had been completed, and Stockpiles 1, 2 and 3 existed essentially as they do today. Property conditions adjacent to Stockpile 1 consisted of rural agricultural property and recent residential subdivision development.
along the western half of the southerly stockpile boundary. Haul roads to Stockpile 1 were within Caltrans ROW.

1.4 Site Characterization

Shaw Environmental, Inc. (Shaw) conducted an Initial Site Assessment (ISA) for the SR-132 West Freeway/Expressway Project in 2003. The ISA identified a potential for the soil stockpiles within the SR-132 ROW to contain residual chemicals associated with the former FMC impoundments. Shaw then conducted a Preliminary Site Investigation (PSI) in 2004 to characterize the stockpiles. The PSI consisted of drilling 50 borings into the stockpiles, underlying native soil, and background soil from which they collected soil samples and had them analyzed for heavy metals, polycyclic aromatic hydrocarbons (PAH), nitrate, and pH. The analytical results indicated elevated barium concentrations in stockpile soil samples exceeding commercial/industrial California Human Health Screening Levels (CHHSL). Cadmium concentrations exceeding the commercial/industrial CHHSL were also detected in soil samples collected from 8 of 25 borings in Stockpile 2 and from 2 of 10 borings in Stockpile 3.

In accordance with a DTSC/Caltrans 2006 Interagency Agreement (IA) and the requirement to complete a Preliminary Endangerment Assessment (PEA), Shaw conducted additional site investigation (SI) in 2006 to further characterize the soil stockpiles and compare the analytical data to background conditions and CHHSLs. They also installed eight groundwater monitoring wells in order to assess groundwater quality. The 2004 and 2006 Shaw investigations found that the stockpiles are primarily comprised of layered, poorly graded sand and silty sand similar to underlying native alluvial deposits of the Modesto Formation. The average maximum stockpile fill thickness was determined to be approximately 20 feet. Groundwater was encountered in the project vicinity at depths between 30 and 40 feet (below natural grade) with flow toward the southeast. The results of analysis of groundwater samples collected from the eight monitoring wells in June and October 2006 indicated that groundwater met drinking water standards (primary and secondary Maximum Contaminant Levels – MCL) for those constituents analyzed.

Shaw prepared an HHRA in 2007 for the COPCs in the stockpiles and groundwater using multiple exposure scenarios. Metals (notably barium) and PAHs were identified as the primary COPCs in the soil stockpiles and metals and general minerals (e.g. nitrate, total dissolved solids) as the primary COPCs in groundwater. For the purposes of the HHRA, Shaw did not identify cadmium as a COPC due to the lack of elevated cadmium concentrations reported for soil samples collected during the 2006 SI. Shaw also did not identify strontium as a COPC in the HHRA since the maximum strontium concentration of 231 milligrams per kilogram (mg/kg) reported in the Shaw 2004 PSI is more than two orders of magnitude less than the United States Environmental Protection Agency’s (USEPA) residential Regional Screening Level (RSL) of 47,000 mg/kg. There is no CHHSL for strontium. The results of the HHRA indicated that the soil stockpiles do not pose an unacceptable risk or hazard to current or future offsite residents, trespassers, construction workers or hypothetical future shallow groundwater users.
In response to the HHRA, the DTSC issued an August 2007 letter that requested additional toxicological and site information prior to making a final determination regarding risk or hazard posed by the COPCs in the stockpile material. Shaw prepared a Final PEA and a Response to Comments document in 2009 to summarize the findings of previous reports prepared for the soil stockpiles and to provide the additional information requested by the DTSC. In a letter dated December 17, 2009, the DTSC responded to the Final PEA stating that:

“DTSC finds that the soil stockpiles, as currently managed by Caltrans on Caltrans property, do not pose a risk to human health for: 1) Caltrans workers who access the fenced site to conduct mowing operations, conduct fence repairs, or other routine activities; 2) trespassers; and 3) residents adjacent to the stockpiles. Until such time that the State Route 132/99 Interchange project is constructed and/or the final disposition of the soil stockpiles is determined, Caltrans should continue to manage the soil stockpiles by: 1) limiting access to Caltrans authorized personnel; 2) inspecting and maintaining the chain-link fence; 3) prohibiting any activities involving excavation/grading, off-site removal of soil, or placement of other soil on the Site; and 4) maintaining the current grade and vegetative cover. Caltrans should also maintain the existing groundwater monitoring system associated with the Site.”

In conjunction with activities associated with the SR-132 Project, groundwater monitoring was reinitiated and conducted bi-monthly from March 2012 to March 2013. Beginning in June 2013, groundwater monitoring is being conducted on a quarterly basis.

Caltrans and the DTSC, in cooperation with the CVRWQCB, entered into a second IA dated June 22, 2012, to further address the soil in Stockpiles 1 through 3. This IA outlined tasks for additional site characterization, risk evaluation and cleanup level determination, an FS to evaluate remedial alternatives, preparation of a RAP, preparation of the necessary CEQA documents, public participation activities, quality assurance, and quarterly groundwater monitoring and reporting.

Upgradient wells MW-9 and MW-10 were installed immediately south of Kansas Avenue and west and east of SR-99 (Figure 2), respectively, in May 2012. Groundwater samples were initially collected in these wells in June 2012 then incorporated into subsequent bi-monthly sampling rounds.

The analytical results from the 2012 and 2013 groundwater monitoring events are similar to the results from 2006, with primary analytes reported at concentrations less than California MCLs.
On July 26, 2012, a meeting was held with representatives from Geocon, Caltrans, DTSC, and CVRWQCB to review existing site data and discuss potential remedies to address human health exposure and environmental impacts associated with the barium-impacted soil stockpiles. DTSC and the CVRWQCB requested additional sampling to fill potential data gaps in the following areas:

1. Perimeter ROW fenceline stockpile soil sampling to assess potential offsite and vertical migration of contaminants.
2. Perimeter stockpile soil sampling to define the lateral stockpile limits to aid in consolidation during future construction of the SR-132 Project.
3. Additional stockpile soil sampling in areas of elevated cadmium concentrations identified in Stockpiles 2 and 3 during the Shaw 2004 PSI.

Geocon performed a Supplemental Site investigation (SSI) in September 2012 to address these data gaps. Laboratory analysis of 97 soil samples collected from 35 “Fenceline Borings” and 28 “Perimeter Borings” did not detect barium at concentrations exceeding residential or commercial CHHSLs. Barium concentrations in the surface soil samples ranged to a maximum of 4,300 mg/kg. Barium concentrations were consistently lower in the bottom of boring soil samples (2 to 5 feet) collected from the Fenceline Borings compared to those reported for the surface samples. Strontium was detected at concentrations up to 110 mg/kg for the Fenceline Boring surface soil samples, which is within the range of background and orders of magnitude below the residential RSL of 47,000 mg/kg. Cadmium was not detected in any of the soil samples collected from the “Cadmium Borings” advanced in Stockpiles 2 and 3 in areas of elevated cadmium reported in the Shaw 2004 PSI.

1.5 Previous Removal Actions Taken

To date, the only removal action taken on the Site has been excavation and landfill disposal of a portion of Stockpile 3 as part of Caltrans’ rehabilitation of the off-ramp to Kansas Avenue to improve traffic safety and meet current design standards. The highway safety improvement project included widening the off-ramp shoulder areas and associated drainage features. Shoulder widening on the east side of the off-ramp included construction of a retaining wall against the existing Stockpile 3 embankment and laying back the embankment slope.

Geocon previously completed eight direct-push borings and eleven hand-auger borings within the embankment area. Barium was detected in each sample at concentrations ranging from 34 to 1,600 mg/kg, all less than the residential and commercial/industrial CHHSLs for barium of 5,200 and 63,000 mg/kg, respectively. Based on this data, data previously presented in the PEA, and review by DTSC, the excavated soil stockpile materials were designated for offsite disposal as non-hazardous soil to an accepting licensed landfill facility. The DTSC conveyed their finding that offsite management of the soil from Stockpile 3 did not pose a threat to human health or the environment in a letter dated August 30, 2012.
The Stockpile 3 Excavation Monitoring Plan completed in June 2012 described procedures for air monitoring and verification of completed stockpile excavations during construction of the highway off-ramp improvements. Approximately 2,800 yd³ of the Stockpile 3 soil embankment were excavated over ten days between September 7 and 26, 2012. The excavated stockpile material was directly loaded into covered trucks for transport to the Forward Class II landfill facility in Manteca, California, under non-hazardous waste manifests. Dust suppression provided by the Caltrans contractor during the stockpile excavation and loading activities consisted of pre-soaking and water spray during the stockpile excavation activities. A Geocon project scientist, working under the direct supervision of a California Professional Geologist (PG), oversaw the excavation activities. The individual performing the oversight also prepared and maintained daily field logs that documented the daily quantities of materials excavated. The project geologist provided a determination when the planned construction excavation limits within Stockpile 3 had been completed, exposing native soil of the Modesto Formation (Geocon, June 2012).

Ambient perimeter air was monitored during Stockpile 3 excavation and loading activities to document total airborne particulate concentrations in accordance with the air monitoring plan. The results of air monitoring aided in assessing the effectiveness of the contractor’s dust control measures. Air monitoring tasks included:

- Documenting and photographing the locations of air monitoring stations;
- Monitoring daily meteorological forecast to anticipate onsite wind direction and speed; and
- Verifying that downwind direct-read, real-time particulate counter readings (pDR-1200 monitors) did not exceed the Fence Line Total Dust Action Level of 4.0 milligrams per cubic meter (mg/m³).

In addition to the data logging programmed in the real-time monitors, field personnel checked each real-time air monitoring instrument hourly to ensure proper operation and battery capacity and also recorded the time-weighted average airborne dust readings hourly.

Direct read (pDR-1200) and laboratory air sample results for the project indicated that airborne levels of lead and barium were well below levels of concern during excavation activities at Stockpile 3. The removal activities are documented in the Stockpile 3 Excavation Summary Report, Modesto Ramp Rehabilitation Project, State Route 99 Kansas Avenue Northbound Off-Ramp, Modesto, California, dated March 15, 2013.

1.6 Site Geology and Hydrogeology

The following subsections provide a summary of the regional and local topographic, geologic, soil, and hydrogeologic conditions associated with the Site.
1.6.1 Topography

The United States Geological Survey (USGS) *Salida, California, 7.5-minute topographic map* indicates the Site is located within Township 3 South, Range 9 East, with Stockpiles 1 and 2 in the southern half of Section 30, and Stockpile 3 in the southwestern quarter of Section 29, Mount Diablo baseline and meridian. Based on contour lines on the topographic map, with the exception of the SR-99 Kansas Avenue underpass, the vicinity surrounding the Site is relatively flat-lying at an elevation of approximately 84 feet above mean sea level (MSL), and a low westerly-trending surface gradient (USGS, 1987). The stockpiles range in height from approximately 2 to 20 feet above the surrounding ground surface.

1.6.2 Geologic and Soil Conditions

The Site is located within the northern San Joaquin Valley of California’s Great Valley geomorphic province. The San Joaquin Valley is an asymmetrical structural trough bound by the Sacramento Valley to the north, the Coast Ranges to the west, and the Sierra Nevada to the east and south. The base of the Sierra Nevada slopes westward beneath the San Joaquin Valley to its greatest depth near the valley’s western margin. The San Joaquin Valley has been filled with several thousand feet of sedimentary deposits eroded from the Sierra Nevada, which include deposits of sands, silts, clays, and gravels from western-flowing drainages and their tributaries. Sediments in the Modesto region were deposited primarily by the Stanislaus and Tuolumne Rivers to the north and south of the Site, respectively.

The Site is underlain by sediments of the late Pleistocene to early Holocene age Modesto formation, which were derived from granitic rocks of the Sierra Nevada and deposited in an alluvial environment. The Modesto formation is composed primarily of sand, silt, and silty sand, with lesser amounts of laterally discontinuous clay and silty clay. The thickness of the Modesto formation is variable, with a regional thickness of approximately 100 feet in the vicinity of the Site (California Division of Mines and Geology [CDMG], 1962).

The Modesto formation is underlain by Pleistocene age sands and silts of the Riverbank and Turlock Lake formations, and pediment gravels of the North Merced formation. Tertiary age pediment gravels of metamorphic origin, and clays, tuffs, and ash of volcanic origin underlie these formations, with Cretaceous age marine sandstones and shale of the Great Valley sequence beneath the Tertiary formations at regional depths of approximately 3,000 feet (CDMG, 1962).

Shaw’s SI Report (*Shaw, 2007a and Appendix A of the HHRA*) indicates that the onsite stockpile materials were placed over the native Modesto formation sediments and that there appeared to be some undulation in the original ground surface. The stockpile boring logs and associated cross-sections in Shaw’s report indicate that the Modesto formation is situated beneath the onsite stockpiles at depths ranging from approximately 2 feet near the western end of Stockpile 1 to approximately 20 feet near the western end of Stockpile 3 (*Shaw, 2007a*). Shaw described the native sedimentary materials encountered
in the Modesto formation as primarily consisting of silt, silty sand, and sand, with lesser amounts of laterally discontinuous clay and silty clay. Shaw also indicated that fill materials encountered in the stockpiles were “generally similar” to the native soils; however, distinct layers of gray and bluish-gray non-native materials were encountered in the stockpile materials (Shaw, 2007a).

According to the United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) website (http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx), the soil onsite primarily consists of Dinuba fine sandy loam to a depth of approximately 10 inches that was derived from granitic sediments deposited in an alluvial environment. The Dinuba fine sandy loam is described as moderately well-drained and underlain by sandy loam to a depth of approximately 28 inches, and very fine sand and silt loam to a depth of approximately 60 inches. The NRCS website database also indicates that native soil on the approximate southern one-third of the Site beneath Stockpile 1 consists of Modesto loam to a depth of approximately 12 inches that was also derived from granitic sediments deposited in an alluvial environment. The Modesto loam is described as moderately well-drained and underlain by clay to a depth of approximately 35 inches, sandy clay loam to a depth of approximately 55 inches, and silty clay to a depth of approximately 62 inches.

1.6.3 Geotechnical Characteristics

In June 2012, Kleinfelder performed a geotechnical investigation of the stockpiles. The investigation included nine hollow-stem auger borings to a depth of 41.5 feet below the surfaces of the stockpiles. As reported in their September 2012 Final Geotechnical Design Report, stockpile soil was encountered to depths of approximately 10 to 20 feet at each boring location. The soil conditions were reported as loose to very dense, interbedded layers of silty sand, sandy silt with some layers of hard sandy clay. Debris consisting of asphalt, metal and brick at depths between 3 and 10 feet in boring A-12-002 advanced on the eastern portion of Stockpile 1 was also reported. Groundwater was not encountered to the maximum depth explored.

Kleinfelder presented the following specific conclusions and recommendations to assist in design and construction of the proposed SR-132 highway improvements in the vicinity of the soil stockpiles:

- Embankment foundation soil is adequate to support the proposed embankment without adverse consequences.
- Final unpaved slopes should be 2:1 or flatter and be protected from erosion by proper management of drainage, planting drought resistant vegetation, and necessary maintenance.
- No surface water should be allowed to pond near the tops of slopes or discharge over the slope face.
- Remove any debris materials encountered in the stockpile fill soil during planned highway construction excavations.
Kleinfelder concluded that the soil encountered in the borings is “geotechnically adequate for design and significant removal and replacement should not be necessary” to support the planned highway improvements including placement from 5 to 20 feet of additional fill material on top of the stockpiles and the construction of retaining walls along the length of Stockpiles 1 and 2 (Kleinfelder, 2012).

1.6.4 Hydrogeologic Conditions

The Site is situated within the Modesto Subbasin of the San Joaquin Basin Hydrologic Study Area. The Modesto Subbasin is situated between the Stanislaus and Tuolumne Rivers to the north and south, respectively, and is bounded by the Sierra Nevada foothills to the east, and the San Joaquin River to the west. The San Joaquin Basin Hydrologic Study Area includes the southern two-thirds of the Great Valley. Movement of groundwater within the San Joaquin Valley is generally from the flanks of the valley toward the axis of the trough beneath the western side of the valley, then subsequently north toward the Sacramento – San Joaquin Delta. In the San Joaquin Valley groundwater occurs in unconfined and semi-confined aquifers (California Department of Water Resources [DWR], 1980).

The San Joaquin Valley is an area of substantial groundwater withdrawal and recharge due to municipal, industrial, and agricultural use. Wide fluctuations in groundwater levels are not uncommon due to variations in annual rainfall, municipal pumping, and irrigation practices. The Lines of Equal Depth to Water in Wells, Unconfined Aquifer, San Joaquin Valley, Spring 2010 issued by the DWR indicates a regional depth to groundwater of approximately 40 feet beneath the Site, with a generally south-southeasterly flow direction.

The hydrogeology of the FMC facility, approximately 1,100 feet north of the Site, has been characterized by several studies since the early 1980s. GeoTrans, Inc’s report: Addendum to Comprehensive Remedial Investigations Report, dated January 2005, provides the following description of the hydrogeology associated with FMC facility:

“The site is underlain by laterally discontinuous and unconsolidated sand and silty sand associated with the Modesto and Riverbank Formations. First-encountered groundwater is approximately 30 feet below ground surface (bgs) under confined to semi-confined conditions. A deeper aquifer is present at a depth of 165 feet bgs and separated from the upper zone by a blue clay aquitard. The upper water bearing unit has been divided into two zones: a shallow zone from first encountered groundwater to 120 feet bgs and a deeper zone from 140 feet bgs to the top of the aquitard. Groundwater flow within the upper zone is toward the southeast under a gradient of 0.002 ft/ft.”

As described in Section 1.4, Shaw installed eight groundwater monitoring wells adjacent to the three stockpiles in June 2006. Each well was installed into unconsolidated sand, silty sand, and silt layers within the Modesto formation underlying the Site (Shaw 2007b). The wells were completed within the shallow zone of the upper aquifer as described by GeoTrans. The lithology encountered in the well borings included interbedded (laterally discontinuous) sands, silts, and clays. Shallow zone groundwater
beneath the stockpiles was encountered at a depth of approximately 35 feet under unconfined to semi-confined conditions. Shaw determined that groundwater flow is toward the southeast at a gradient of approximately 0.001. The shallow aquifer conditions beneath the Site and the adjacent FMC facility are similar and representative of the local hydrogeologic conditions (Shaw 2007b).

In June 2013, depth to groundwater at the Site ranged from 31.73 (MW-1) to 40.11 (MW-5) feet below top of casing (TOC). Based on the groundwater elevation data, the groundwater flow is toward the east-southeast at an average gradient of 0.0005, which is generally consistent with historical flow.

1.6.5 Stockpile Stormwater

Shaw performed stormwater monitoring for the soil stockpiles in March 2006 in general accordance with their Final Surface Water Sampling and Analysis Plan (Shaw, January 2006). Seven stormwater runoff samples were collected from constructed impoundments during a qualifying rain event (visible runoff and 72 hours of prior dry weather). Shaw reported that they did not observe stormwater flowing away from the Caltrans ROW. The samples were analyzed for dissolved metals, PAHs, nitrate, sulfate, and sulfide.

With the sole exception of an elevated barium concentration reported for one stormwater sample collected from the northwestern side of Stockpile 3 (sample SW03), the stormwater samples did not contain target analytes exceeding MCLs or determined site background levels. Barium was reported at a concentration of 2,000 micrograms per liter (µg/l) in sample SW03 exceeding the MCL of 1,000 µg/l. Barium in the six other stormwater samples ranged from 16 to 190 µg/l. Shaw concluded that the elevated barium concentration reported for sample SW03 was isolated and that runoff in that area was confined to Caltrans ROW. Based on these results and due to site topography, vegetation and limited rainfall events, DTSC concluded that stormwater was not a chronic exposure issue. Therefore, surface water was not considered as a pathway in the HHRA.

Geocon prepared an addendum to the Shaw SAP to resume stormwater sampling at the soil stockpiles. The addendum identified revised sampling locations including ponding that was observed at the western end of Stockpile 2 adjacent to Emerald Avenue during a rain event on November 28, 2012.

Stormwater was most recently sampled on February 28, 2014. Stormwater samples were collected from four locations adjacent to the stockpiles and two background locations away from the stockpiles and analyzed for dissolved metals, chloride, nitrate as nitrogen, sulfate, sulfide, total alkalinity, bicarbonate alkalinity, and carbonate alkalinity, total dissolve solids (TDS), and total suspended solids (TSS). The results of this monitoring event were presented in a report by Geocon dated April 7, 2014 (Geocon, April 2014). Analysis results were generally consistent with background values; with the exception of barium for a runoff sample collected adjacent to the south side of Stockpile 2, and strontium for all four stormwater samples, which were higher than those reported for background samples.
1.7 Background COPC Concentrations

Shaw assessed background concentrations of COPCs during the 2006 SI for comparison to COPC concentrations in the stockpiles. Background soil samples were collected from what is reported as undeveloped and relatively undisturbed ground west of Stockpile 1. Eight soil borings were advanced to depths of 15 feet, and soil samples were collected at depths of 5, 10, and 15 feet. Shaw reported that the soil encountered in the eight background borings was predominantly sand with varying amounts of silt and clay.

The background soil samples were analyzed for inorganics, PAHs, and other inorganics (e.g., nitrate, sulfate, etc.). Shaw calculated 95th percentile upper confidence limits (UCL) for inorganics to establish local background concentrations for the Site. The 95th percentile UCLs could not be calculated for the infrequently detected constituents (e.g., beryllium, cadmium, and mercury) due to small population sizes, so arithmetic means for those constituents were calculated instead. For inorganics that were not detected, a concentration of one-half the detection limit was used as the background concentration. Shaw reported that the background concentrations of metals calculated for undisturbed soil near the stockpiles were in the general range as those determined for the FMC site.

Four background samples collected from various depths were also analyzed for PAHs, which were not detected (Shaw, 2007a).
2.0 NATURE AND EXTENT OF IMPACTS

This section describes the nature and extent of COPCs in the stockpiles.

2.1 Conceptual Site Exposure Model

Shaw prepared a Conceptual Site Exposure Model (CSEM) as part of their HHRA (Shaw, 2007c). The CSEM identifies primary sources of COPCs, exposure routes, receptor scenarios, and identifies whether they are “complete” or “incomplete.” The CSEM concluded that the offsite resident and trespasser were the current human receptors. Future receptors during the project would include the future construction worker and future offsite resident.

Their CSEM is shown on Figure 4. The CSEM shows that potential exposure routes for the current resident/trespasser exposure scenario include incidental ingestion, inhalation of dust, and dermal contact. Exposure routes for the future land use scenario would include incidental ingestion, dermal contact, and inhalation of dust for the construction worker.

An offsite resident or trespasser would not have access to the Site during construction; therefore, direct-contact exposure pathways would not be relevant for the resident/trespasser. However, dust could be carried offsite during construction activities. Therefore, Shaw evaluated inhalation for the offsite resident for the future construction scenario.

2.2 Soil Impacts

As described in Section 1.4, the nature and extent of COPCs in the stockpiles have been characterized through several investigations including the PSI conducted by Shaw in 2004, the SI in 2006, and Geocon’s SSI in September 2012. The results of these investigations are summarized below.

2.2.1 Shaw 2004 PSI

Shaw collected 194 stockpile soil and 49 native soil samples (soil from beneath the stockpiles) from 50 direct-push borings advanced through the soil stockpiles in January 2004 and, as described in Section 1.7, they also collected eight “background” soil samples from four borings completed in assumed non-impacted areas. Each soil sample was analyzed for metals including antimony, arsenic, barium, chromium, iron and strontium. Selected soil samples were further analyzed for PAHs, nitrate and pH.

Shaw identified barium as the only metal detected at elevated concentrations of concern and as the primary COPC (Shaw, 2004). Barium was detected at maximum concentrations of 1,730 mg/kg for Stockpile 1, 60,700 mg/kg for Stockpile 2, and 44,900 mg/kg for Stockpile 3. Barium concentrations reported for the eight background soil samples ranged from 57 to 888 mg/kg.
PAHs were not detected in 125 stockpile soil, native soil, or background soil samples analyzed. Nitrate was detected at a maximum concentration of 310 mg/kg in 42 of 54 stockpile soil, native soil, and background soil samples analyzed, though not at concentrations of concern. Reported soil pH values ranged from 6.6 to 11.2.

In May 2004, 86 of the stockpile soil samples and 24 of the native soil samples that were collected in January 2004 were reanalyzed for metals. The original analysis data and the reanalysis data were reported together in the July 2004 Remedial Action Options Report (RAOR) (Shaw, 2004). The results of the additional analysis did not identify metals other than barium at concentrations of concern in Stockpiles 2 and 3. However, barium was reported as having been detected in several samples from Stockpiles 2 and 3 at concentrations three to five times higher than were reported for the same samples in February 2004. This increase in reported concentrations occurred mainly with those samples that had the highest barium concentrations to begin with in February 2004. No explanation was provided by the lab or Shaw for the reporting differences. One possibility may be that the material in the stockpiles with the highest concentrations of barium may also have a great degree of heterogeneity such that a sample aliquot taken from one portion of the sample and analyzed may have a much different barium concentration than an aliquot from another portion of the same sample. However, if heterogeneity were the reason for the variability in concentrations, it would be expected then that the variability would manifest itself in both increased and decreased concentrations. In this case there is a strong bias towards large increases in concentrations from the February 2004 results to the May 2004 results, with very few, smaller magnitude decreases. Other possible explanations may be related to laboratory errors.

Lead and arsenic were detected in all three stockpiles at concentrations exceeding background values. As previously discussed, elevated cadmium concentrations exceeding the commercial/industrial CHHSLs were detected in soil samples collected from Stockpiles 2 and 3 in January 2004.

2.2.2 Shaw 2006 SI

Shaw completed additional soil stockpile characterization activities in May 2006 as reported in their SI Report (Shaw, 2007a, and Appendix A of HHRA). They collected 165 stockpile soil and 89 native soil samples from 51 borings advanced through the stockpiles. Additionally, 24 native soil samples were obtained from eight background borings advanced in Caltrans ROW west of Stockpile 1. Each soil sample was analyzed for total metals. Selected soil samples were further analyzed for soluble barium and lead by the waste extraction test (WET and de-ionized [DI] water-WET), PAHs, and total and soluble (DI-WET) nitrate/sulfate/sulfite.

**Total Metals Analysis Results**

Antimony, selenium and silver were not detected in any of the 278 soil samples analyzed. Beryllium, cadmium, mercury, molybdenum and thallium were detected in the stockpile soil samples at low concentrations. Arsenic, chromium, cobalt and copper were detected in the stockpile soil samples at
concentrations slightly exceeding background concentrations. Barium, lead, nickel, vanadium and zinc were detected in the stockpile soil samples at concentrations considerably higher than background values. Barium, the primary COPC, was detected at maximum concentrations of 130 mg/kg in Stockpile 1, 64,000 mg/kg in Stockpile 2, and 72,000 mg/kg in Stockpile 3. Barium concentrations reported for the background soil samples ranged from 17 to 120 mg/kg.

**Soluble Metals Analysis Results**

Thirty-three stockpile soil samples were analyzed for WET and DI-WET soluble barium. Soluble barium concentrations ranged from 39 to 2,300 milligrams per liter (mg/l), 28 of which exceeded the Title 22 California Code of Regulations (CCR) Soluble Threshold Limit Concentration (STLC) for barium of 100 mg/l. Soluble (DI-WET) barium concentrations ranged from 1.8 to 220 mg/l, nine of which exceeded the STLC. The Title 22 criteria cited above for the evaluation of WET and DI-WET analyses applies to non-barite barium compounds. Shaw noted that the barium compounds present at the Site were primarily barite (barium sulfate), and as a result, the Title 22 evaluation criteria are not strictly applicable to the Site.

Only two stockpile soil samples contained total lead concentrations exceeding 50 mg/kg (hazardous waste threshold for requiring WET soluble testing) at concentrations of 150 and 1,500 mg/kg. WET soluble lead was detected in these two samples at 2.9 and 5.7 mg/l, respectively, and DI-WET soluble lead at 0.07 and 0.1 mg/l, respectively.

**Nitrate, Sulfate, and Sulfide Analysis Results**

Sixty-nine soil samples were analyzed for nitrate, sulfate and sulfide. No regulatory screening levels exist for these compounds. Nitrate was detected in the stockpile soil samples at concentrations within the range of background. Sulfate was detected in the stockpile soil samples at concentrations considerably higher than background and appears to correspond to samples with high barium concentrations. Only one stockpile soil sample contained detectable sulfide. DI-WET soluble nitrate concentrations ranged from 0.2 to 2.6 mg/l in 28 of 33 soil samples analyzed, DI-WET soluble sulfate from 0.5 to 14 mg/l in 32 of 33 soil samples analyzed, and DI-WET soluble sulfide was not detected in the 33 soil samples analyzed.

PAHs were detected at low concentrations ranging from 11 to 21 micrograms per kilogram (µg/kg) in 3 of 58 stockpile soil and native soil samples analyzed. PAHs were not detected in the background soil samples.

Shaw utilized the results of the 2006 SI in for the HHRA and summarized the results in the PEA.

**2.2.3 Geocon 2012 SSI**

Geocon completed an SSI in September 2012, which consisted of advancing 68 soil borings and collecting and analyzing soil samples to address potential stockpile and native soil data gaps to update the risk exposure scenarios from the 2007 HHRA prior to regulatory approval of the SR-132 Project. The SSI consisted of following:
Advancing 35 “Fenceline Borings” at stockpile perimeter/fenceline locations adjacent to residential and commercial/industrial development to assess potential offsite and vertical migration of contaminants. Soil samples were collected from the surface and at maximum boring depths ranging from 3 to 5 feet and analyzed for Title 22 metals and strontium.

Advancing 28 “Perimeter Borings” at stockpile perimeter and end locations to define the lateral stockpile limits to aid in consolidation during future highway construction. The surface soil sample collected from each 3-foot-deep boring was analyzed for barium.

Advancing five “Cadmium Borings” in the vicinity of Shaw’s 2004 PSI borings where soil samples were collected and reported to have elevated cadmium concentrations. Soil samples were collected from the Cadmium Borings at the surface and at 5-foot intervals thereafter to the maximum boring depths ranging from 11 to 22 feet. Each soil sample was analyzed for barium and cadmium.

**Fenceline Borings**

None of the metal concentrations reported for the Fenceline Boring soil samples exceeded California hazardous waste thresholds. With the exception of arsenic (within the range of site-specific background), none of the reported metal concentrations exceeded residential CHHSLs. With the exception of barium and lead, the remaining metals concentrations were generally within the range of the site-specific naturally occurring background levels. Barium was detected in each soil sample at concentrations ranging from 140 to 4,300 mg/kg for the surface soil samples and 42 to 680 mg/kg for the deepest soil sample obtained from the Fenceline Borings. At each boring location, the reported barium levels decreased with depth. The majority of the deeper soil samples contained barium within the range of background (47 to 110 mg/kg for 5-foot-deep background soil samples). Surface soil samples collected from five borings located along the north side of Stockpile 2 adjacent to commercial/industrial development contained the highest barium concentrations greater than 1,000 mg/kg. None of the reported barium concentrations exceeded residential or industrial CHHSLs of 5,200 and 63,000 mg/kg, respectively.

**Perimeter Borings**

Barium was detected in each soil sample collected from the Perimeter Borings at concentrations ranging from 76 to 1,600 mg/kg. The majority of the perimeter surface samples contained barium up to 300 mg/kg. Elevated barium concentrations between 710 and 1,600 mg/kg were detected in surface soil samples obtained from borings at the east end of Stockpile 2 and southwest side of Stockpile 3. None of the reported barium concentrations exceeded residential or industrial CHHSLs.

**Cadmium Borings**

Barium was detected in each soil sample obtained from the Cadmium Borings at concentrations ranging from 58 to 130,000 mg/kg. Cadmium was not detected at concentrations exceeding the laboratory reporting limit (RL) of 1.0 mg/kg for each soil sample. The results of the Shaw 2004 PSI identified elevated cadmium concentrations (exceeding the industrial CHHSL for cadmium of 7.5 mg/kg) for eleven soil samples collected from Stockpiles 2 and 3 with corresponding elevated barium concentrations (25,800 to 196,000 mg/kg). Cadmium was not detected at concentrations greater than 1.0 mg/kg for all
348 soil samples analyzed during the Shaw 2006 SI and the Geocon 2012 SSI, including 19 soil samples with reported elevated barium concentrations between 25,000 mg/kg and 130,000 mg/kg. The Shaw 2004 PSI data (provided by Sparger Technology, Inc.), Shaw 2006 SI data (Creek Environmental Laboratories, Inc.), and the Geocon 2012 SSI data (Advanced Technology Laboratories) were generated by three different analytical laboratories. Based on the cumulative cadmium data, it appears the Shaw 2004 PSI cadmium data is neither reproducible nor reliable and represents false positives possibly as result of sample interference/dilution effects due to the associated high barium concentrations.

One soil sample obtained from a Stockpile 2 Cadmium Boring was analyzed for petroleum hydrocarbons and PAHs based on field indicators of potential impacts. Gasoline-range organics were not detected at a concentration exceeding the RL of 1.0 mg/kg. Diesel-range organics were detected at a concentration of 120 mg/kg, slightly higher than the residential/industrial Environmental Screening Level (ESL) established by the San Francisco Bay Area Regional Water Quality Control Board (SFBRWQCB) of 83 mg/kg. Petroleum organics concentrations were compared to ESLs because there are no CHHSLs or other regulatory screening levels for petroleum. The ESL of 83 mg/kg for diesel-range organics is the lowest ESL based on potential leaching to groundwater – the direct-exposure ESLs for residential and industrial land use are 110 and 450 mg/kg, respectively. Oil-range organics were detected at a concentration of 82 mg/kg, less than the residential ESL of 370 mg/kg. PAHs 2-methylnaphthalene, fluorene and phenanthrene were detected at concentrations ranging from 23 to 45 µg/kg, significantly less than their respective residential/industrial ESLs.

The results of the Fenceline and Perimeter Boring soil sample analytical data does not suggest lateral or vertical migration of soil containing metals (notably barium) at concentrations exceeding State and Federal residential human health screening levels (or in the case of arsenic, site-specific background levels) along the stockpile perimeters and adjacent property fencelines. The 1963 and 1967 aerial photographs (Figures 3a and 3b) show that transport and placement of barium-impacted soil materials in Stockpiles 2 and 3 occurred within Caltrans ROW.

Cadmium was not detected in any of the soil samples collected from the Cadmium Borings advanced in Stockpiles 2 and 3 where elevated cadmium was identified in the Shaw 2004 PSI. Cadmium is therefore not considered a COPC for the project site. The results of the SSI satisfied regulatory directives to address the remaining potential environmental assessment data gaps and were utilized to update the 2007 HHRA (Geocon 2013 HHRA Update).

2.3 Groundwater Impacts

Shaw installed eight groundwater monitoring wells adjacent to the stockpiles in May and June 2006 as reported in the May 2007 Site Investigation Report, Groundwater Assessment (Shaw 2007b and Appendix B of HHRA). The results of analysis of groundwater samples collected from the eight monitoring wells in June and October 2006 show that the concentrations of COPCs that were analyzed did not exceed drinking water standards (MCLs).
Caltrans reinitiated groundwater monitoring activities in March 2012 as part of the SR-132 Project. To date, Geocon completed bi-monthly groundwater monitoring events in March, May, July, September and November 2012, and January and March 2013. Beginning with the recent monitoring event conducted in June 2013, groundwater monitoring is being performed on a quarterly basis.

Upgradient wells MW-9 and MW-10 immediately south of Kansas Avenue and west and east of SR 99 were installed and incorporated into subsequent sampling events beginning in June 2012. The results of the 2012 and 2013 groundwater monitoring events are similar to those of the 2006 monitoring events. The COPCs are at concentrations less than California MCLs.
3.0 REMEDIAL ACTION OBJECTIVE

Site characterization revealed the presence of COPCs in soil at the Site. This section summarizes Shaw’s evaluation of COPC concentrations through an HHRA, describes the update of the HHRA using 2012 data, describes the Remedial Action Objective (RAO) for the Site, discusses the ARARs related to remediation, and states the cleanup goal for the project.

3.1 Summary of the 2007 HHRA

The 2007 HHRA is included as Appendix A of the PEA (Shaw, 2009). The risk characterization in the HHRA integrated the selected COPCs, exposure assessment, and toxicity assessment to describe risks to individuals (receptors) in terms of the nature and likelihood of potential adverse health risks for current and future land uses. Shaw’s risk characterization integrated exposure intakes and toxicity values to estimate both cancer risk and non-cancer health effects for the various land use scenarios. Using the available soil data from the investigations of the stockpiles and the assumptions described in the HHRA, the HHRA indicated that neither the current land use nor the proposed future land use scenario pose an unacceptable risk or hazard to Caltrans workers entering the Site for mowing, for trespassers, or for adjacent residents. Additionally, the estimated non-cancer hazard index (HI) for a hypothetical groundwater user is less than the threshold of concern. Therefore, based on the available data, neither soil nor groundwater at the Site is considered to present an unacceptable risk or hazard under the receptor scenarios evaluated in the HHRA.

Three groups of receptors are considered in the HHRA – a current offsite resident/trespasser, a future construction worker, and a future (during construction) offsite resident. The estimated cancer risk, non-cancer HIs, and blood lead concentrations for each receptor group are summarized in the following subsections.

3.1.1 Current Offsite Resident and Trespasser

The 2007 HHRA evaluated the current offsite resident and trespasser for exposure to the COPCs in soil of Stockpile 1 through incidental ingestion, dermal contact, and dust inhalation. The exposure pathway for the offsite resident would mainly be via inhalation while the trespasser could be exposed through all three pathways. The calculated cancer risk and non-cancer HI for the current offsite resident and trespasser receptors exposed to surface soil on Stockpile 1 is 8E-8 and 4E-2, respectively. The estimated excess cancer risk of 8E-8 is much less than the generally used, conservative criterion of 1E-6 (one in one million excess cancer risk) and the estimated HI for non-cancer effects is well below the threshold of 1.
The health risk related to lead in Stockpile 1 estimated in the HHRA uses the maximum detected concentration of lead in Stockpile 1 surface soil in the LeadSpread model. LeadSpread did not indicate that an offsite resident or trespasser would have a blood lead concentration greater than 10 micrograms per deciliter (μg/dL) in the 95th or 99th percentile. Therefore, lead in surface soil of Stockpile 1 does not pose an unacceptable hazard to a current resident/trespasser.

The calculated cancer risk and non-cancer HI for the offsite resident/trespasser receptor exposed to surface soil on Stockpile 2 is reported in the 2007 HHRA as 1E-5 and 0.1, respectively. While the total estimated non-cancer HI is below the threshold of 1, the total estimated cancer risk exceeds the general risk target of 1E-6 for residential exposures. This cancer risk estimate was driven by the large contribution from arsenic in surface soil. The arsenic cancer risk estimate is 1.45E-5 for the offsite resident/trespasser based on the 95th percentile UCL of arsenic in Stockpile 2 of 1.63 mg/kg. However, the background arsenic 95th percentile UCL of 1.15 mg/kg resulted in an estimated cancer risk of 1.15E-5, which is very similar to that for arsenic in Stockpile 2. Therefore, arsenic in surface soil of Stockpile 2 is not included in the final total risk estimate for Stockpile 2. The revised cancer risk estimate, with arsenic excluded, is 1E-7. Additionally, the estimated HI for non-cancer effects is below the threshold of 1. Therefore, surface soil from Stockpile 2 does not pose an unacceptable risk or hazard to a current resident/trespasser receptor.

The assessment of health risk related to lead in Stockpile 2 as reported in the 2007 HHRA uses the 95th percentile UCL for lead in Stockpile 2 surface soil of 30 mg/kg. The results indicate that all percentiles of adults and children would have blood lead concentrations less than 10 μg/dL. Therefore, lead in Stockpile 2 surface soil does not represent an unacceptable hazard.

Shaw evaluated the current offsite resident/trespasser for exposure to COPCs in soil of Stockpile 3 through incidental ingestion, dermal contact, and dust inhalation. The COPCs in Stockpile 3 surface soil are not considered to be carcinogens; therefore, they were not estimated as a cancer risk. The estimated non-cancer HI for the offsite resident/trespasser receptor exposed to surface soil on Stockpile 3 was 0.02, which is well below the threshold of 1.

Shaw also evaluated the health risk related to lead in Stockpile 3 using the 95th UCL for lead of 6.7 mg/kg in the LeadSpread model. LeadSpread did not indicate that offsite residents or trespassers would have a blood lead concentration greater than 10 μg/dL. Therefore, lead in surface soil of Stockpile 3 does not pose an unacceptable hazard to a current resident/trespasser.

### 3.1.2 Future Construction Worker

Shaw evaluated the future construction worker receptor for exposure to COPCs in soil in the future construction soil zone (depths of 0 to 20 feet) through incidental ingestion, dermal contact, and dust inhalation. The cumulative excess lifetime cancer risk was calculated as 9.2E-7, which is below the 1E-06 cancer risk criterion. The cumulative non-cancer HI was calculated to be 0.4, which is less than the threshold of 1.
Shaw also evaluated the health risk related to lead using the 95th percentile UCL for lead in the future construction soil zone of 54 mg/kg. The results indicate that blood lead concentrations would be less than 10 μg/dL for the pica child. Because the pica child exposure is more conservative than a construction worker’s exposure, it is presumed that a construction worker would not have an unacceptable exposure either. Therefore, lead in soil is not considered to pose an unacceptable hazard to construction workers.

3.1.3 Future Offsite Resident

Shaw evaluated the future offsite resident for exposure to COPCs in dust produced from the future construction work (estimated to include 60 days of construction). The excess lifetime cancer risk was calculated to be 6E-10, which is well below the 1E-06 cancer risk criterion. The calculated cumulative non-cancer HI of 0.017 is also well below the threshold of 1.

Shaw also evaluated the health risk related to lead using the LeadSpread model, which indicated that an onsite pica child exposed to the 95th UCL lead concentration would not exceed 10 μg/dL. Shaw indicated that because the offsite resident would only be potentially exposed to soil through dust during the proposed future construction work, the estimated blood lead concentration would be much less than that estimated for the pica child. Additionally, the default lead in respirable dust concentration is 1.5 micrograms per cubic meter (μg/m³) in the LeadSpread model. As calculated using the maximum lead concentration of 1,500 mg/kg from soil (from depths of 0 to 20 feet) multiplied by the offsite dust concentration of 9.95E-8 kilograms per cubic meter (kg/m³), the resulting respirable dust concentration is 0.15 μg/m³, well below the default value.

3.1.4 Hypothetical Future Shallow Groundwater User

Shaw evaluated the health risk for a hypothetical future user of shallow groundwater beneath the Site. According to the results of a well survey, no one within a 1-mile radius is using the shallow aquifer as a source of drinking water. Shaw calculated health risks from ingestion and dermal contact using the maximum detected concentrations (MDC) from two groundwater sampling events in 2006 as the exposure-point concentrations (EPC). The resulting cumulative noncancer hazard estimate is 0.9, less than the threshold of 1. For lead, the maximum concentration detected in a groundwater sample was 3.4 μg/l, which is less than the Federal action level of 15 μg/l. Therefore, lead in groundwater does not appear to present an unacceptable hazard.

3.2 HHRA Update

Geocon updated the 2007 HHRA by incorporating soil analytical data generated from the fenceline, perimeter, and stockpile sampling as presented in the revised Supplemental Site Investigation dated March 1, 2013, and groundwater analytical data generated from bi-monthly sampling events. The COPC EPCs that Shaw utilized in the 2007 HHRA were compared to the supplemental soil data.
collected in September 2012 and groundwater data collected between March 2012 and March 2013. The EPCs utilized in the 2007 HHRA are the MDCs for the selected COPCs for each exposure scenario with the exception of the Stockpile 2 Current Exposure Assessment which utilized the 95th percentile UCLs for the selected COPCs. This information was used to evaluate the validity of the 2007 HHRA cancer risk and non-cancer hazard estimates. The following sections summarize the EPC comparisons and risk/hazard evaluations for each exposure scenario.

3.2.1 Stockpile 1 Current Exposure Assessment

Eight metals (barium, beryllium, chromium, cobalt, copper, lead, mercury and nickel) reported for five surface soil samples from the 2006 SI were used as the COPCs for Stockpile 1 in the 2007 HHRA. The MDCs for these metals detected in surface soil samples collected from the September 2012 Fenceline Borings and Perimeter Borings (first values in brackets) are slightly higher as compared to the 2007 HHRA EPCs (second values in brackets) with relative concentrations as follows: barium (240 vs. 130 mg/kg), copper (24 vs. 13 mg/kg), and lead (17 vs. 12 mg/kg). Zinc was detected at an MDC of 120 mg/kg in the 2012 surface soil samples, exceeding the background MDC of 44 mg/kg. Cadmium was detected in one 2012 surface soil sample at 0.26 mg/kg, slightly above the reporting limit of 0.25 mg/kg and less than the residential CHHSL of 1.7 mg/kg. Strontium was detected in each 2012 surface soil sample with an MDC of 61 mg/kg.

The 2007 HHRA calculated current cancer risk and non-cancer hazard estimates of 8E-8 and 0.04, respectively, for the offsite resident/trespasser receptor exposed to surface soil at Stockpile 1. Because the 2012 metal concentrations are of the same order of magnitude as those used in the 2007 HHRA and that none of the 2012 metal detections exceeded respective residential CHHSLs or RSLs, the 2007 HHRA risk and hazard calculations for the current resident/trespasser remain valid for Stockpile 1. The 2007 HHRA calculated excess cancer risk is orders of magnitude less than the conservative criterion of 1E-6 and the estimated non-cancer HI is orders of magnitude less than the threshold of 1.

3.2.2 Stockpile 2 Current Exposure Assessment

The 95th percentile UCLs for seven metals (arsenic, barium, copper, lead, molybdenum, nickel and zinc) detected in 33 surface soil samples collected during the 2006 SI were selected as the COPCs for Stockpile 2 in the 2007 HHRA. The 2007 HHRA also used the MDC for chromium (divided as chromium III and VI). Of these metals, barium, copper and zinc were detected at higher concentrations in the surface soil samples collected from the September 2012 Fenceline and Perimeter Borings compared to the concentrations detected in the 2006 SI and used in the 2007 HHRA. Specifically barium had an MDC of 4,300 mg/kg in the 2012 samples vs. 1,100 mg/kg for the 2006 SI, copper had an MDC of 41 mg/kg in 2012 vs. 29 mg/kg in 2006, and zinc had an MDC of 200 mg/kg in 2012 vs. 89 mg/kg in 2006.
Cadmium was detected in one 2012 surface soil sample at 0.42 mg/kg, which is less than the residential CHHSL of 1.7 mg/kg. Strontium was detected in each of the 2012 surface soil samples, with an MDC of 110 mg/kg.

The 2007 HHRA calculated current cancer risk and non-cancer hazard estimates of 1E-7 (background arsenic not considered) and 0.1, respectively, for the offsite resident/trespasser receptor exposed to surface soil at Stockpile 2. Because the 2012 metal concentrations are the same order of magnitude as those used in the 2007 HHRA, and none of 2012 metal detections exceeded respective residential CHHSLs or RSLs, the 2007 HHRA risk and hazard calculations for the current resident/trespasser remain valid for Stockpile 2. The 2007 HHRA calculated excess cancer risk is less than the conservative criterion of 1E-6, and the estimated non-cancer HI is an order of magnitude less than the threshold of 1.

3.2.3 Stockpile 3 Current Exposure Assessment

Shaw selected the MDCs for three metals (barium, lead and molybdenum) reported for 13 surface soil samples from the 2006 SI as the COPCs for Stockpile 3. Of these metals, barium (1,600 vs. 250 mg/kg) and lead (34 vs. 12 mg/kg) were detected at higher levels in the surface soil samples obtained from the September 2012 Fenceline Borings and Perimeter Borings (first values in brackets) compared to the 2007 HHRA EPCs (second values in brackets). Copper and zinc were further detected at maximum concentrations of 17 and 190 mg/kg, respectively, in the 2012 surface soil samples, which exceed the respective background MDCs of 11 and 44 mg/kg. Cadmium was detected in four 2012 surface soil samples at a MDC of 0.78 mg/kg, less than the residential CHHSL of 1.7 mg/kg. Strontium was detected in all but one of the 2012 surface soil samples with an MDC of 100 mg/kg.

The 2007 HHRA calculated a current non-cancer hazard estimate of 0.02 for the offsite resident/trespasser receptor exposed to surface soil at Stockpile 3. Shaw considered one of the COPCs for Stockpile 3 to be a carcinogen, and therefore they calculated no cancer risk. Based on the 2012 metal concentrations being the same order of magnitude as those used in the 2007 HHRA, the lack of any 2012 metal detections exceeding respective residential CHHSLs or RSLs, and the estimated non-cancer HI being orders of magnitude less than the threshold of 1, the 2007 HHRA risk and hazard calculations for the current resident/trespasser remain valid for Stockpile 3.

3.2.4 Stockpiles 1 through 3 - Future Construction Worker and Offsite Resident

The MDCs for ten metals (arsenic, barium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium and zinc) reported for 165 soil samples from the 2006 SI as the COPCs for Stockpiles 1 through 3 and the PAH benzo(a)pyrene as a COPC were used in the 2007 HHRA. The metals barium (130,000 vs. 72,000 mg/kg), copper (41 vs. 29 mg/kg), and zinc (200 vs. 110 mg/kg) were detected at higher concentrations in the soil samples obtained from the September 2012 Fenceline Borings and Cadmium Borings (first values in brackets) as compared to the 2007 HHRA EPCs (second values in brackets).
The calculated 95th percentile UCL for the 2012 barium data is 7,556 mg/kg, significantly less than the MDC of 130,000 mg/kg and the EPC of 72,000 mg/kg used in the 2007 HHRA. Strontium was detected in all but one of the 2012 soil samples with an MDC of 270 mg/kg.

The 2007 HHRA calculated current cancer risk and non-cancer hazard estimates of 9.2E-7 and 0.4, respectively, for the construction worker receptor exposed to soil at Stockpiles 1 through 3. The calculated current cancer risk and non-cancer HI were 6E-10 and 0.017, respectively, for the future offsite resident receptor exposed to soil at Stockpiles 1 through 3. Based on the conservative approach of using MDCs of each metal versus the 95th percentile UCLs, the 2007 HHRA risk and hazard calculations for future conditions for construction workers and offsite residents remain valid for Stockpiles 1 through 3. The 2007 HHRA calculated excess cancer risks is order(s) of magnitude less than the conservative criterion of 1E-6, and the estimated non-cancer HI is significantly less than the threshold of 1.

### 3.2.5 Onsite Shallow Groundwater

The MDCs for twelve metals (barium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, vanadium and zinc) reported for groundwater samples collected in June and October 2006 were identified as the COPCs for evaluation of the hypothetical shallow groundwater user. The maximum 2006 metal concentrations were reported for samples obtained from wells MW-5 and MW-6. Of these metals, cobalt (5.3 vs. 3.0 µg/l), copper (7.4 vs. 6.2 µg/l), manganese (290 vs. 260 µg/l), nickel (9.6 vs. 7.1 µg/l), selenium (4.4 vs. 3.0 µg/l), vanadium (42 vs. 34 µg/l) and zinc (120 vs. 15 µg/l) were detected at slightly higher concentrations in the 2012 groundwater samples (primarily from upgradient well MW-10) compared to the 2007 HHRA EPCs. Strontium was detected in all of the 2012 groundwater samples with an MDC of 1,400 µg/l.

The 2007 HHRA calculated a current non-cancer HI for the hypothetical shallow groundwater user at 0.9. None of the selected groundwater COPCs are considered to be carcinogens and therefore the 2007 HHRA did not calculate a cancer risk. Based on the similar metals data with the majority of the higher concentrations reported for samples collected from upgradient well MW-10, and the estimated non-cancer HI being less than the threshold of 1, the 2007 HHRA risk and hazard calculations for the hypothetical groundwater user remain valid.

### 3.2.6 HHRA Update Summary

The 2007 HHRA conservatively utilized MDC or 95% UCL soil and groundwater COPC concentrations obtained during the Shaw 2006 SI and groundwater monitoring events. The comparison of these EPCs to the 2012 soil and groundwater data collected at the Site indicates that the 2012 soil and groundwater data is similar to the 2006 data utilized in the 2007 HHRA and do not significantly increase the conservative cancer risk and non-cancer HIs. The 2007 HHRA remains valid with respect to exposure potential for the current resident/trespasser, future construction worker and offsite resident, and hypothetical shallow groundwater user at the Caltrans Modesto Soil Stockpile Site.
The DTSC commented on the HHRA update in a letter dated February 15, 2013, which included a memorandum from the Human and Ecological Risk Office (HERO) dated February 14, 2013. The HERO memorandum stated: “the soil stockpiles do not pose a cancer risk or noncancer hazard to persons in the vicinity of these stockpiles as long as the stockpiles remain in place and are properly managed. The evaluation presented here is based on concentrations measured in surface soil. There are areas in the stockpiles with elevated concentrations of chemicals at depths greater than one foot below ground surface. Therefore, if there is substantial grading or reworking of the stockpiles or if the stockpiles are removed, these elevated concentrations at depth will have to be evaluated with respect to the potential for exposure by residents living adjacent or near the stockpiles during the period when the soil is being moved.” Being “properly managed” implies that Caltrans would continue the current management which includes: maintaining fencing and signage around the stockpiles thereby limiting access to the stockpiles, not disturbing or exposing soil in the stockpiles, maintaining vegetative cover to reduce potential wind and rain soil erosion and transport off-site (i.e. soil dust transport from wind and sediment laden surface water runoff), mowing the vegetative cover to minimize fire danger, and groundwater and stormwater runoff monitoring.

In a letter dated April 4, 2013, DTSC stated their concurrence with the findings of the HHRA Update as follows: “DTSC concurs with reports titled “SSI, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Stanislaus County, California” (Geocon, March 1, 2013) and “HHRA Update, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Stanislaus County, California.”

3.3 Remedial Action Objective

RAOs are medium or site-specific goals for protecting human health and the environment. RAOs are developed as a basis for evaluating the ability of remedial alternatives to comply with ARARs and to protect human health and the environment.

As summarized in Sections 3.1 and 3.2, the 2007 HHRA found that potential exposure to COPCs in surface soil of the stockpiles under the current land use and proposed future land use scenarios does not pose an unacceptable risk or hazard. Additionally, the hazard for a hypothetical future groundwater user is less than the threshold of concern. The update to the 2007 HHRA supported these findings and conclusions and the DTSC concurred with the HHRA update under the condition that the stockpiles be properly managed and potential receptors not be exposed to COPCs in deeper soil within the stockpiles. The potential for the stockpiles to impact groundwater from a water quality degradation standpoint remains a concern of the CVRWQCB.
Therefore, the RAOs for the Site are to protect the health of neighboring residents, onsite trespassers, and Caltrans-authorized personnel and prevent future impact to groundwater by managing the stockpiles either in-place or by removing them from the Site. General response actions (GRA) to accomplish the RAOs are discussed in Section 4.0.

3.4 ARARs

ARARs are used to determine the extent of site cleanup and govern the implementation and operation of the selected action. ARARs are necessary to establish RAOs in order to support subsequent remediation alternatives screening. ARARs consist of three categories.

- Chemical-specific ARARs are either health or environmentally based numerical values or methodologies limiting the amount of a contaminant that may be released to or allowed to remain in the environment during and upon successful completion of a remedial action, including establishing cleanup levels for soil or groundwater at an affected site. Examples include drinking water MCLs and waste classification thresholds.

- Action-specific ARARs are remedial, technology, or activity based requirements or limitations on specific remedial actions at a site. Examples include prohibitions or restrictions for the discharge of chemicals or contaminants to the air, water, or soil and the proper transfer, treatment, or storage of chemicals and contaminants.

- Location-specific ARARs are restrictions or prohibitions placed on remedial actions at a given location due to features, such as a flood plain, wetland, sensitive ecosystem, seismic, or historic area. Examples include the National Historic Preservation Act and Endangered Species Act.

Additionally, "To Be Considered" (TBC) standards are non-promulgated advisories or guidance issued by Federal or State agencies that complement ARARs. Both the USEPA and DTSC have guidance materials. For example: USEPA has guidance on assessing risk and identifying preliminary remediation goals including the Human Health Evaluation Manual (Parts A & B) Risk Assessment Guidance for Superfund and Regional Screening Levels, and the California Environmental Protection Agency/DTSC has Supplemental Guidance for Human Health Risk Assessment and California Human Health Screening Levels.

3.4.1 Summary of State and Federal ARARs

Applicable requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or State law that specifically apply to cleanup at a site. The process for determining applicable standards is set forth in Section 121(d) of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In part, CERCLA states that the more stringent of State or Federal requirements will apply to cleanup sites. Typically, California requirements are more stringent than Federal requirements.
Relevant and appropriate requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or State law that, while not applicable, address problems or circumstances similar to those found where the proposed removal action will be performed, and are well suited to the conditions of the cleanup site. Requirements that are determined to not be legally applicable are evaluated to determine whether they are relevant and appropriate. A requirement must be both relevant and appropriate to be an ARAR. Criteria for determining relevance and appropriateness are listed in Part 40, Code of Federal Regulations (CFR) Section 300.400(g)(2).

According to CERCLA ARAR guidance, requirements may be “applicable” or “relevant and appropriate,” but not both. ARARs are identified on a site-specific basis, using a two-part analysis to determine first if a requirement is applicable, and then, if not applicable, whether it is both relevant and appropriate. Based on CERCLA ARAR guidance, an ARAR qualifies as a State ARAR if it meets the following requirements:

- It is a State law;
- It is an environmental, or facility siting law;
- It is promulgated, and thus generally applicable and legally enforceable;
- It is substantive rather than procedural or administrative;
- It is more stringent than the Federal requirement;
- It is identified in a timely manner; and
- It is consistently applied.

### 3.4.2 ARARs for Remediation of the Stockpiles

Table 1 is a compilation of ARARs for remediation of the stockpiles.

### 3.5 Cleanup Goals

Cleanup goals are numerical or performance-based goals to which a cleanup (remedial) action can be compared to determine when the action has been performed to an extent that it can be considered complete. Numerical-based goals are quantitative limits (units of concentrations, volumes, etc.) that a cleanup action must meet in order to be considered complete. An example of a numerical-based goal is a COC concentration in affected media (e.g., soil, soil vapor, groundwater, surface water, air) that has been determined to represent an acceptable health risk or other regulatory level and which cleanup must achieve in order to be considered complete. A performance-based goal is an action such as removal, capping, or treatment which a cleanup action must achieve in order to be considered complete. An example of a performance-based goal would be the placement of a one-foot-thick layer of clean soil over an area of contaminated soil to minimize potential exposure to COCs in the soil.
The HHRA demonstrated that the excess cancer risk related to exposure to COCs in surface soil of the stockpiles is orders of magnitude less than the conservative criterion of 1E-6, and the non-cancer HI is orders of magnitude less than the threshold of 1. The DTSC concurred with the findings of the HHRA and HHRA update under the condition that the stockpiles continue to be properly managed and not graded or reworked to expose COCs in deeper soil within the stockpiles.

Based on the current level of health risk and stockpile management practices, it is not necessary to achieve a numerical-based cleanup goal to be protective of human health. Therefore, the cleanup goal for the project will be performance-based to assure that there is no route of exposure to COCs in the stockpiles and to reduce the potential threat to groundwater. The GRAs which could be implemented to manage the stockpiles are discussed in Section 4.0. The remedial action that was selected by the FS will be implemented with DTSC and CVRWQCB oversight, and these agencies will provide a final determination as to when the action is complete.
4.0 SUMMARY OF FEASIBILITY STUDY

This section summarizes the FS which was performed to evaluate potentially applicable remedial actions (“alternatives”) for the stockpiles. The FS process selected the most appropriate alternative through an evaluation of alternatives against nine qualifying criteria. A draft FS was submitted to the DTSC and CVRWQCB for their review and comment. The FS was approved by the DTSC and CVRWQCB on (date).

4.1 Identification and Screening of Technologies

In accordance with the USEPA’s CERCLA Guidance for Conducting Remedial Investigations and Feasibility Studies (USEPA, 1988) the FS first considered GRAs that could be implemented to address the stockpiles. GRAs are general remedial action categories such as institutional controls, removal, containment, treatment, and reuse/recycling/reclaim. Under CERCLA, evaluation of a “no action” alternative is also required for comparison purposes. The FS then evaluated remedial technologies that could be implemented for each GRA and lastly, process options for each technology. “Process option” is a CERCLA term used for technologies that are being pre-screened. The potential for a process option to treat the stockpiles and to achieve the RAO was evaluated, as were the potential impacts on human health and the environment during implementation of the process option.

The FS then screened potentially applicable remedial technology process options against the criteria of effectiveness, implementability, and cost. The following table lists the GRAs, remedial technologies, and process options that were evaluated in the FS.
### Evaluation of General Response Actions and Process Options for the Caltrans Modesto Soil Stockpiles

<table>
<thead>
<tr>
<th>Soil Specific General Response Actions</th>
<th>Remedial Technology</th>
<th>Process Option</th>
<th>Effectiveness</th>
<th>Implementability</th>
<th>Cost</th>
<th>Screening Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>None</td>
<td>Not applicable</td>
<td>Does not meet RAO and does not reduce toxicity, mobility, or volume of contaminants.</td>
<td>Readily implementable as no actions are required.</td>
<td>Negligible to very low</td>
<td>Retained as required by NCP</td>
</tr>
<tr>
<td>Institutional Controls</td>
<td>Governmental and Administrative Controls</td>
<td>Dred restrictions and covenants</td>
<td>Contaminant mass unchanged. Establishes land use restrictions and limitations protective of human health.</td>
<td>Readily implementable with most of the activities being performed by DTSC.</td>
<td>Low capital and O&amp;M costs</td>
<td>Potentially applicable (deed restriction and covenants) in combination with other response actions. Retained.</td>
</tr>
<tr>
<td></td>
<td>Access Restrictions</td>
<td>Physical barrier and access control</td>
<td>Contaminant mass unchanged. Prevents unauthorized access to protect human health.</td>
<td>Readily implementable as fencing is currently maintained around the Site.</td>
<td>Low capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
</tr>
<tr>
<td></td>
<td>Informational</td>
<td>Signage, public notices</td>
<td>Contaminant mass unchanged. Signage and notices raise public awareness.</td>
<td>Readily implementable at the Site and will be maintained</td>
<td>Low capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
</tr>
<tr>
<td></td>
<td>Monitoring</td>
<td>Air monitoring</td>
<td>Contaminant mass unchanged. Monitors airborne COCs.</td>
<td>Implementable</td>
<td>Low to moderate capital and O&amp;M costs</td>
<td>Potentially effective in reducing contaminant mass for the Site. Air is not a medium of concern for the final remedy, but is a short-term concern during construction so retained for consideration with other options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site monitoring</td>
<td>Contaminant mass unchanged. Documents physical conditions of Site.</td>
<td>Readily implementable as this is currently ongoing at the Site.</td>
<td>Low to moderate capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Groundwater monitoring</td>
<td>Contaminant mass unchanged. Documents groundwater conditions/quality surrounding Site.</td>
<td>Readily implementable as this is currently ongoing at the Site.</td>
<td>Moderate capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
</tr>
<tr>
<td>Containment</td>
<td>Runoff/infiltration controls</td>
<td>Grading</td>
<td>Contaminant mass unchanged. Diverts, collects, and transmits runoff away from Site. Decreases infiltration and contaminant mobility.</td>
<td>Readily implementable</td>
<td>Moderate capital and O&amp;M costs</td>
<td>Potentially applicable in combination with other response actions. Retained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encapsulation beneath highway structures layer</td>
<td>Contaminant mass unchanged. Contains and isolates contaminants. Effectively eliminates contaminant mobility.</td>
<td>Readily implementable</td>
<td>Moderate to high capital and moderate O&amp;M costs</td>
<td>Potentially applicable. Retained.</td>
</tr>
<tr>
<td>Treatment</td>
<td>Chemical Treatment</td>
<td>Soil Washing</td>
<td>Potentially effective in reducing mobility and volume of contaminants. Treatment of liquid waste stream would be required.</td>
<td>Potentially effective in reducing mobility of contaminants for the Site, but would just transfer issues and concerns to another property.</td>
<td>Not applicable</td>
<td>Not retained after initial screening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil Mixing</td>
<td>Potentially effective in reducing contaminant mobility; would increase volume of waste.</td>
<td>Potentially effective in reducing contaminant mobility; would increase volume of waste.</td>
<td>Not applicable</td>
<td>Not retained after initial screening</td>
</tr>
<tr>
<td>Reuse, Recycle, and/or Reclaim</td>
<td>Reuse at offsite location</td>
<td>Off-site non-landfill placement as fill</td>
<td>Would be effective in reducing mobility of contaminants for the Site, but would just transfer issues and concerns to another property.</td>
<td>Not applicable</td>
<td>Not retained after initial screening</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**
- Shaded Cells = Shaded cells represent process technology options that were not retained after initial screening.
- NCP = National Oil and Hazardous Substance Pollution Contingency Plan
- O&M = Operations and Maintenance
- RAO = remedial action objective
The criteria for screening the applicable technologies and process options are as follows:

- **Effectiveness** - the degree to which an alternative reduces the toxicity, mobility, or volume of COPCs; complies with ARARs; minimizes short-term impacts and residual risks, and provides long-term, overall protection of human health and the environment; and how quickly the alternative accomplishes these benefits.

- **Implementability** - the technical feasibility and availability of the technologies and the administrative feasibility of implementing an alternative.

- **Cost** - the cost of construction, operation, and maintenance of an alternative.

Response actions, technologies, and process options that did not satisfy the RAO and/or were not consistent with the three evaluation criteria were not retained for further consideration and analysis. Through the screening process the following alternatives were retained for further evaluation:

- Alternative 1 - no action,
- Alternative 2 - institutional controls,
- Alternative 3 - removal, and
- Alternative 4 - containment.

The treatment and reuse/recycle/reclaim alternatives were not retained for further evaluation because of difficulties with implementability (i.e., amount of soil that would require treatment, space considerations, noise, effectiveness, etc.) and cost. Elimination of the treatment and reuse/recycle/reclaim options is supported by the DTSC’s *Proven Technologies and Remedies (PTR) Guidance, Remediation of Metals in Soil* (DTSC, 2008), which eliminates these and other technologies from further evaluation based on DTSC’s extensive experience on projects where metals are the primary COPC. The DTSC reviewed technologies that have been implemented for remediation of metals in soils at 188 sites and found that, while technologies such as stabilization, vitrification, metallurgical separation, soil flushing, soil washing, and other treatment processes have been implemented, “containment by capping” and “excavation and offsite disposal” were by far the most frequently implemented cleanup alternatives. The Site also has the necessary characteristics that make it favorable for a streamlined screening of technologies including:

- primarily metals contamination – the primary COPC is barium,
- no emergency actions required,
- contamination less than 15 feet deep – the stockpile soil and associated COPCs are all above natural grade,
- low potential for surface water impact,
- metals in immobile form – barium is in the form of barite which has a low solubility,
- low potential for groundwater impact – COPC concentrations in groundwater are less than water quality goals (MCLs), and
- no ecological habitat or sensitive receptors impacted.
We retained institutional controls for further evaluation because the stockpiles are essentially being managed under institutional controls now and if the SR-132 Project were not built, continued management of the stockpiles through institutional controls is an alternative to be considered for the stockpiles.

4.2 Identification of Alternatives for Soil

Each of the alternatives that were retained for further evaluation is summarized in the following subsections.

4.2.1 Alternative 1 - No Action

Under this alternative the stockpiles would remain in place and not be disturbed. There would be no excavation, alteration, or removal of soil from the stockpiles. In essence, the SR-132 Project would not be constructed and the stockpiles not utilized as embankment fill as intended. Additionally, under the no action alternative, site control, maintenance, and monitoring activities would be discontinued.

However, as long as Caltrans continues to own and control the property as State ROW they would continue to maintain the perimeter fence and continue restricting access to Caltrans-authorized personnel. Therefore, the most likely site occupant would be a trespasser. The 2007 HHRA and recent update to the HHRA concluded that the concentrations of COPCs in the stockpiles do not pose an unacceptable level of health risk to an onsite trespasser. Therefore, no action could be considered protective of human health as long as land use remains the same and access is restricted.

No Action Alternative Summary

No action would be the least effective alternative as it would not reduce the contaminant mass or the potential of the COPCs to impact surface water or groundwater quality. This alternative would not meet the RAO and therefore would not be acceptable to the regulatory agencies and likely not be acceptable to the community either. It is implementable because no activities would be performed and there is no cost associated with this alternative.

4.2.2 Alternative 2 – Institutional Controls

Technologies considered for the stockpiles under institutional controls included:

- governmental and administrative controls;
- site-access restrictions;
- informational and/or communication devices; and
- monitoring.

Although no reduction in the toxicity or volume of COPCs would result from the implementation of institutional controls as the remedial alternative for the stockpiles, implementation in conjunction with other remedial actions could achieve the RAO. As described in Section 3.3, the RAO for the
stockpiles is to further protect human health by minimizing or eliminating receptor exposure routes and significantly reduce potential impacts to soil, surface water, or groundwater by isolating and encapsulating the stockpile soil as structural fill within the SR-132 Project.

**Governmental and Administrative Controls**

Governmental and administrative controls use the regulatory authority of a government entity to impose restrictions under its jurisdiction, custody, or control. The process option considered for governmental and administrative controls is deed restrictions and covenants that limit land uses to those that have less potential for exposure based on the nature of the development and the types of site occupants/users associated with the acceptable land uses. Governmental and administrative controls may be used in conjunction with other remedial technologies. This process option may provide some limitations on the present and future land use; however, the stockpiles would remain at the Site in their current condition. No technical issues exist that would adversely affect the feasibility of implementing this process option. The cost to implement and ongoing operations and maintenance (O&M) costs are considered to be negligible-to-low.

**Site Access Restrictions**

This technology consists of one process option: maintaining the existing physical barrier to site access (fencing) with controlled access to Caltrans-authorized personnel only. This option will minimize human receptor contact with COPCs in the soil.

Fencing and access control can be effective in mitigating exposure to COPCs, but does not reduce toxicity or volume. Ongoing O&M would be required to ensure continuing effectiveness. There are no technical issues that would adversely affect the feasibility of implementing this process option. However, site-access restrictions may not effectively deter all trespassers. This process option may not receive community acceptance. Capital and O&M costs associated with this process option are considered low.

**Informational and Communication Devices**

Informational and communication devices include posting advisories (signage) at the Site, deed notices, public awareness meetings, and fact sheets to inform the public about potential risks at the Site. It is difficult to ensure that informational and/or communication devices will be effective in reducing exposure to COPCs in the stockpiles as not all members of the community may receive the information and, as may be the case with access restrictions, communication of risks still may not deter trespassing.

**Monitoring**

The various process options for the monitoring technology include monitoring of air, groundwater, stormwater, and site conditions. Each of these process options is described below.

**Air Monitoring** - Monitoring of COPCs in ambient air could be performed in combination with other institutional controls as well as other technologies such as removal and containment. The stockpiles are
vegetated with seasonal grasses and, as a result, airborne dust has not been an issue to date. Therefore, air monitoring in combination with other types of institutional controls would not provide further protection of human health. Air monitoring would be performed in combination with remedial technologies that involve disturbing soil in the stockpiles such as excavation for removal or grading for containment to ensure that dust control measures are being effectively implemented and confirm a negative, short-term exposure for workers and nearby residents. Air monitoring when implemented in this manner would be an effective process option.

**Groundwater Monitoring** - Groundwater monitoring currently consists of quarterly groundwater elevation measurement in and groundwater sample collection from ten wells, laboratory analysis of samples, and reporting. As with air monitoring, groundwater monitoring could be performed in combination with other institutional controls as well as other technologies such as removal and containment. If institutional controls were implemented, the long-term effect of the stockpiles on groundwater quality would likely need to continue to be monitored. Similarly, if containment was implemented, groundwater monitoring would likely be required for some period to assess the effects of containment on groundwater quality. Groundwater monitoring would likely not be required following removal of the stockpiles.

**Stormwater Monitoring** - Stormwater monitoring has been conducted and would continue as long as the stockpiles or portions of them are exposed to precipitation.

**Site Conditions Monitoring** - Monitoring of site conditions has been ongoing and would continue in combination with other institutional controls or the containment GRA. Site conditions monitoring currently consists of fence inspection, repair, and maintenance, and mowing of the grass cover on the stockpiles to reduce fire danger and would continue as such under the institutional controls GRA. Site conditions monitoring would also be continued with the containment GRA during the interim progress phase where not all of the stockpiles are isolated and encapsulated beneath roadways and behind retaining walls, but are temporarily covered with a vegetated, clean soil layer.

**Institutional Controls Alternative Summary**

The DTSC has indicated that the stockpiles in their current condition do not pose an unacceptable risk to human health based on continued management of the stockpiles. Management consists of: limiting access to only Caltrans-authorized personnel, regularly inspecting and maintaining the chain-link fence, prohibiting any activities involving excavation/grading, off-site removal of soil, or placement of other soil on the Site, and maintaining the current vegetative cover. DTSC also stated that Caltrans should continue to maintain the groundwater monitoring program for the Site. These management activities and site conditions constitute institutional controls and they would be effective in meeting the RAO.
This alternative provides a higher level of protection to human health and the environment than no action and has regulatory acceptance by the DTSC. Although the DTSC has stated that the stockpiles do not pose a risk to human health for Caltrans workers, trespassers, or offsite residents under the current controlled and monitored conditions, the CVRWQCB has indicated that the stockpiles would need to be maintained in order to protect groundwater quality if the SR-132 Project were not constructed. Due to the perception by the public of some degree of health risk or threat to the environment, a more proactive remedial action is likely preferred by the community. This alternative is the second lowest in cost and the second most implementable.

### 4.2.3 Alternative 3 - Removal

This alternative consists of complete removal of the stockpiles from the project area and disposal of the soil in an approved, offsite waste disposal facility or facilities. This alternative would require that soil confirmation sampling and analysis be conducted in an effort to confirm that the stockpiled soil had been adequately removed. Implementation of this alternative would necessitate that a volume of clean fill material similar to that removed be imported to the project area for construction of the SR-132/SR-99 interchange embankments. Under this alternative, groundwater monitoring would likely be discontinued; however, the timing of the cessation of groundwater monitoring would be determined in concert with the DTSC and CVRWQCB.

Removal of the stockpiles would reduce COPC mobility, toxicity, and volume for the Site, thereby eliminating routes of exposure for any future land use on the Site. Engineering controls and air monitoring would be used to limit exposure to onsite workers during excavation and loading of soil. During excavation, air would be monitored to confirm that dust suppression methods (water spray) are effective in preventing airborne dust so that workers and offsite residents would not be exposed to COPCs or dust particulates.

There are no significant barriers to implementing this process option administratively. However, this option would require that the removed soil be replaced by importing an even larger volume of clean fill soil in order to construct the SR-132 Project.

**Removal Alternative Summary**

Removal of the stockpiles and disposal in an offsite landfill would provide the greatest degree of protection of human health and the environment and may be the most acceptable to the DTSC, CVRWQCB, and the community. Short-term impacts would be the greatest with this alternative due to potential air quality and traffic impacts. Air emissions from soil removal equipment (e.g., graders, excavators, loaders) and trucking will be greatest with this alternative. This alternative would also have the highest cost of the four. This alternative could be performed in compliance with State and Federal requirements. Although technically implementable, removal is the least implementable of the four alternatives because the stockpiles would have to be replaced with an even greater amount of
clean soil fill in order to build the project. This would pose an impact to funding and delay in the construction of the project.

4.2.4 Alternative 4 - Containment

This alternative consists of isolation and encapsulation (containment) of the stockpiled soil within the SR-132/SR-99 interchange portion of the SR-132 Project by using the stockpiles for embankment fill as originally planned. The interchange project will be constructed in phases such that the interim progress phase, scheduled to be completed in 2018, will cover the approximate southern half of Stockpiles 1 and 2 and reconfigure, consolidate, and cover all of the soil from Stockpile 3. The ultimate build-out phase of the project, to be completed by 2028, will cover the remaining approximate northern half of Stockpiles 1 and 2. Following completion of the interim progress phase and prior to completion of the ultimate build-out phase, the portion of the stockpiles not covered/contained by retaining walls, bridge abutments, slope pavements, and roadway pavement would be maintained as they currently are. Under this alternative groundwater monitoring would likely be continued for a period of time to be determined in concert with the DTSC and CVRWQCB.

If the planned SR-132 Project were not constructed, an alternative form of cap could be installed over the stockpiles. The alternative cap could consist of constructing a layer of clean soil (typically one foot thick) over the stockpiles. Prior to constructing the cap, the surface of the stockpiles would be graded for drainage to ensure primarily that stormwater did not pond on top of the stockpiles. Following construction, the cap surface would be vegetated to protect against stormwater and wind erosion.

Containment Alternative Summary

Containment of the soil by isolation and encapsulation within the SR-132/SR-99 interchange portion of the SR-132 Project (or under an alternative cap if the SR-132 Project was not constructed) will provide the second highest level of protection of human health and the environment of the four alternatives. It will eliminate routes of exposure to COPCs in the soil and minimize the potential for stormwater infiltration. Short-term exposure to COPCs by construction personnel and adjacent residents can be minimized through the implementation of dust controls (e.g., water spray of disturbed areas). Long-term protection of human health and the environment would be provided by isolation and encapsulation of the soil within the project. This alternative can be performed in compliance with State and Federal requirements. This alternative would be implemented with DTSC oversight; therefore, regulatory acceptance is anticipated. This alternative should also be acceptable to the community as it is protective of human health and the environment. It is the third most costly of the alternatives, but significantly less than removal. It is the third most implementable of the alternatives, but its implementability is considered to be good as the stockpiles would be used for their originally intended purpose.
4.3 Evaluation of Alternatives

In accordance with CERCLA guidance and the remedial technology screening, four alternatives were retained for further evaluation in the FS:

- Alternative 1 - No action;
- Alternative 2 - Institutional controls;
- Alternative 3 - Removal (excavation and offsite disposal); and
- Alternative 4 - Containment.

Each of these alternatives is described in the following subsections then evaluated against the nine National Contingency Plan (NCP) criteria.

4.3.1 Evaluation Criteria

The nine NCP evaluation criteria used in the FS are as follows:

Threshold Criteria:

1. Overall Protection of Human Health and the Environment
2. Compliance with ARARs

Balancing Criteria:

3. Long-Term Effectiveness and Permanence
4. Reduction of Toxicity, Mobility, and Volume through Treatment
5. Short-Term Effectiveness
6. Implementability
7. Cost

Modifying Criteria:

8. Regulatory Acceptance
9. Community Acceptance

Each evaluation criterion is described below. Remedial alternatives for the stockpiles were compared to the first seven of the nine criteria listed. Regulatory and community acceptance were evaluated after the draft FS was finalized and the preferred alternative approved by the DTSC and CVRWQCB. The RAO is stated in Section 3.3, which is to build the SR-132 Project using the stockpiles as embankment fill as originally intended, which in turn will provide a greater degree of protection of human health and the environment than currently exists. Therefore each alternative’s attainment of the RAO is presented in the evaluation of Overall Protection of Human Health and the Environment.
Threshold Criteria

Threshold criteria relate to statutory requirements that each alternative must satisfy in order to be eligible for selection.

Overall Protection of Human Health and the Environment. This criterion was used to assess each alternative’s ability to protect human health and the environment. The assessment of overall protection describes how risks to human health and the environment are eliminated, reduced, or controlled through treatment, engineering controls, or institutional controls. While the HHRA and update to the HHRA found that potential exposure of onsite trespassers and offsite residents to COPCs under the current land use and of construction workers and adjacent residents during construction of the SR-132 Project does not pose an unacceptable risk or hazard, the detailed evaluation still considered potential further reductions in risks to human health and the environment afforded by each alternative.

Compliance with ARARs. This evaluation criterion was used to determine whether each alternative would meet the Federal and State ARARs identified in Section 3. The ability of a remedial alternative to comply with certain ARARs that were identified for the remedial action would depend entirely on the manner in which the remedy is implemented. For evaluation purposes, it was assumed that any remedy selected would be implemented in a manner that would meet these ARARs.

Balancing Criteria

Balancing criteria were used to evaluate the technical aspects of a remedial alternative and include the following:

Long-Term Effectiveness and Permanence. This criterion was used to assess the long-term ability of the remedial alternative to address the threshold criteria by (1) assessing the risk remaining at the site after implementation of the remedial alternative, and (2) evaluating the long-term adequacy and reliability of the remedial alternative, including requirements for management and monitoring.

Reductions in Toxicity, Mobility, and Volume of COPCs. This criterion is used to assess a remedial alternative’s ability to reduce the inherent risk of the waste material. Technologies that permanently and significantly reduce toxicity, mobility, or volume are preferred over alternatives that only manage the stockpiles left in place. However, the degree of toxicity, mobility, or volume reduction achieved for the cost to achieve it is heavily weighted. Therefore, technologies that may have a significant effect on one or more of the criteria, but not necessarily all three, are strongly considered. As an example, a major factor to be considered is that the stockpiles were originally placed for construction of the SR-132 Project, which is now nearing implementation. If the stockpiles were to be removed from the Site in an attempt to achieve the greatest possible reduction in toxicity, mobility, and volume of COPCs, the soil would have to be replaced by other clean fill at considerable expense to complete the project. The expense incurred for removal and replacement is not warranted for the degree of protection achieved.
Short-Term Effectiveness. This criterion is used to assess the risks posed to the community, workers, and the environment during the implementation of a remedial action. Measures that would be taken to mitigate these risks will be addressed under this criterion. This criterion also considers the time required to achieve RAO.

Implementability. This criterion is used to assess the technical feasibility (constructability, reliability of technology, operation, and monitoring requirements), administrative feasibility (coordination with other agencies), and availability of services and materials (labor, equipment, and materials) to implement an alternative.

Cost. This criterion is used to assess the anticipated capital and annual O&M and monitoring costs associated with each alternative over a 30-year period. Capital and annual costs in the FS are presented in 2013 dollars. Cost estimates are provided in Tables 2 through 6.

Modifying Criteria

The modifying criteria, regulatory and community acceptance, are as follows:

Regulatory Acceptance. This assessment evaluates the technical and administrative issues and concerns the DTSC and CVRWQCB may have regarding each of the alternatives.

Community Acceptance. This assessment evaluates the issues and concerns the public may have regarding each of the alternatives. These criteria will be addressed after the public comment period for the Draft Final RAP and therefore were not evaluated in the FS.

4.3.2 Evaluation of Alternatives

The four remedial alternatives for the stockpiles were evaluated in the FS with respect to their ability to meet the nine NCP criteria. The detailed evaluation from the FS is in Appendix A.

4.4 Comparative Analysis

The FS included a comparative analysis of the four alternatives which formed the basis for selection of the preferred alternative.

4.4.1 Alternative 1 – No Action

This alternative would provide the lowest level of overall protection of human health and the environment of the four alternatives. The level of protection for the onsite trespasser and offsite resident would remain the same as the current controlled condition, but the health risk for other land uses and receptors would need to be further evaluated. This alternative would have the lowest level of regulatory acceptance because of the lack of site controls and monitoring and maintenance. It also would likely have the lowest level of community acceptance due to the perceived threat to human health and the
environment. This is the least costly of the alternatives and is the most implementable.

4.4.2 Alternative 2 – Institutional Controls

This alternative provides a higher level of protection to human health and the environment than no action and has regulatory acceptance by the DTSC. Although the DTSC has stated that the stockpiles do not pose a risk to human health for Caltrans workers, trespassers, or offsite residents under the current controlled and monitored conditions, the CVRWQCB has indicated that the stockpiles would need to be maintained in order to protect groundwater quality if the SR-132 Project were not constructed. Due to the perception by the public of some degree of health risk or threat to the environment, a more proactive remedial action is likely preferred by the community. This alternative is the second lowest in cost and the second most implementable.

4.4.3 Alternative 3 – Removal

Removal of the stockpiles and disposal in an offsite landfill would provide the greatest degree of protection of human health and the environment and may be the most acceptable to the agencies and the community. Short-term impacts would be the greatest with this alternative due to potential air quality and traffic impacts. Air emissions from soil removal equipment (e.g., graders, excavators, loaders) and trucking will be greatest with this alternative. This alternative would also have the highest cost of the four, and no funding is available for removal. This alternative can be performed in compliance with State and Federal requirements. Although technically implementable, it is the least implementable of the four because with construction of the SR-132 Project and removal of the stockpiles, which were placed specifically for the project, they would have to be replaced with an even greater amount of clean soil fill in order to build the project. This would pose an impact to funding and delay in the construction of the project.

4.4.4 Alternative 4 – Containment

Containment of the soil by either form of cap (the planned SR-132 Project or an alternative one-foot-thick, clean soil cap with vegetative cover) will provide the second highest level of protection of human health and the environment of the four alternatives. Capping will eliminate routes of exposure to COPCs in the soil and minimize the potential for storm water infiltration. Short-term exposure to construction personnel and adjacent residents could be minimized through the implementation of dust controls (e.g., water spray of disturbed areas). Long-term protection of human health and the environment would be provided by containment of the soil beneath either type of cap. This alternative can be performed in compliance with State and Federal requirements. This alternative would be implemented with DTSC and CVRWQCB oversight; therefore, regulatory acceptance is anticipated. This alternative should also be acceptable to the community as it is protective of human health and the environment. It is the third most costly of the alternatives, but significantly less than removal. It is the third most implementable of the alternatives, but its implementability is considered to
be good as the stockpiles would be used for their originally intended purpose.

4.5 Description of Recommended Alternative

Based on the screening of alternatives and comparative analysis performed in the FS, **Alternative 4 – Containment** is the recommended alternative. Containment of the stockpiles will be achieved by their use in construction of the SR-132/SR-99 interchange portion of the SR-132 Project, which requires a significant amount of fill for the embankments and is the reason the stockpiles were placed on the Site in the early 1960s. Figures 5a and 5b show the current footprint of the stockpiles overlain by design drawings of the SR-132 Project. Figure 5a shows that Stockpiles 1 and 2 are situated such that, with minor consolidation of soil along the northern and southern edges of the stockpiles, they will be covered by the SR-132 roadways and contained behind retaining walls and bridge abutments. Figure 5b shows that Stockpile 3, in its current configuration, will have to be partially relocated/consolidated to be capped by and contained within project roadways.

The stockpiled soil will be contained behind retaining walls and bridge abutments and beneath roadway pavements of the project. As described in Section 1, the project will be constructed in two phases – the interim progress phase to be completed by 2018 and the ultimate build-out to be completed by 2028. The interim progress phase of the project will consist of a two-lane roadway, which will be constructed over the southern portions of Stockpiles 1 and 2. During this phase, the northern portions of Stockpiles 1 and 2 will not be contained beneath roadways and behind retaining walls and bridge abutments, but will be graded for drainage and capped with a minimum 6- to 12-inch-thick vegetated, clean soil cap. Figures 6a and 6b show the interim progress phase of the project in plan view and indicate the portion of the stockpiles which will be temporarily covered by the clean soil cap until the ultimate build-out of the project is completed. Figures 7a and 7b show the ultimate project build-out in plan view and depict the complete containment of the stockpiles within the project retaining walls and beneath roadway pavements. Also shown on Figures 7a and 7b is that the median between the eastbound and westbound lanes of SR-132 will be covered by either pavement or a synthetic liner and clean soil layer.

Figures 8, 9, and 10 show cross-section views of the interim progress and ultimate build-out phases of the project for Stockpiles 1, 2, and 3, respectively. The cross-sections show:

- the sloping for drainage and clean soil cap over the northern portions of Stockpiles 1 and 2 during the interim progress phase and the complete containment of the stockpiles by the ultimate build-out;
- the pavement or liner cover over the median areas of the ultimate build-out;
- where the outer edges of the current stockpiles will be cut (in yellow) and placed on top of the stockpiles in the “stockpile fill consolidation zone.”

Stockpile 3 will be treated differently than Stockpiles 1 and 2 in that it is planned to be entirely contained within the interim progress phase of the project. As much of Stockpile 3 as possible will be placed in the
stockpile fill consolidation zone within the eastern abutment for the SR-132 bridge over SR-99 (Figures 6b and 10). The remainder of Stockpile 3 will then be placed in the stockpile fill consolidation zone of Stockpile 2 (Figure 9). At the request of the CVRWQCB, the costs were estimated to completely remove Stockpile 3, dispose of it offsite in an appropriate landfill, and import an equal volume of clean replacement fill.

Following DTSC/CVRWQCB approval of the Final RAP, the details of construction of the project will be presented in a Remedial Design Implementation Plan (RDIP).

4.6 Justification for Recommended Remedy

The preferred remedy, Alternative 4 - Containment, will contain the soil beneath roadway pavements and behind retaining walls and bridge abutments of the planned SR-132 Project or beneath a clean soil, vegetated cap to eliminate direct exposure and to be protective of groundwater and surface water. The primary factors which supported the selection of are: (1) this alternative is protective of human health and the environment and is technically feasible; (2) this alternative is cost-effective because funding is available for construction of the SR-132 Project; and (3) this alternative will help minimize the potential for contaminants to migrate to groundwater or to be eroded by stormwater runoff.

Alternative 4 for soil was rated good for the threshold criteria of overall protection of human and environment and compliance with ARARs and good for the balancing criteria long-term effectiveness, reduction of toxicity, mobility and volume, short-term effectiveness, and implementability. Furthermore, it is the most cost effective of the remedial alternatives that meets the threshold criteria requirements.
5.0 PRELIMINARY REMEDIAL DESIGN FOR SOIL REMEDY

This section describes how Alternative 4 – containment will be implemented. Further detail will be provided in the RDIP.

5.1 Permitting

Permitting for the construction project will likely consist of a grading permit with the City of Modesto, filing of an air impact assessment (AIA) with the San Joaquin Valley Air Pollution Control District (SJVAPCD), and a preparation of a Stormwater Pollution Prevention Plan (SWPPP). Prior to the start of construction, a scoping meeting will be held to discuss the stockpile grading activities, dust mitigation and monitoring, health and safety, and project scheduling. Attendees at the scoping meeting should include Caltrans personnel, representatives of the contractor and subcontractors performing the construction, project design consultants, construction inspectors, and regulatory agency representatives. The applicable permits for the project will be reviewed at the scoping meeting to confirm that they have been obtained and to review the applicable requirements of each.

5.2 Utility Clearance

Although no utilities are anticipated to be present within the project footprint where the stockpiles are, if any subsurface utilities could be affected by the construction project, they will be addressed prior to construction with those specific utility owners. Standard utility clearance precautions such as obtaining an Underground Service Alert (USA) ticket for the project will also be taken.

5.3 Site Preparation

Following pre-construction utility relocations (if any), any debris or other materials/items will be removed. If any vegetation grubbing is required (not anticipated), the Site will be moisture-conditioned to minimize dust generation. Air monitoring for dust emissions, which is described in Section 5.6, will be implemented during grubbing.

5.4 Excavation Extent and Methods

Excavation will not be performed for removal purposes, but only to reconfigure the stockpiles to meet project design criteria for fill placement. Using a combination of equipment including scrapers and excavators, soil will be excavated from the stockpile sides and pulled up onto the stockpiles into the “stockpile fill consolidation zone” (Figures 8, 9, and 10) to make way for retaining wall and bridge construction, placement behind the walls and abutments, and to meet design heights and widths.

5.5 Control Measures

Excavation and fill placement will be controlled by the grading contractor and the surveyors in accordance with the project design. Construction geotechnical inspectors will control fill compaction through observation and testing.
5.6 Perimeter Air Monitoring During Excavation

Perimeter air monitoring will be performed during site grubbing (if necessary) and the early stages of grading to assess the effectiveness of dust control measures. As part of the RDIP, an air monitoring plan showing air monitoring locations and describing equipment and sampling and analysis methods will be provided to DTSC for their review and approval. If the results of air monitoring demonstrate that dust control measures are effective and that there is no exposure to COPCs in the stockpiles via airborne dust, then the frequency of monitoring may be decreased with the approval of DTSC.

5.7 Field Variances

If field procedures for soil excavation, relocation, dust control, air monitoring or other field activities need to be modified to meet changed conditions or project improvement/efficiency relative to the planned activities, a request for a variance from DTSC will be requested. The request will describe the reason and need for the requested modification. The modification will not be implemented without prior approval from DTSC.

5.8 Confirmation Sampling and Analysis Plan

Confirmation soil sampling is not proposed at this time because the stockpile soil is not being removed from the Site, but only incorporated into construction of the project. Therefore, a confirmation sampling and analysis plan will not be included in the RDIP.

5.9 Transportation Plan

Soil is not proposed to be transported off of the Site for the project, but only moved within the project footprint. Any transportation of soil will be limited to within the Caltrans ROW and not on public thoroughfares. Therefore, a transportation plan will not be included in the RDIP.

5.10 Recordkeeping

Recordkeeping related to movement and placement of the stockpile soil will be the responsibility of the grading contractor that is handling the soil as part of construction. Construction inspection records including compaction and survey data will be maintained by the inspecting firm and surveyor with copies provided to the grading contractor.
6.0 LAND USE CONTROLS

Concentrations of some COPCs in soil samples collected from Stockpiles 2 and 3 exceeded residential screening levels. Because this soil will be left on the Site and contained by the project, a land use covenant (LUC) will be required to be recorded restricting the types of land use that are allowed on the Site. The LUC will recognize that the proposed transportation land use is compatible and is acceptable from a health risk standpoint. Other unrestricted land uses (e.g., residential, schools, daycare, hospital, senior care, etc.) will not be allowed on the Site.

The LUC will be prepared consistent with DTSC policy and finalized and recorded after physical remedial measures are implemented and before the Site is certified by the DTSC as having been remediated. The LUC will run with the land and stay in effect as long as hazardous substances limit use of the property and until terminated by the DTSC. Pursuant to Section 67391.1 of Title 22, Division 4.5, Chapter 39, CCR, the project proponent will pay all costs including for DTSC oversight associated with administration of the LUCs. The DTSC has authority to require modification or removal of any land improvements placed in violation of the restrictions. Violation of the LUC will be grounds for the DTSC to file civil or criminal actions as provided by law.
7.0 MONITORING AND REPORTING

This section describes monitoring and reporting activities that will be conducted during and following implementation of the recommended remedial alternative.

7.1 Monitoring

Monitoring of the stockpiles, groundwater, and stormwater will continue until such time as the project is complete or the DTSC and CVRWQCB indicate that it is no longer necessary. Monitoring of the stockpiles will include monitoring of the state and effectiveness of the vegetative cover on the portions not yet contained by the project, monitoring of the fencing to ensure that access to the stockpiles continues to be restricted, and monitoring of potential erosion and transport of soil off of Caltrans ROW. Figures 5a and 5b show the proposed extent of the interim progress phase of the project relative to the current extent of the stockpiles. The portion of the stockpiles not contained (the northern portion of Stockpiles 1 and 2) will be graded for drainage and capped with a minimum 6- to 12-inch-thick vegetated, clean soil cap. These portions of the stockpiles will continue to be maintained and monitored in accordance with DTSC and CVRWQCB requirements until the ultimate build-out phase of the project is completed and the stockpile soil completely contained within the project. Groundwater monitoring for the COPCs will continue and stormwater monitoring will continue on a weather-dependent basis.

7.2 Reporting

Reporting of monitoring efforts will continue on a quarterly basis until no longer required by DTSC and/or the CVRWQCB.

7.3 Five-Year Review

Depending on project funding and the phased schedule for completion of the project, DTSC may perform five-year reviews to assess the effectiveness of the remedial measure between construction phases and after project completion. The five-year reviews would likely revisit mainly the maintenance of the portion of the stockpiles not yet contained within the project and condition of vegetated soil covers and liners. Monitoring of groundwater and surface water will have been ongoing and routinely reported to DTSC and the CVRWQCB and therefore would not be a focus of the reviews.
8.0 IMPLEMENTATION SCHEDULE

The anticipated schedule for the SR-132 Project from submittal of this Draft RAP through project completion is as follows:

<table>
<thead>
<tr>
<th>Activity/Task/Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RAP</strong></td>
<td></td>
</tr>
<tr>
<td>Submit draft RAP to DTSC/CVRWQCB</td>
<td>December 27, 2013</td>
</tr>
<tr>
<td>Receive comments from DTSC/CVRWQCB on RAP</td>
<td>April 8, 2014</td>
</tr>
<tr>
<td>Revise RAP and submit Draft Final RAP to DTSC/CVRWQCB</td>
<td>June 24, 2014</td>
</tr>
<tr>
<td>Revise Draft Final RAP to be incorporated into the environmental impact report (EIR) for the SR-132 Project</td>
<td>June 27, 2014</td>
</tr>
<tr>
<td>DTSC approval of Draft Final RAP</td>
<td>July 25, 2014</td>
</tr>
<tr>
<td>Public notice of availability of Draft Final RAP and the SR 132 Project Environmental Document for minimum 30-day public review</td>
<td>Summer/Fall 2014</td>
</tr>
<tr>
<td>Minimum 30-day public review</td>
<td>Fall 2014</td>
</tr>
<tr>
<td>Public meeting</td>
<td>During 30-day public review period</td>
</tr>
<tr>
<td>DTSC responsiveness summary (response to public comments)</td>
<td>Winter 2015</td>
</tr>
<tr>
<td>Revise as needed and DTSC approves Final RAP</td>
<td>Winter 2015</td>
</tr>
<tr>
<td><strong>SR-132 Construction</strong></td>
<td></td>
</tr>
<tr>
<td>StanCOG prepares bid specifications for interim progress phase</td>
<td>2015</td>
</tr>
<tr>
<td>Bids due</td>
<td>2015</td>
</tr>
<tr>
<td>Bid awarded</td>
<td></td>
</tr>
<tr>
<td>Construction of interim progress phase begins</td>
<td>2015</td>
</tr>
<tr>
<td>Complete interim progress phase</td>
<td>2018</td>
</tr>
<tr>
<td>Prepare Remedial Action Completion Report (interim progress phase)</td>
<td>2019</td>
</tr>
<tr>
<td>Complete ultimate build-out phase</td>
<td>2028</td>
</tr>
<tr>
<td>Prepare Remedial Action Completion Report (ultimate build-out phase)</td>
<td>2029</td>
</tr>
</tbody>
</table>
9.0 HEALTH AND SAFETY PLAN

Although most of the COPCs have been demonstrated to be present in the stockpiles at concentrations generally less than residential health risk screening levels (and therefore much less than commercial/industrial or construction worker screening levels), barium is present at elevated concentrations. Therefore, an HSP will be prepared and implemented which will discuss the COPCs and appropriate precautions to limit exposure to them for onsite workers and nearby residents and businesses by implementing measures to control dust generation (water spray) and confirmation of this by air monitoring during construction. The HSP will also cover health and safety precautions for other worker hazards unrelated to the COPCs such as heat illness, lifting of heavy objects, slip/trip/fall hazards, equipment safety, and will provide emergency contacts and routes to the nearest hospital emergency room. A copy of the HSP will be kept on the Site at all times during the project.

Work at the Site will be performed in accordance with applicable State and Federal Occupational Health and Safety Standards set forth in 29 Code of Federal Regulations, Sections 1910 and 1926; and California Health and Safety Regulations as set forth in Title 8, California Code of Regulations, and guidance by DTSC. The provisions of the HSP will be mandatory for all Caltrans personnel and contractors and subcontractors at the Site.

Grading and other soil-related construction activities will not be required to be performed by Occupational Safety and Health Administration (OSHA) 40-hour health and safety trained personnel or contractors with Class A-HAZ licenses. However, health and safety awareness training will be provided through an initial site meeting and daily tailgate safety meetings.
10.0 CEQA

CEQA is being addressed through preparation of the Draft EIR entitled: SR-132 West Freeway/Expressway Project. The Draft EIR is currently in preparation and this RAP will be incorporated as a supplement to it. The Draft EIR describes the SR-132 project alternatives - Alternative 1, Alternative 2, and a No Build Alternative with Alternatives 1 and 2 being SR-99 off-ramp alternatives and not to be confused with remedial alternatives described in the RAP. The Draft EIR will provide the public and decision-makers with detailed information about the Project’s environmental effects, ways to minimize its significant environmental effects, and reasonable alternatives to the Project. The lead agency for the EIR is Caltrans and the DTSC and CVRWQCB, as oversight agencies for the RAP, are responsible reviewing agencies for the EIR.
11.0 PUBLIC PARTICIPATION

The Draft Final RAP process includes several steps/activities and opportunities for public participation. The process includes providing information about the project and the proposed remedy to the public, receiving public input, and responding to that input. The PEA included a community profile and described initial public participation efforts. Additional public informational meetings have been held including one at the Site on November 28, 2012. Caltrans maintains a website (http://www.dot.ca.gov/dist10/environmental/projects/SR-132west/Stockpiles.html) which provide access to project documents. The DTSC’s EnviroStor website (http://www.envirostor.dtsc.ca.gov/public/profile_report.asp?global_id=60001626) and (http://www.envirostor.dtsc.ca.gov/public/profile_report.asp?global_id=50280024) also provides access to project information, regulatory communications, and project documents.

The public participation activities that are ongoing or that will be performed as part of the Draft Final RAP process include:

- preparing a base line community survey which the DTSC has already completed;
- preparing a public participation plan, which the DTSC is in the process of completing;
- publishing a public notice of the availability of the Draft Final RAP for public review and comment and a public meeting in a local newspaper for a minimum of 30 days;
- distribution of a fact sheet describing the proposed remedy and the availability of the RAP for public review and comment;
- conducting the public meeting during the public comment period; and
- publishing a responsiveness summary responding to the comments received during the public comment period.

All comments received during the public comment period will be responded to in writing and distributed to everyone who submits a comment. The 30-day public review period is anticipated to occur in summer 2014. The Draft Final RAP will be revised as necessary, to address the comments received. If significant changes to the Draft Final RAP are required, the RAP will be revised and resubmitted for public review and comment. If significant changes are not required to the Draft Final RAP, the RAP will be modified and the DTSC will approve the revised Final RAP for implementation.
12.0 LIMITATIONS

This Draft Final RAP has been prepared solely for Caltrans and the DTSC and CVRWQCB in consideration of their requirements. Other parties may rely on the findings and conclusions of the RAP for informational purposes only. However, Caltrans, DTSC, CVRWQCB, and other parties who may rely on the findings and conclusions of the RAP should recognize that this RAP does not constitute a complete set of construction plans or specifications and should not be construed as such. The recommendations as presented in this RAP are predicated on the results of the sampling and laboratory testing performed to date.

The information contained herein is only valid as of the date of the RAP and would require an update to reflect additional site activities. Therefore, the RAP should only be deemed conclusive with respect to the information presented. No guarantee of the results of the studies used to generate the RAP is implied within the intent of this RAP or any subsequent report, correspondence or consultation, either express or implied. The services performed were conducted in accordance with the local standard of care in the geographic region at the time the services were rendered.
13.0 REFERENCES

Websites


Shaw Environmental, Inc.

Heavy Metal Contamination Preliminary Site Investigation Report, Modesto, California, June 1, 2004.


Human Health Risk Assessment, Caltrans Modesto Soil Stockpile, Stanislaus County, California, May 14, 2007c.

Particulate Matter Test Report, Mowing Simulation, State Route 99/132 Project, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, June 5, 2007d.
Appendix H - Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles

Final Preliminary Endangerment Assessment, Caltrans Modesto Soil Stockpiles, State Route 132/99 Interchange, Stanislaus County, California, June 30, 2009.

Geocon Consultants, Inc.

Kansas Avenue Ramp Project

Site Investigation Workplan, Modesto Ramp Rehabilitation Project, State Route 99 Kansas Avenue Northbound Off-ramp, Modesto, California, April 13, 2012.

Transmittal of Site Investigation Data, Modesto Ramp Rehabilitation Project, State Route 99 Kansas Avenue Northbound Off-ramp, Modesto, California, April 24, 2012.


Transmittal of Stockpile 3 Excavation Monitoring Data, Modesto Ramp Rehabilitation Project, State Route 99 Kansas Avenue Northbound Off-ramp, Modesto, California, October 22, 2012.


Groundwater Monitoring

Monitoring Well Installation Workplan, Modesto Stockpiles, State Route 99 and 132, Stanislaus County, California, May 8, 2012.


**Stormwater Monitoring**

Addendum to Surface Water Sampling and Analysis Plan, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, February 20, 2013.

Surface Water Sampling Report, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, June 27, 2013.

**Supplemental Site Investigation**

Response to DTSC 09-12-12 Comments on Draft Supplemental Site Investigation Workplan, Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, September 18, 2012.

Supplemental Site Investigation Workplan, Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, September 18, 2012.

Supplemental Site Investigation, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Stanislaus County, California, revised March 1, 2013.

**Human Health Risk Assessment**

Human Health Risk Assessment Update, Caltrans Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, revised March 1, 2013.

**Kleinfelder**

Final Geotechnical Design Report, Modesto Soil Stockpiles, State Routes 99 and 132, Modesto, California, September 6, 2012.

**General References**

California Division of Mines and Geology, 1962.

Department of Toxic Substances Control, Proven Technologies and Remedies Guidance, Remediation of Metals in Soil, August 29, 2008.


Appendix H - Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles

1963 AERIAL PHOTOGRAPH

Figure 3a: Task Order No. 17

October 2014

Figure 3a
1967 AERIAL PHOTOGRAPH

Caltrans Modesto Soil Stockpiles

GEOCON Proj. No. S9800-01-17
Stanislaus County, California

Task Order No. 17
October 2014
Figure 3b
Receptor Scenarios

<table>
<thead>
<tr>
<th>Source Medium</th>
<th>Primary Release</th>
<th>Secondary Release</th>
<th>Tertiary Release</th>
<th>Exposed Medium</th>
<th>Exposure Route</th>
<th>Exposure Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Soil</td>
<td>Dust Emissions</td>
<td></td>
<td></td>
<td>Soil</td>
<td>Ingestion</td>
<td>* 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air</td>
<td>Dermal Contact</td>
<td>* 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inhalation</td>
<td>* 1</td>
</tr>
<tr>
<td>Subsurface Soil</td>
<td>Dust Emissions</td>
<td>Leaching</td>
<td>Groundwater</td>
<td>Soil</td>
<td>Ingestion</td>
<td>1 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air</td>
<td>Dermal Contact</td>
<td>1 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inhalation</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drinking Water</td>
<td>Ingestion</td>
<td>1 * 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dermal Contact</td>
<td>1 * 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inhalation</td>
<td>1 1</td>
</tr>
</tbody>
</table>

*= Complete exposure pathway evaluated in the risk assessment
1 = Incomplete exposure pathway

Ref: Human Health Risk Assessment, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, Shaw Environmental, Inc., May 14, 2007

GEOCON Consultants, Inc.
3168 Gold Valley Dr. Suite 800 - Rancho Cordova, CA 95742
Phone 916.852.9118 - Fax 916.852.9132
GEOCON Proj. No. S9800-01-17
Task Order No. 17
Stanislaus County, California
Conceptual Site Exposure Model
October 2014
Figure 4
Match Line (See Figure 5a)

Figure 5b

Stanislaus County, California

Caltrans Modesto Soil Stockpiles

SITE PLAN

STOCKPILES 2 AND 3

PHONE   916.852.9118  –  FAX   916.852.9132
3160  GOLD  VALLEY  DR  –  SUITE  800  –  RANCHO  CORDOVA,  CA   95742

State Route 132 West Freeway/Expressway Draft EIR/EA

October 2014  Figure 5b
State Route 132 West Freeway/Expressway Draft EIR/EA

Roadways to be Constructed for Project Ultimate Build-Out

Structural Pavement Section

Minimum 6 - 12 Inches Clean Cover Soil

Cross-Section Location

Scale in Feet

0 150

GEOCON CONSULTANTS INC.
STOCKPILE 2
STOCKPILE 3

Caltrans Modesto Soil Stockpiles
Stanislaus County, California
GEOCON Proj. No. S9800-01-17
Task Order No. 17
October 2014
Figure 6b
Interim Progress Phase Cross-Section – Stockpile #2 (Typical)

Ultimate Project Build-Out Cross-Section – Stockpile #2 (Typical)

GEOCON Consultants, Inc.

Caltrans Modesto Soil Stockpiles
Stanislaus County, California

CROSS-SECTIONS
STOCKPILE #2

State Route 132 West Freeway/Expressway Draft EIR/EA

Appendix H - Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles

GEOCON Proj. No. S9800-01-17

Task Order No. 17

October 2014

Figure 9
Interim Progress Phase and Ultimate Build-Out Cross-Section – Stockpile #3 (Typical)
Table 1
ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13240, 13241, 13242, 13243)</td>
<td>Water Quality Control Plan (Basin Plan) for the RWQCB, CVR.</td>
<td>Establishes water quality objectives, including narrative and numerical standards, that protect the beneficial uses of surface and ground waters in the region. Describes implementation plans and other control measures designed to ensure compliance with statewide plans and policies and provide comprehensive water quality planning. Also includes implementation actions for setting soil cleanup levels for soils which threaten water quality. Unless otherwise designated by the Regional Water Board, all ground waters in the Region are considered as suitable or potentially suitable, at a minimum, for municipal and domestic water supply (MUN), agricultural supply (AGR), industrial service supply (IND), and industrial process supply (PRO).</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Specific applicable portions of the Basin Plan include beneficial uses of affected water bodies and water quality objectives to protect those uses. Any activity, including, for example, a new discharge of contaminated soils or in-situ treatment or containment of contaminated soils, that may affect water quality must not result in water quality exceeding water quality objectives. Implementation plans and other policies and requirements may also apply.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13000, 13304, 13240, 13241, 13242, 13243)</td>
<td>RWQCB, CVR Basin Plan, &quot;Policy for Investigation and Cleanup of Contaminated Sites.&quot;</td>
<td>Establishes and describes policy for investigation and remediation of contaminated sites. Also includes implementation actions for setting groundwater and soil cleanup levels.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Cleanup levels for soils should be equal to levels that would achieve background concentrations in groundwater unless such levels are technically and economically infeasible to achieve. In such cases, soil cleanup levels are such that groundwater will not exceed applicable groundwater quality objectives.</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>----------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13240, 13241, 13242, 13243)</td>
<td>RWQCB, CVR Basin Plan, &quot;Policy for Application of Water Quality Objectives&quot;</td>
<td>This policy defines water quality objectives and explains how the Regional Water Board applies numerical and narrative water quality objectives to ensure the reasonable protection of beneficial uses of water and how the Regional Water Board applies Resolution No. 68-16 to promote the maintenance of existing high quality waters.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to all cleanups of discharges that may affect water quality.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13000, 13140, 13263, 13304)</td>
<td>State Water Resources Control Board Resolution No. 68-16 (&quot;Antidegradation Policy&quot;)</td>
<td>Requires that high quality surface and ground waters be maintained to the maximum extent possible. Degradation of waters will be allowed (or allowed to remain) only if it is consistent with the maximum benefit to the people of the state, will not unreasonably affect present and anticipated beneficial uses, and will not result in water quality less than that prescribed in RWQCB and SWRCB policies. If degradation is allowed, the discharge must meet best practicable treatment or control, which must prevent pollution or nuisance and result in the highest water quality consistent with maximum benefit to the people of the state.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to discharges of waste to waters, including discharges to soil that may affect surface or ground waters. In-situ cleanup levels for contaminated soils must be set so that ground waters will not be degraded, unless degradation is consistent with the maximum benefit of the people of the state. If degradation is allowed, the discharge must meet best practical treatment or control, and result in the highest water quality possible consistent with the maximum benefit to the people of the state. In no case may water quality objectives be exceeded.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections</td>
<td>State Water Resources Control Board Resolution No. 92-49 (As</td>
<td>Establishes requirements for investigation and cleanup and abatement of discharges. Among other requirements, dischargers must clean up and abate the effects of discharges in a manner that</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to all cleanups of discharges that may affect water quality.</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>--------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>13000, 13140, 13240, 13260, 13263, 13267, 13300, 13304, 13307) amended April 21, 1994</td>
<td>promotes the attainment of either background water quality, or the best water quality that is reasonable if background water quality cannot be restored. Requires the application of Title 23, CCR, Section 2550.4 requirements to cleanups.</td>
<td>ARARs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13000, 13140, 13240)</td>
<td>State Water Resources Control Board Resolution No. 88-63 (“Sources of Drinking Water Policy”) (as contained in the RWQCB’s Water Quality Control Plan)</td>
<td>Specifies that, with certain exceptions, all ground and surface waters have the beneficial use of municipal or domestic water supply.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies in determining beneficial uses for waters that may be affected by dischargers of waste.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13260, 13263, 13370.5, 13372, 13373, 13374, 13375, 13376, 13377, 13383)</td>
<td>40 CFR Parts 122, 123, 124, National Pollutant Discharge Elimination System, implemented by California Storm water Permit for Industrial Activities, State Water Resources Control Board Order #97-03-DWQ.</td>
<td>Regulates pollutants in discharge of storm water associated with hazardous waste treatment, storage, and disposal facilities, wastewater treatment plants, landfills, land application sites, and open dumps. Requirements to ensure storm water discharges do not contribute to a violation of surface water quality standards.</td>
<td>Applicable</td>
<td>Action and Chemical</td>
<td>適用於暴雨水的排放。包括措施以減少和/或消除污染物在暴雨水排放和監測以證明符合標準。</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>--------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13260, 13263, 13370.5, 13372 13373, 13374, 13375, 13376, 13377, 13383).</td>
<td>40 CFR Parts 122, 123, 124, National Pollutant discharge elimination system, implemented by State Water Resources Control Board Order No. 92-08 DWQ</td>
<td>Regulates pollutants in discharge of storm water associated with construction activity (clearing, grading, or excavation) involving the disturbance of 5 acres or more. Requirements to ensure storm water discharges do not contribute to a violation of surface water quality standards.</td>
<td>Applicable</td>
<td>Action and Chemical</td>
<td>Applies to construction areas over 5 acres in size. Includes measures to minimize and/or eliminate pollutants in storm water discharges and monitoring to demonstrate compliance.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260,13263, 13267, 13304).</td>
<td>Title 27, CCR, Section 20080(g), Title 23, CCR, Section 2510(g)</td>
<td>Requires monitoring. If water quality is threatened, corrective action consistent with Title 27, Title 23 is required.</td>
<td>Applicable</td>
<td>Action</td>
<td>Applies to areas of land where discharges had ceased as of November 27, 1984 (the effective date of the revised Title 27/ Title 23 regulations).</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20385, Title 23, CCR, Section 2550.1</td>
<td>Requires detection monitoring. Once a significant release has occurred, evaluation or corrective action monitoring is required.</td>
<td>Applicable</td>
<td>Action and Chemical</td>
<td>Applies to all areas in which waste has been discharged to land to determine the threat to water quality.</td>
</tr>
</tbody>
</table>
## Table 1
**ARARs and TBCs for Soil Remediation**  
*Caltrans Modesto Soil Stockpiles*  
*Modesto, Stanislaus County, California*

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20390, Title 23, CCR, Section 2550.2</td>
<td>Requires establishment of a water quality protection standard consisting of a list of constituents of concern, concentration limits, compliance monitoring points and all monitoring points. This section further specifies the time period that the standard shall apply.</td>
<td>Applicable</td>
<td>Action and Chemical</td>
<td>Applies to all areas in which waste has been discharged to land where groundwater is threatened.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20935, Title 23, CCR, Section 2550.3</td>
<td>Requires development of a list of constituents of concern which include all waste constituents, that are reasonably expected to be present in the soil from discharges to land, and could adversely affect water quality.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to all areas in which waste has been discharged to land where groundwater is threatened.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20400, Title 23, CCR, Section 2550.4</td>
<td>Concentration limits must be established for groundwater, surface water, and the unsaturated zone. Must be based on background, equal to background, or for corrective actions, may be greater than background, not to exceed the lower of the applicable water quality objective or the concentration technologically or economically achievable. Specific factors must be considered in setting cleanup standards above background levels.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>If water quality is threatened, this section applies in setting soil cleanup levels for all cleanups of discharges of waste to land.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water</td>
<td>Title 27, CCR, Section 20405, Title 23, CCR, Section 2550.5</td>
<td>Requires identification of the point of compliance, hydraulically down gradient from the area where waste was discharged to land.</td>
<td>Applicable</td>
<td>Action</td>
<td>Applies to all areas in which waste has been discharged to land where groundwater is threatened.</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>--------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Code Sections 13140-13147, 13172, 13260,13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20410 Title 23, CCR, Section 2550.6</td>
<td>Requires monitoring for compliance with remedial action objectives for three years from the date of achieving cleanup levels.</td>
<td>Relevant and Appropriate.</td>
<td>Action</td>
<td>Applies to all soil cleanup activities.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20415 Title 23, CCR, Section 2550.7.</td>
<td>Requires general soil, surface water, and ground water monitoring.</td>
<td>Relevant and Appropriate.</td>
<td>Action</td>
<td>Applies to all areas in which waste has been discharged to land.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20420, Title 23, CCR, Section 2550.8.</td>
<td>Requires detection monitoring to determine if a release has occurred.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to all areas where waste has been discharged to land and groundwater is threatened.</td>
</tr>
</tbody>
</table>
Table 1
ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13172, 13260, 13263, 13267, 13269.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20425 Title 23, CCR, Section 2550.9</td>
<td>Requires an assessment of the nature and extent of the release, including a determination of the spatial distribution and concentration of each constituent.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to sites at which monitoring results show statistically significant evidence of a release.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13269).</td>
<td>Title 27, CCR, Section 20430 Title 23, CCR, Section 2550.10</td>
<td>Requires implementation of corrective action measures that ensure that cleanup levels (i.e., water quality protection standard established under section 2550.2) are achieved throughout the zone affected by the release by removing the waste constituents or treating them in place. Source control may be required. Also requires monitoring to determine the effectiveness of the corrective actions.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>If water quality is threatened, this section applies to all soil cleanup activities.</td>
</tr>
<tr>
<td>Office of Scientific Affairs, Cal EPA, DTSC</td>
<td>Supplemental Guidance for Human Health Multimedia Risk</td>
<td>Provides recommendations on specific technical or scientific issues that may be encountered when preparing multimedia risk assessment reports for submittal and</td>
<td>To Be Considered</td>
<td>Action</td>
<td>Performance standard for conducting quantitative human health risk assessments.</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Assessment of Hazardous Waste Sites and Permitted Facilities</td>
<td>review by the DTSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidance</td>
<td>USEPA Risk Reference Doses (RfDs)</td>
<td>RfDs are dose levels developed USEPA for evaluating human non-carcinogenic risk from exposure to carcinogens.</td>
<td>To Be Considered</td>
<td>Chemical</td>
<td>RfDs are used to evaluate human health risks from exposure to non-carcinogenic Site contaminants. RfDs are also employed to develop Site cleanup levels.</td>
</tr>
<tr>
<td>Guidance</td>
<td>USEPA Human Health Assessment Cancer Slope Factors (CSFs)</td>
<td>CSFs are developed by USEPA for evaluating incremental human carcinogenic risk from exposure to carcinogens.</td>
<td>To Be Considered</td>
<td>Chemical</td>
<td>CSFs are used to evaluate human cancer risk resulting from exposure to carcinogenic Site contaminants. CSFs are also employed to develop Site cleanup levels.</td>
</tr>
<tr>
<td>Staff Report of the RWQCB, CVR</td>
<td>The Designated Level Methodology for Waste Classification and Cleanup Level Determination</td>
<td>Provides guidance on how to classify wastes according to Title 27, CCR, Division 2, Subdiv.1/ Title 23, CCR, Division 3, Chapter 15, Article 10. Provides a methodology for establishing “Designated Levels” for specific constituents of a waste which provides a numerical value that would indicate the water quality impairment potential of the waste.</td>
<td>To Be Considered</td>
<td>Action</td>
<td>Performance standard to be considered in determining the classification of wastes and contaminated soils.</td>
</tr>
<tr>
<td>Staff Report of the RWQCB, CVR</td>
<td>“A Compilation of Water Quality Goals”</td>
<td>Provides guidance on selecting numerical values to implement narrative water quality objectives contained in the Basin Plan.</td>
<td>To Be Considered</td>
<td>Action</td>
<td>Performance standard to be considered in selecting appropriate numerical values to implement the Basin Plan for setting cleanup levels and discharge limits. The numerical</td>
</tr>
</tbody>
</table>
Table 1
ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff Report of the RWQCB, CVR</td>
<td>“Water Quality Site Assessment for Soils and Ground Water”</td>
<td>Provides guidance on how a site-wide water quality site assessment should be conducted to evaluate the impact of soil contaminants on groundwater quality. Guidance uses background soil and groundwater quality data to determine if Site soil and groundwater have been impacted by site activities and uses groundwater Water Quality Goals to determine if the beneficial use of groundwater has been impacted or whether concentrations of site constituents have the potential to affect beneficial groundwater uses.</td>
<td>To Be Considered</td>
<td>Action</td>
<td>Used to determine to identify Site soil and groundwater constituents of concern.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13269).</td>
<td>Title 23, CCR, Section, 2520, 2521</td>
<td>Requires that hazardous waste be discharged to Class I waste management units that meet certain design and monitoring standards.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Applies to discharges of hazardous waste to land for treatment, storage or disposal.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections</td>
<td>Title 27, CCR, Section, 20200(c), 20210</td>
<td>Requires that designated waste be discharged to Class I or Class II waste management units.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Applies to discharges of designated waste (nonhazardous waste that could cause degradation of surface or ground waters) to land for treatment,</td>
</tr>
</tbody>
</table>
Table 1
ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13140-13147 13172, 13260, 13263, 13269).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>storage, or disposal.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147 13172, 13260, 13263, 13269).</td>
<td>Title 27, CCR, Section 20230</td>
<td>Requires that inert waste does not need to be discharged at classified units.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Applies to discharges of inert waste to land for treatment, storage, or disposal.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147 13172, 13260, 13263, 13269).</td>
<td>Title 27, CCR, Section 20200(c),20220</td>
<td>Requires that nonhazardous solid waste be discharged to a classified waste management unit.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Applies to discharges of nonhazardous solid waste to land for treatment, storage, or disposal.</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>--------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13304).</td>
<td>Title 27, CCR, Section 20090(d) Title 23 CCR, Section 2511(d)</td>
<td>Actions taken by public agencies to cleanup unauthorized releases are exempt from Title 27/Title 23 except that wastes removed from immediate place of release and discharged to land must be managed in accordance with classification (Title 27 CCR, Section 20200/ Title 23 CCR, Sections 2520) and siting requirements of Title 27 or Title 23 and wastes contained or left in place must comply with Title 27 or Title 23 to the extent feasible.</td>
<td>Applicable</td>
<td>Action</td>
<td>Applies to remediation and monitoring of sites.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13304).</td>
<td>Title 27, CCR, Section 20080 (d) Title 23, CCR, Section 2510(d)</td>
<td>Requires closure of existing waste management units according to Title 27/Title 23.</td>
<td>Applicable</td>
<td>Action</td>
<td>Applies to existing waste management units (i.e., areas where waste was discharged to land on or before 27 November 1984, but that were not closed, abandoned, or inactive prior to that date).</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act (California Water Code Sections 13140-13147, 13172, 13260, 13263, 13267, 13304).</td>
<td>Title 27, CCR, Section 21400, Title 23, CCR, Section 2582.</td>
<td>Requires surface impoundments to be closed by removing and treating all free liquid and either removing all remaining contamination or closing the surface impoundment as a landfill.</td>
<td>Applicable</td>
<td>Action</td>
<td>If water quality is threatened, this section is relevant and appropriate for natural topographic depressions, excavations, and diked areas where wastes containing free liquids were discharged.</td>
</tr>
</tbody>
</table>
### Table 1
ARARs and TBCs for Soil Remediation
Caltrans Modesto Soil Stockpiles
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Sections 20385-20435 Title 23, CCR, Section 2550</td>
<td>Where groundwater monitoring is required under 2510 or 2511 of Ch 15 (and equivalent for Title 27), applies to authorized waste management units as well as unauthorized discharges of waste to land and to closed abandoned or inactive units.</td>
<td>Applicable</td>
<td>Chemical and Action</td>
<td>Applies to all areas in which waste has been discharged to land to determine the threat to water quality.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Section 20950; 22207 (a); 22212 (a), and 22222. Title 23, CCR, Section 2550.0 (b); 2580; 2580(f).</td>
<td>General closure requirements, including continued maintenance of waste containment, drainage controls, and groundwater monitoring throughout the closure and post closure maintenance periods.</td>
<td>Applicable</td>
<td>Action</td>
<td>Applies to partial or final closure of waste management units.</td>
</tr>
<tr>
<td>Porter-Cologne Water Quality Control Act</td>
<td>Title 27, CCR, Section 21090</td>
<td>Requires a final cover for landfills constructed in accordance with specific prescriptive standards, to be maintained as long as wastes pose a threat to water quality.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>If water quality is threatened, this section is relevant and appropriate for wastes contained or left in place at the end of remedial actions that could affect water quality. Includes closure of landfills and other areas where wastes have been discharged to land.</td>
</tr>
<tr>
<td>Staff Report of the RWQCB, CVR</td>
<td>Items to be included in a Feasibility</td>
<td>Provides an outline presenting the minimum requirement for items to be included and discussed in the text of all</td>
<td>To be Considered</td>
<td>Chemical, Action, and Location</td>
<td>Applies to preparation of a feasibility study and remedial options evaluation for submittal to</td>
</tr>
</tbody>
</table>
Table 1  
ARARs and TBCs for Soil Remediation  
Caltrans Modesto Soil Stockpiles  
Modesto, Stanislaus County, California

<table>
<thead>
<tr>
<th>Source</th>
<th>Standard, Requirement, Criterion, or Limitation</th>
<th>Description</th>
<th>ARARs, or To Be Considered</th>
<th>Chemical-Action-, or Location-Specific</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study/Remedial Options Evaluation Report</td>
<td>feasibility studies/remedial option evaluation reports submitted to the RWQCB.</td>
<td></td>
<td></td>
<td></td>
<td>RWQCB.</td>
</tr>
<tr>
<td>Hazardous Waste Control Law (Health and Safety Code, Division 20, Chapter 6.5)</td>
<td>Title 22, California Code of Regulations, Division 4.5, Section 66260.1 et seq</td>
<td>Regulates the generation, storage, transportation, treatment and disposal of hazardous waste in the State.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to material that may be hazardous waste.</td>
</tr>
<tr>
<td>Hazardous Waste Control Law (Health and Safety Code, Division 20, Chapter 6.5)</td>
<td>Title 22, California Code of Regulations, Division 4.5, 22 CCR §§66261-66261.126</td>
<td>Identifies those wastes that are subject to regulation as hazardous wastes. Provides definition of “wastes” and “hazardous wastes”.</td>
<td>Applicable</td>
<td>Chemical</td>
<td>Applies to material that would be transported from the Site for disposal, treatment or storage. Determination of material as “waste” and “hazardous waste” is required prior to removal from Site.</td>
</tr>
<tr>
<td>NCP</td>
<td>55 FR 8758-8760, March 8, 1990</td>
<td>Area of Contamination – Allows wastes to be consolidated and treated in situ within an AOC without triggering land disposal restrictions or minimum technology requirements. For an AOC, contamination must be contiguous but does not have to be homogeneous.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Allows for movement of impacted soil to be moved within the footprint of impacted soil.</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>Municipal Code Section 5-10.301</td>
<td>Requires a grading and erosion control permit to grade, fill, excavation, store or dispose of 350 cubic yards or more of soil or earth material or clear and grub more than .5 acre of land within the City limits.</td>
<td>Applicable</td>
<td>Action</td>
<td>Would apply for remedial actions that included excavation of impacted soil.</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>Municipal Code Section 5-10.303</td>
<td>Provides requirements for information to be included in a grading and erosion control permit.</td>
<td>Applicable</td>
<td>Action</td>
<td>Would apply for remedial actions that included excavation of impacted soil.</td>
</tr>
<tr>
<td>Source</td>
<td>Standard, Requirement, Criterion, or Limitation</td>
<td>Description</td>
<td>ARARs, or To Be Considered</td>
<td>Chemical-Action-, or Location-Specific</td>
<td>Comments</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>City of Modesto</td>
<td>Municipal Code Section 5-10.304</td>
<td>Provides requirements for grading plans required as part of the grading and erosion permit.</td>
<td>Applicable</td>
<td>Action</td>
<td>Would apply for remedial actions that included excavation of impacted soil.</td>
</tr>
<tr>
<td>San Joaquin Valley Unified Air Protection Control District</td>
<td>Rule 8021</td>
<td>Provides requirements for to limit fugitive dust emissions from construction, demolition, excavation, extraction, and other earthmoving activities.</td>
<td>Applicable</td>
<td>Action</td>
<td>Would apply for remedial actions that included excavation of impacted soil. Permit is required if area subject to construction, demolition, etc is greater than five acres.</td>
</tr>
<tr>
<td>National Contingency Plan (40 CFR Part 300.430)</td>
<td>USEPA's regulations for implementing CERCLA</td>
<td>Identifies the development and evaluation process for remedial alternatives.</td>
<td>Relevant and Appropriate</td>
<td>Action</td>
<td>Applies to investigation and remediation of uncontrolled hazardous waste sites.</td>
</tr>
<tr>
<td>USEPA</td>
<td>Interim Final Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, October 1988, (EPA/540-G-89/004)</td>
<td>Presents the methodology that the Superfund program has established for characterizing the nature and extent of risks posed by uncontrolled hazardous waste sites and for evaluating potential remedial options.</td>
<td>To be Considered</td>
<td>Action</td>
<td>Voluntary Cleanup Agreement, FMC-Modesto Site, Stanislaus County, Modesto, California requires the RI/FS Process to follow CERCLA guidance, specifically this guidance document.</td>
</tr>
<tr>
<td>Item No.</td>
<td>Activity</td>
<td>Quantity</td>
<td>Unit</td>
<td>Unit Cost</td>
<td>Total Cost</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>Project Management ¹</td>
<td>15</td>
<td>Annual</td>
<td>$5,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>2</td>
<td>Public Communications ²</td>
<td>5</td>
<td>As-needed</td>
<td>$2,500</td>
<td>$12,500</td>
</tr>
<tr>
<td>2</td>
<td>Fence Maintenance ¹</td>
<td>15</td>
<td>Annual</td>
<td>$5,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>3</td>
<td>Mowing ¹</td>
<td>30</td>
<td>Bi-annual</td>
<td>$2,500</td>
<td>$75,000</td>
</tr>
<tr>
<td>5</td>
<td>Groundwater Monitoring ³</td>
<td>20</td>
<td>Quarterly</td>
<td>$12,500</td>
<td>$250,000</td>
</tr>
<tr>
<td>6</td>
<td>Surfacewater Monitoring</td>
<td>3</td>
<td>Weather-dependent</td>
<td>$2,500</td>
<td>$7,500</td>
</tr>
</tbody>
</table>

**Total Estimated Cost:** $495,000

Notes:

1 = assumed to be necessary from present until planned completion of ultimate build-out in 2028.
2 = could include public meetings, fact sheets, public notices, and other forms of information dissemination to the public.
3 = assumed that will be discontinued after interim progress phase is completed in 2018.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Site Work</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>1</td>
<td>Lump Sum</td>
<td>$53,000</td>
<td>$53,000</td>
</tr>
<tr>
<td>2</td>
<td>Pre-Field Planning/Permits</td>
<td>1</td>
<td>Lump Sum</td>
<td>$35,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>3</td>
<td>SWPPP, BMPs, Trackout¹, Security</td>
<td>1</td>
<td>Lump Sum</td>
<td>$63,000</td>
<td>$63,000</td>
</tr>
<tr>
<td>4</td>
<td>Truck Decontamination Station²</td>
<td>47</td>
<td>Day</td>
<td>$1,200</td>
<td>$56,400</td>
</tr>
<tr>
<td>5</td>
<td>Air Monitoring</td>
<td>1</td>
<td>Lump Sum</td>
<td>$215,000</td>
<td>$215,000</td>
</tr>
<tr>
<td>6</td>
<td>Waste Profiling of Soil</td>
<td>1</td>
<td>Lump Sum</td>
<td>$36,500</td>
<td>$36,500</td>
</tr>
<tr>
<td>7</td>
<td>Traffic Control</td>
<td>47</td>
<td>Day</td>
<td>$800</td>
<td>$37,600</td>
</tr>
<tr>
<td>8</td>
<td>Excavation and Loading</td>
<td>216,000</td>
<td>Ton</td>
<td>$9</td>
<td>$1,944,000</td>
</tr>
<tr>
<td>9</td>
<td>Transportation and Disposal (Class II)</td>
<td>191,000</td>
<td>Ton</td>
<td>$35</td>
<td>$6,589,500</td>
</tr>
<tr>
<td>10</td>
<td>Transportation and Disposal (Class I)</td>
<td>25,000</td>
<td>Ton</td>
<td>$242</td>
<td>$6,050,000</td>
</tr>
<tr>
<td>11</td>
<td>Fill Placement</td>
<td>160,000</td>
<td>Cubic Yard</td>
<td>$40</td>
<td>$6,400,000</td>
</tr>
<tr>
<td></td>
<td><strong>Total Estimated Cost</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>$21,480,000</strong></td>
</tr>
</tbody>
</table>

Notes:  
1 = trackout includes placement of rock for truck tire rough cleaning for each trip.  
2 = truck decontamination includes daily washout and operation and maintenance of station.
## TABLE 4

REMEDICATION COST ESTIMATE SUMMARY

ALTERNATIVE NO. 4 – CONTAINMENT BY CAPPING WITH THE SR-132 PROJECT

CALTRANS MODESTO SOIL STOCKPILES

MODESTO, STANISLAUS COUNTY, CALIFORNIA

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Site Work</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>1</td>
<td>Lump Sum</td>
<td>$20,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>2</td>
<td>Pre-Field Planning/Permits</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>3</td>
<td>SWPPP, BMPs, Trackout¹, Security</td>
<td>1</td>
<td>Lump Sum</td>
<td>$30,000</td>
<td>$30,000</td>
</tr>
<tr>
<td>4</td>
<td>Air Monitoring ²</td>
<td>1</td>
<td>Lump Sum</td>
<td>$150,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>5</td>
<td>Excavation and Consolidation of Soil from South Side of Stockpiles 1 and 2 (Interim Progress Phase)</td>
<td>15,000</td>
<td>Cubic Yard</td>
<td>$5</td>
<td>$75,000</td>
</tr>
<tr>
<td>6</td>
<td>Excavation and Consolidation of Soil from Stockpile 3 (Interim Progress Phase)</td>
<td>20,000</td>
<td>Cubic Yard</td>
<td>$5</td>
<td>$100,000</td>
</tr>
<tr>
<td>7</td>
<td>Grading of North Side Stockpiles 1 and 2</td>
<td>40,000</td>
<td>Cubic Yard</td>
<td>$5</td>
<td>$200,000</td>
</tr>
<tr>
<td>8</td>
<td>Clean Soil Cap - North Side of Stockpiles 1 and 2</td>
<td>8,000</td>
<td>Cubic Yard</td>
<td>$10</td>
<td>$80,000</td>
</tr>
<tr>
<td>9</td>
<td>Excavation and Consolidation of Soil - North Side of Stockpiles 1 and 2 (Ultimate Build-Out)</td>
<td>10,000</td>
<td>Cubic Yard</td>
<td>$10</td>
<td>$100,000</td>
</tr>
<tr>
<td>10</td>
<td>Pave Median of Ultimate Build-out</td>
<td>2,700</td>
<td>Ton</td>
<td>$150</td>
<td>$405,000</td>
</tr>
<tr>
<td>11</td>
<td>Revegetation - North Side of Stockpiles 1 and 2</td>
<td>200,000</td>
<td>Square Feet</td>
<td>$2</td>
<td>$400,000</td>
</tr>
<tr>
<td><strong>Total Estimated Cost:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>$1,570,000</strong></td>
</tr>
</tbody>
</table>

Notes:  
¹ = trackout includes placement of rock for truck tire rough cleaning for each trip. 
² = air monitoring to be conducted during all earthmoving activities during interim progress phase and ultimate build-out.

State Route 132 West Freeway/Expressway Draft EIR/EA
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Site Work</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>1</td>
<td>Lump Sum</td>
<td>$20,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>2</td>
<td>Pre-Field Planning/Permits</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>3</td>
<td>SWPPP, BMPs, Trackout¹, Security</td>
<td>1</td>
<td>Lump Sum</td>
<td>$30,000</td>
<td>$30,000</td>
</tr>
<tr>
<td>4</td>
<td>Air Monitoring ²</td>
<td>1</td>
<td>Lump Sum</td>
<td>$150,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>5</td>
<td>Grading of Stockpiles</td>
<td>25,000</td>
<td>Cubic Yard</td>
<td>$5</td>
<td>$125,000</td>
</tr>
<tr>
<td>6</td>
<td>Clean Soil Cap</td>
<td>20,000</td>
<td>Cubic Yard</td>
<td>$10</td>
<td>$200,000</td>
</tr>
<tr>
<td>7</td>
<td>Revegetation</td>
<td>400,000</td>
<td>Square Feet</td>
<td>$2</td>
<td>$800,000</td>
</tr>
<tr>
<td></td>
<td><strong>Total Estimated Cost</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>$1,335,000</strong></td>
</tr>
</tbody>
</table>

Notes:  
1 = trackout includes placement of rock for truck tire rough cleaning for each trip.  
2 = air monitoring to be conducted during all earthmoving activities during interim progress phase and ultimate build-out.

**TABLE 5**

REMEDICATION COST ESTIMATE SUMMARY

ALTERNATIVE NO. 4 – CONTAINMENT BY CAPPING WITH CLEAN SOIL LAYER

CALTRANS MODESTO SOIL STOCKPILES

MODESTO, STANISLAUS COUNTY, CALIFORNIA
### TABLE 6

**REMEDIATION COST ESTIMATE SUMMARY**

**OPTIONAL REMOVAL AND OFFSITE DISPOSAL OF STOCKPILE 3**

**CALTRANS MODESTO SOIL STOCKPILES**

**MODESTO, STANISLAUS COUNTY, CALIFORNIA**

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Site Work</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>2</td>
<td>Pre-Field Planning/Permits</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>3</td>
<td>SWPPP, BMPs, Trackout¹, Security</td>
<td>1</td>
<td>Lump Sum</td>
<td>$20,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>4</td>
<td>Truck Decontamination Station²</td>
<td>30</td>
<td>Day</td>
<td>$1,200</td>
<td>$36,000</td>
</tr>
<tr>
<td>5</td>
<td>Air Monitoring</td>
<td>1</td>
<td>Lump Sum</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>6</td>
<td>Waste Profiling of Soil</td>
<td>1</td>
<td>Lump Sum</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>7</td>
<td>Traffic Control</td>
<td>30</td>
<td>Day</td>
<td>$800</td>
<td>$24,000</td>
</tr>
<tr>
<td>8</td>
<td>Excavation and Loading</td>
<td>34,000</td>
<td>Ton</td>
<td>$9</td>
<td>$306,000</td>
</tr>
<tr>
<td>9</td>
<td>Transportation and Disposal (Class II)</td>
<td>34,000</td>
<td>Ton</td>
<td>$35</td>
<td>$1,173,000</td>
</tr>
<tr>
<td>10</td>
<td>Fill Placement</td>
<td>24,000</td>
<td>Cubic Yard</td>
<td>$40</td>
<td>$960,000</td>
</tr>
</tbody>
</table>

**Total Estimated Cost:** $2,649,000

Notes:

1 = trackout includes placement of rock for truck tire rough cleaning for each trip.

2 = truck decontamination includes daily washout and operation and maintenance of station
APPENDIX A

EVALUATION OF ALTERNATIVES

In accordance with CERCLA guidance and the remedial technology screening in Section 4, four alternatives were retained for further evaluation in the FS:

- Alternative 1 - No action;
- Alternative 2 - Institutional controls;
- Alternative 3 - Removal (excavation and offsite disposal); and
- Alternative 4 - Containment.

Each of these alternatives is described in the following subsections then evaluated against the nine NCP criteria.

A.1 Evaluation Criteria

The nine NCP evaluation criteria are:

Threshold Criteria:
1. Overall Protection of Human Health and the Environment
2. Compliance with ARARs

Balancing Criteria:
3. Long-Term Effectiveness and Permanence
4. Reduction of Toxicity, Mobility, and Volume through Treatment
5. Short-Term Effectiveness
6. Implementability
7. Cost

Modifying Criteria:
8. Regulatory Acceptance
9. Community Acceptance

Each evaluation criterion is described below. The RAO is stated in Section 3.3, which is to protect the health of neighboring residents, onsite trespassers, and Caltrans-authorized personnel and prevent future impact to groundwater by managing the stockpiles either in-place or by removing them from the Site. Therefore each alternative’s attainment of the RAO is presented in the evaluation of Overall Protection of Human Health and the Environment.
A.1.1 Threshold Criteria

Threshold criteria relate to statutory requirements that each alternative must satisfy in order to be eligible for selection.

**Overall Protection of Human Health and the Environment**

This criterion is used to assess each alternative’s ability to protect human health and the environment. The assessment of overall protection describes how risks to human health and the environment are eliminated, reduced, or controlled through treatment, engineering controls, or institutional controls. While the HHRA and update to the HHRA found that potential exposure of onsite trespassers and offsite residents to COPCs under the current land-use and of construction workers and adjacent residents during construction of the SR-132 Project does not pose an unacceptable risk or hazard, the detailed evaluation will still consider potential further reductions in risks to human health and the environment afforded by each alternative.

**Compliance with ARARs**

This evaluation criterion is used to determine whether each alternative would meet the Federal and State ARARs identified in Section 3. The ability of a remedial alternative to comply with certain ARARs that have been identified for the remedial action would depend entirely on the manner in which the remedy is implemented. For evaluation purposes, it is assumed that any remedy selected would be implemented in a manner that would meet these ARARs.

A.1.2 Balancing Criteria

Balancing criteria are used to evaluate the technical aspects of a remedial alternative.

**Long-Term Effectiveness and Permanence**

This criterion is used to assess the long-term ability of the remedial alternative to address the threshold criteria by (1) assessing the risk remaining at the Site after implementation of the remedial alternative, and (2) evaluating the long-term adequacy and reliability of the remedial alternative, including requirements for management and monitoring.

**Reductions in Toxicity, Mobility, and Volume of COPCs**

This criterion is used to assess a remedial alternative’s ability to reduce the inherent risk of the stockpile soil. Technologies that permanently and significantly reduce toxicity, mobility, or volume are preferred over alternatives that only manage the stockpiles left in place. However, the degree of toxicity, mobility, or volume reduction achieved for the cost to achieve it is heavily weighted. Therefore, technologies that may have a significant effect on one or more of the criteria, but not necessarily all three, are strongly considered. As an example, a major factor to be considered is that the stockpiles were originally placed for construction of the SR-132 Project, which is now nearing implementation. If the stockpiles were to be removed from the Site in an attempt to achieve the greatest possible reduction in toxicity, mobility, and volume of COPCs, the soil would have to be replaced by other clean fill at considerable expense to
complete the project. The expense incurred for removal and replacement is not warranted for the degree of protection achieved. Additionally, while there is funding for construction of the SR-132 Project, there is no source of funding for removal of the stockpiles and replacement with other clean fill.

**Short-Term Effectiveness**

This criterion is used to assess the risks posed to the community, workers, and the environment during the implementation of a remedial action. Measures that would be taken to mitigate these risks will be addressed under this criterion. This criterion also considers the time required to achieve RAO.

**Implementability**

This criterion is used to assess the technical feasibility (constructability, reliability of technology, operation, and monitoring requirements), administrative feasibility (coordination with other agencies), and availability of services and materials (labor, equipment, and materials) to implement an alternative.

**Cost**

This criterion is used to assess the anticipated capital and annual O&M and monitoring costs associated with each alternative over a 30-year period. Capital and annual costs in the FS are presented in 2013 dollars. Cost estimates are provided in Tables 2 through 4.

**A.1.3 Modifying Criteria**

The modifying criteria, regulatory and community acceptance, are described as follows:

- Regulatory acceptance - this assessment evaluates the technical and administrative issues and concerns the DTSC and CVRWQCB may have regarding each of the alternatives.
- Community acceptance - this assessment evaluates the issues and concerns the public may have regarding each of the alternatives. These criteria will be addressed after the public comment period for the RAP and were not evaluated in the FS.

**A.2 Evaluation of Alternatives**

The remedial alternatives for the stockpiles are assessed with regard to their ability to meet the nine applicable NCP criteria.

**A.2.1 Overall Protection of Human Health and the Environment**

This criterion is an evaluation of the effect that each of the alternatives would have on human health and the environment. The evaluation of this criterion primarily addresses both existing and post-construction conditions, except where onsite construction activities have a potentially significant offsite impact (i.e., airborne dust generation).
**Alternative 1 - No action**

Under a no-action scenario the stockpiles would remain in place. There would be no access restrictions, no fencing, and no monitoring and maintenance. However, as long as Caltrans continues to own and control the property as State right-of-way they would maintain the perimeter fence and continue restricting access to Caltrans-authorized personnel. Therefore, the most likely site occupant would be a trespasser. The 2007 HHRA and recent update to the HHRA concluded that the concentrations of COPCs in the stockpiles do not pose an unacceptable level of health risk to an onsite trespasser. The no action alternative can therefore be considered protective of human health as long as land use remains the same and access is restricted.

The no action alternative would be the least protective of the environment in that it would not reduce the contaminant mass or the potential of the COPCs to impact surface or groundwater quality.

**Alternative 2 – Institutional Controls**

In their memo of December 17, 2009, the DTSC indicated that the stockpiles in their current condition do not pose an unacceptable risk to human health for: Caltrans workers, trespassers, or offsite residents adjacent to the stockpiles based on continued management of the stockpiles. Management of the stockpiles consists of: limiting access to only Caltrans-authorized personnel, inspecting and maintaining the chain-link fence, prohibiting any activities involving excavation/grading, off-site removal of soil, or placement of other soil on the Site, and maintaining the current vegetative cover. They also stated that Caltrans should continue to maintain the groundwater monitoring system at the Site. These management activities and site conditions constitute institutional controls. Based on the DTSC’s statement, this alternative is protective of human health and the environment.

**Alternative 3 - Removal**

Excavation and offsite disposal of the stockpiles would provide good overall protection of human health and the environment with respect to eliminating potential exposure to COPCs in the soil. However, excavation and transportation of the soil could increase the short-term risk of exposure to receptors adjacent to the Site and along the transportation route from airborne dust and diesel exhaust emissions from construction equipment and trucks hauling soil from the project and clean replacement fill back to the project. Engineering controls (e.g., water spray and air monitoring) would mitigate airborne dust generation. Diesel exhaust and greenhouse gas emissions (GHGEs) could be limited by use of certain practices during construction (e.g., use of high efficiency engines, proper equipment maintenance, no idling of equipment, etc.), but not eliminated as use of heavy equipment is required and the only means of transportation of stockpile soil to landfills and clean fill soil back to the Site would be by truck. GHGEs for removal of the stockpiles and replacement with clean fill have been calculated to be 529,200 pounds of CO₂. GHGE calculations are shown in Appendix A.
Alternative 4 – Containment

This alternative will provide an improved level of protection of human health and the environment over Alternatives 1 and 2 through further elimination of the exposure routes to COPCs in the stockpiles and by decreasing the potential for stormwater to contact COPCs and impact surface or groundwater quality. Construction of the SR-132 Project will ultimately cap and encapsulate the soil completely by containing it behind retaining walls, bridge abutments, slope pavements, and beneath roadway pavement, and either pavement or a synthetic liner and clean soil cap in median areas. During the interim progress phase of the project, not all of the retaining walls will be constructed and the northern portions of Stockpiles and 1 and 2 will be graded for drainage and a clean soil cap placed over the stockpiles and vegetated. This temporary cap will remain in place and be maintained until the ultimate build-out.

If the planned SR-132 Project were not constructed, an alternative form of cap could be installed over the stockpiles. The alternative cap could consist of constructing a layer of clean soil (typically one foot thick) over the stockpiles. Prior to constructing the cap, the surface of the stockpiles would be graded for drainage to ensure primarily that stormwater did not pond on top of the stockpiles. Following construction, the cap surface would be vegetated to protect against stormwater and wind erosion. This form of a cap would provide a similar degree of protection of human health and the environment as capping by the SR-132 project.

A.2.2 Compliance with State and Federal Requirements

This criterion is an evaluation of whether each of the three alternatives will comply with applicable State, and/or Federal regulations.

Alternative No. 1 - No action

This alternative would not meet State or Federal regulations with respect to hazardous waste levels of COPCs in soil on the Site because of the lack of site control and public notification.

Alternative 2 – Institutional Controls

This alternative complies with State and/or Federal regulations under the Site’s current inactive (but maintained and monitored) use as long as the Site remains fenced, its vegetative cover maintained, and groundwater quality monitoring continues.
**Alternative 3 - Removal**
This alternative would comply with State and Federal regulations as the soil would be removed from the Site and potential for exposure to COPCs and threat to the environment would be mitigated. This alternative would comply with the SJVAPCD’s Rule 8021 regarding fugitive dust emissions during construction as long as dust suppression (water spray) was adequately performed during earthmoving activities. A dust control plan would have to be prepared and submitted to and approved by the SJVAPCD’s Air Pollution Control Officer and must provide the required notification prior to commencing earthmoving activities.

**Alternative 4 – Containment**
This alternative by either type of cap (construction of the SR-132 Project or a vegetated clean soil layer) would comply with State and Federal regulations in that either form of cap would be protective of human health and the environment (groundwater).

**A.2.3 Long-term Effectiveness and Performance**
This criterion evaluates whether each of the three alternatives will provide long-term protection of human health and the environment from exposure to COPCs in the stockpiles.

**Alternative 1 - No action**
This alternative would not be effective in the long-term because access to the stockpiles would not be controlled and therefore potential exposure to COPCs not mitigated. Additionally, stormwater contact with COPCs and impact to surface or groundwater quality would not be mitigated.

**Alternative 2 – Institutional Controls**
This alternative would be effective in the long-term because the COPCs do not pose a threat to human health of an onsite trespasser or offsite residents as long as access continues to be controlled. Under this alternative, the site perimeter fence would be monitored and maintained to restrict access, and the vegetative cover would continue to minimize erosion and potential offsite transport via wind or stormwater. Informational technologies such as public notification via site signage, published notices, and public meetings, if warranted, could help to keep the public informed of the site conditions and status. Governmental and administrative controls such as a deed restriction and land use covenant would prevent the site from being developed for uses that may not be suitable under the current site conditions such as residential or other “sensitive” land uses.

**Alternative 3 - Removal**
This alternative would be effective in the long-term, because removal of the stockpiles would mitigate any potential for exposure to COPCs in the stockpiles.
**Alternative 4 – Containment**

This alternative would also be effective in the long-term as either form of a cap would isolate and encapsulate the soil for the indefinite future. A vegetated clean soil layer cap would likely require a greater degree of long-term monitoring and maintenance to ensure that the cap and vegetative cover remain viable and effective.

### A.2.4 Reduction of Toxicity, Mobility, and Volume

This criterion is used to assess the ability of each alternative to reduce the toxicity, mobility, or volume of COPCs in the stockpiles.

**Alternative 1 - No action**

This alternative will not reduce the toxicity, mobility, and/or volume of COPCs in the stockpiles. Regarding toxicity, the 2007 HHRA and 2013 update demonstrated that the concentrations of COPCs do not pose an unacceptable level of health risk to an onsite trespasser, offsite resident, or future user of shallow groundwater. Therefore, the concentrations of COPCs are not considered to be toxic for those users. If under no action, other land uses occurred (unlikely given Caltrans’ ownership of the property), then the potential health risk specific to those uses would have to be evaluated.

With respect to mobility of the COPCs in the stockpiles, mobility via erosion from wind or stormwater infiltration is limited by the vegetative cover. Further, COPC concentrations in groundwater samples collected from monitoring wells adjacent to and downgradient of, and native soil samples collected from beneath, the stockpiles are inconclusive with respect to COPC migration from the stockpiles.

**Alternative 2 – Institutional Controls**

This alternative will also not reduce the toxicity (low), mobility, or volume of COPCs in the stockpiles. However, as stated above, the health risks associated with the COPC concentrations have been demonstrated to be at acceptable levels for site trespassers and offsite residents under the current site conditions and controls.

**Alternative 3 - Removal**

This alternative would be the most effective in reducing the toxicity, mobility and volume of COPCs as the stockpiles would be completely removed from the Site and disposed of in an appropriate, permitted landfill.

**Alternative 4 – Containment**

This alternative by either form of cap will further reduce the potential mobility of the COPCs in the stockpiles via an impermeable surface that would preclude infiltration, but will have no effect on toxicity (low) or volume. The stockpiles would be isolated and encapsulated either within the SR-132 project behind retaining walls, bridge abutments, beneath roadway pavement, and either pavement or a synthetic liner and vegetated clean soil layer in the median areas or beneath a vegetated clean soil layer over all of the stockpiles. The toxicity and volume of COPCs would not change. This alternative would be the second-most effective in reducing the mobility of the COPCs in the stockpiles.
A.2.5 Short-term Effectiveness

This criterion evaluates the impacts of each alternative prior to and during construction of the project.

**Alternative 1 - No action**

This alternative would be effective for the period of time in which the site remained fenced thereby continuing to limit access to the Site. Without fence monitoring and maintenance, however, it would become the least effective of the four alternatives in the short-term.

**Alternative 2 - Institutional Controls**

This alternative would be effective in the short-term as the current fencing, vegetative cover, and stockpile configurations/slopes and top deck slope grade would remain as-is continuing to provide sufficient protection of human health and the environment.

**Alternative 3 - Removal**

With implementation of best management practices (BMPs) such as dust control (water spray application) and air monitoring, soil track-off controls, and transportation planning (e.g., route planning, load tarping, etc.) during soil handling activities (excavation, loading, and transportation), removal would be effective in the short-term. However, under this alternative, truck traffic on roads in the site vicinity would increase dramatically for both removal of the material and replacement with imported fill material. Removal of the stockpiled soil for offsite disposal is estimated to require 175 truckloads per day over an approximate 30-day period. A similar number of loads and time would be required to import clean fill material to replace the stockpiles. Air emissions from heavy equipment (e.g., graders, excavators, loaders) and trucking will be significantly increased for this alternative relative to all other alternatives and the work would fall under the SJVAPCD’s Indirect Source Review Rule 9510. The short-term impact to air quality from airborne dust and diesel exhaust emissions, local traffic, and roads may not be acceptable to the community and local government. In addition, as described in Section A.2.1, GHGEs attributable to heavy equipment operations and truck transportation during removal of the stockpiles and replacement with clean fill are estimated at 529,200 pounds of CO₂.

**Alternative 4 – Containment**

Similar to the removal alternative, with implementation of BMPs, either form of capping of the stockpiles should be effective in the short-term.

A.2.6 Implementability

This criterion evaluates the implementability of each of the alternatives.

**Alternative 1 - No action**

No action is readily implementable because it requires no labor, materials, or equipment.
Alternative 2 – Institutional Controls

This alternative is also readily implementable in that it requires minimal labor, materials, and equipment to monitor the Site and maintain fencing and the vegetative cover and is currently ongoing. Groundwater and stormwater monitoring are also ongoing, so there would be no change in those activities.

Alternative 3 - Removal

This alternative is technically implementable. However, other constraints to this alternative exist that decrease its implementability. Those constraints include a significant increase in truck traffic on adjacent and nearby roads for a period of approximately 60 days, an increased potential for offsite exposure due to generation of airborne dust from truck loads or spillage, and prohibitively high cost with no funding source. Potential landfill capacity to accept the soil has been confirmed and should not affect the implementability of this alternative.

Alternative 4 – Containment

This alternative in either form is readily implementable. The SR-132 project is currently being planned and designed by Caltrans and StanCOG. The volume of soil requiring excavation from Stockpiles 1 and 2 for consolidation behind retaining walls and bridge abutments is not significant. The cross-sections shown on Figures 7, 8, and 9 depict the portions of the stockpiles that are outside where project retaining walls will be constructed and therefore will be excavated and placed on top of the stockpiles where additional fill is needed. As shown on Figures 5b (plan view) and 9 (cross-section) Stockpile 3 will be nearly entirely removed from its location and placed in the embankment for the eastern side of the SR-99 bridge (Figure 5b).

A.2.7 Cost

Alternative 1 - No action

There is no cost associated with this alternative.

Alternative 2 – Institutional Controls

The costs associated with ongoing maintenance and monitoring, which includes as-necessary fence maintenance, annual mowing of the vegetative cover to reduce fire danger, and quarterly groundwater monitoring and weather-dependent stormwater monitoring is on the order of $50,000 per year (Table 23). This cost is considered to be low to moderate and is the second least costly of the four alternatives.

Alternative 3 - Removal

Removal of the stockpiles through excavation, loading, transportation, and disposal at an offsite landfill is the most costly of the alternatives at approximately $21.5 million (Table 4). Disposal cost assumes disposal of a portion of the stockpile soil (primarily from Stockpile 1) in a Class II (non-hazardous) facility and a portion (primarily from Stockpile 2) in a Class I (California hazardous). The cost of this alternative also includes replacement of the stockpiles by importing clean fill material. There is no funding available for removal.
Alternative 4 – Containment

The cost of containment by capping beneath the SR-132 project, including excavation of portions of the stockpiles and consolidation behind retaining walls, bridge abutments, and beneath a vegetated clean soil cap and roadway pavement, is considered to be moderate to high for capital costs and moderate in terms of ongoing monitoring and maintenance (Table 5). The bulk of the capital cost of this alternative will be in grading of the soil for the interim progress phase of the project, placement of the clean soil cap over the northern portions of Stockpiles 1 and 2, and placement of paving or a synthetic liner and clean soil cap over median areas for the ultimate build-out of the SR-132 Project.

The cost of containment by capping beneath a vegetated clean soil layer if the SR-132 project were not constructed is considered to be moderate to high for capital costs and moderate in terms of ongoing monitoring and maintenance (Table 6). The bulk of the capital cost of this alternative will be in grading of the stockpiles for drainage, placement of a one-foot-thick layer of clean soil over the stockpiles, and revegetation.

Monitoring costs for groundwater and stormwater monitoring will likely continue at levels similar to current costs until the ultimate build-out is complete. If the CVRWQCB approves a decrease in monitoring frequency, then annual monitoring costs would decrease.

A.2.8 Regulatory Acceptance

Each of the four alternatives is evaluated against this criterion to determine whether it meets legal and technical standards for regulatory acceptance.

Alternative 1 - No Action

This alternative would not be acceptable to the regulatory agencies because access to the Site would not be controlled, and groundwater quality monitoring would not continue.

Alternative 2 – Institutional Controls

This alternative currently has acceptance from the DTSC and CVRWQCB for the short-term with the understanding that Caltrans is moving forward with construction of the SR-132 project, which will encapsulate the stockpiles (Alternative 4).

Alternative 3 - Removal

This alternative also would likely receive regulatory acceptance from the DTSC and CVRWQCB because removal and offsite disposal of the stockpiles would reduce the level of health risk for any future land use and threat to the environment to the greatest extent possible. It would also receive regulatory acceptance from the SJVAPCD as long as dust suppression measures in accordance with a dust control plan were appropriately implemented.
Alternative 4 – Containment
This alternative is anticipated to receive regulatory acceptance by further eliminating exposure pathways to COPCs in the soil and reducing their mobility through encapsulation either within the SR-132 project or beneath a vegetated clean soil cap if the SR-132 project is not constructed.

A.2.9 Community Acceptance
This criterion involves the evaluation of whether each of the alternatives would be acceptable to the community.

Alternative 1 - No Action
Although the presence of the stockpiles has been generally acceptable to the community for five decades, this alternative would likely not remain acceptable to the public due to an increased perception of risk to human health and the environment associated with the stockpiles.

Alternative 2 – Institutional Controls
This alternative may be acceptable to the community if the current institutional controls (e.g., access restrictions, continued site monitoring and maintenance, and communication regarding the low level of risk to human health and the environment) continue to be implemented.

Alternative 3 - Removal
This alternative may be acceptable to the community because removing the stockpiles would likely eliminate any residual concern regarding health risk related to the stockpiles. In the short-term, the community may be averse to the perception of potential exposure to COPCs in airborne dust as soil is being excavated then transported along public roads to disposal facilities. There may also be some concern regarding increased truck traffic over an approximate 60-day period for offhaul of soil from the Site and import of new clean fill to replace the stockpiles. However, dust suppression and monitoring during excavation and loading by water spray, proper covering of waste loads, and appropriate routing of truck traffic would likely help the community to accept this alternative.

Alternative 4 – Containment
This alternative in either form of cap would likely be acceptable to the community because of the reduced potential for exposure to COPCs as a result of containment of the stockpile soil beneath the project. Some community opposition to the project exists which is unrelated to the stockpiles. Caltrans and StanCOG are moving forward with the SR-132 project, and public participation will continue through additional public informational meetings and a public hearing during public review of the draft environmental document and RAP. The public participation process will continue to afford the community opportunities to comment on the project and for StanCOG and Caltrans to respond to those comments with the intent of increasing community support for the project.

If the SR-132 project were not constructed, the alternative of constructing a vegetated clean soil cap over the stockpiles would likely receive the same community acceptance because of the same reduced
potential for exposure to COPCs. The public participation process could proceed as planned for the SR-132 project. However, an environmental document would likely not need to be prepared, therefore a public hearing would not likely be necessary. An additional public meeting could be held to discuss the difference between the clean soil cap and the SR-132 project.

A.3 Comparative Analysis

This section provides a comparative analysis of the four alternatives which forms the basis for selection of the preferred alternative.

A.3.1 Alternative 1 – No Action

This alternative would provide the lowest level of overall protection of human health and the environment of the four alternatives. The level of protection for the onsite trespasser and offsite resident would remain the same as the current controlled condition, but the health risk for other land uses and receptors would need to be further evaluated. This alternative would have the lowest level of regulatory acceptance because of the lack of site controls and monitoring and maintenance. It also would likely have the lowest level of community acceptance due to the perceived threat to human health and the environment. This is the least costly of the alternatives and is the most implementable.

A.3.2 Alternative 2 – Institutional Controls

This alternative provides a higher level of protection to human health and the environment than no action and has regulatory acceptance by the DTSC. Although the DTSC has stated that the stockpiles do not pose a risk to human health for Caltrans workers, trespassers, or offsite residents under the current controlled and monitored conditions, the CVRWQCB has indicated that the stockpiles would need to be maintained in order to protect groundwater quality if the SR-132 Project were not constructed. Due to the perception by the public of some degree of health risk or threat to the environment, a more proactive remedial action is likely preferred by the community. This alternative is the second lowest in cost and the second most implementable.

A.3.3 Alternative 3 – Removal

Removal of the stockpiles and disposal in an offsite landfill would provide the greatest degree of protection of human health and the environment and may be the most acceptable to the DTSC, CVRWQCB, and the community. Short-term impacts would be the greatest with this alternative due to potential air quality and traffic impacts. Air emissions from soil removal equipment (e.g., graders, excavators, loaders) and trucking will be greatest with this alternative. This alternative would also have the highest cost of the four and no funding is available for removal. This alternative can be performed in compliance with State and Federal requirements. Although technically implementable, it is the least implementable of the four because with construction of the SR-132 Project and removal of the stockpiles, which were placed specifically for the project, they would have to be replaced with an even greater amount of clean soil fill in order to build the project. This would pose an impact to funding and delay in the construction of the project.
A.3.4 Alternative 4 – Containment

Containment of the soil by either form of cap will provide the second highest level of protection of human health and the environment of the four alternatives. Capping will eliminate routes of exposure to COPCs in the soil and minimize the potential for storm water infiltration. Short-term exposure to construction personnel and adjacent residents could be minimized through the implementation of dust controls (e.g., water spray of disturbed areas). Long-term protection of human health and the environment would be provided by containment of the soil beneath either type of cap. This alternative can be performed in compliance with State and Federal requirements. This alternative would be implemented with DTSC and CVRWQCB oversight; therefore, regulatory acceptance is anticipated. This alternative should also be acceptable to the community as it is protective of human health and the environment. It is the third most costly of the alternatives, but significantly less than removal. It is the third most implementable of the alternatives, but its implementability is considered to be good as the stockpiles would be used for their originally intended purpose.
May 18, 2015

Ms. Grace Magsayo, P.E.
Project Manager
Program/Project Management
District 10
1976 East Dr. Martin Luther King Blvd
P.O. Box 2048
Stockton, California 95205

REVISED ADMINISTRATIVE RECORD, STATEMENT OF REASONS, AND
PRELIMINARY NONBINDING ALLOCATION OF RESPONSIBILITY FOR CALTRANS
MODESTO SOIL STOCKPILES, STATE ROUTE 132, WEST
FREeway/EXPRESSway PROJECT, STANISLAUS COUNTY, CALIFORNIA

Dear Ms. Magsayo,

The Department of Toxic Substances Control (DTSC) has prepared the enclosed revised documents based on communication with Mr. Richard Stewart, P.G. on April 23, 2015. These documents are to be included as appendices in the Draft Final Remedial Action Plan (RAP) for the Caltrans Modesto Soil Stockpiles, State Route 132, West Freeway/Expressway Project, Stanislaus County, California prepared by Geocon Consultants, Inc., October 27, 2014.

- Appendix B, Administrative Record
- Appendix C, Statement of Reasons
- Appendix D, Preliminary Nonbinding Allocation of Responsibility

Following the addition of the referenced appendices, the Draft Final RAP will be the document that is referenced in the Caltrans Draft Environment Impact Report (EIR). The Draft Final RAP will be made available for public review and comment concurrently with the Draft EIR.
Please contact me at 916-255-3591 if you have questions.

Sincerely,

[Signature]

Randy S. Adams, C.E.G.
Senior Engineering Geologist
Brownfields and Environmental Restoration Program

Enclosures

cc:  Mr. Jim Brake, P.G.
    Geocon Consultants, Inc.
    3160 Gold Valley Drive, Suite 800
    Rancho Cordova, California 95742-7515

    Ms. Nicole Damin
    Senior Hazardous Materials Specialist
    Stanislaus County Health Agency
    3800 Cornucopia Way, Suite C
    Modesto, California 95358-9492

    Mr. John E. Juhrend, P.E., C.E.G.
    Geocon Consultants, Inc.
    3160 Gold Valley Drive, Suite 800
    Rancho Cordova, California 95742-7515

    Mr. Richard Stewart, P.G.
    Engineering Geologist
    California Department of Transportation
    Division of Environmental Planning
    2015 E. Shields Avenue, Suite 100
    Fresno, California 93726-5428
Mr. Steven Meeks, P.E., Chief  
Private Sites Cleanup  
Senior Water Resources Control Engineer  
Regional Water Quality Control Board  
Central Valley Region  
11020 Sun Center Drive, #200  
Rancho Cordova, California 95670-6144

Mr. Juergen Vespermann  
Senior Environmental Planner  
Central Region Hazardous Waste, Paleontology/Enhancement Branch  
855 M Street, Suite 200  
Fresno, CA 93721

Kimiko Klein, Ph.D.  
Staff Toxicologist Emerita  
Human and Ecological Risk Office  
Department of Toxic Substances Control  
700 Heinz Avenue Suite 200  
Berkeley, California 94710-2721

Mr. Steven R. Becker, P.G., Chief  
Site Evaluation and Remediation Unit  
San Joaquin Branch  
Brownfields and Environmental Restoration Program  
Department of Toxic Substances Control  
8800 Cal Center Drive  
Sacramento, California 95826
APPENDIX B

ADMINISTRATIVE RECORD

CALTRANS MODESTO SOIL STOCKPILES, STATE ROUTE 132, WEST FREEWAY/EXPRESSWAY PROJECT, STANISLAUS COUNTY, CALIFORNIA

California Department of Transportation (CALTRANS)

Shaw Environmental, Inc. (Shaw)

Heavy Metal Contamination Preliminary Site Investigation Report, Modesto, California, (Shaw, June 1, 2004).


Final Work Plan, Characterization of Soil Stockpiles, Caltrans Modesto Soil Stockpiles, State Route 99/132 Project, Stanislaus County, California, (Shaw, January 25, 2006).

Final Surface Water Sampling and Analysis Plan, Caltrans Modesto Soil Stockpiles, State Route 99/132 Project, Stanislaus County, California, (Shaw, January 25, 2006).

Final Work Plan, Groundwater Assessment, Caltrans Modesto Soil Stockpiles, State Route 99/132 Project, Stanislaus County, California, (Shaw, January 26, 2006).

Site Investigation Report, Soils Investigation for Heavy Metals, State Route 99, Stanislaus County, California, (Shaw, March 23, 2006).

Surface Water Sampling Report, State Route 99/132 Project, Stanislaus County, California, (Shaw, June 9, 2006).

Site Investigation Report, Characterization of Soil Stockpiles, Caltrans Modesto Soil Stockpiles, State Route 99/132 Project, Stanislaus County, California, (Shaw, May 14, 2007).
Appendix H - Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles

Site Investigation Report, Groundwater Assessment, Caltrans Modesto Soil Stockpiles, State Route 99/132 Project, Stanislaus County, California, (Shaw, May 14, 2007).

Human Health Risk Assessment, Caltrans Modesto Soil Stockpile, Stanislaus County, California, (Shaw, May 14, 2007).

Particulate Matter Test Report, Mowing Simulation, State Route 99/132 Project, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, (Shaw, June 5, 2007).

Final Preliminary Endangerment Assessment, Caltrans Modesto Soil Stockpiles, State Route 132/199 Interchange, Stanislaus County, California, (Shaw, June 30, 2009).

Geocon Consultants, Inc. (Geocon)

Groundwater Monitoring

Monitoring Well Installation Workplan, Modesto Stockpiles, State Route 99 and 132, Stanislaus County, California, (Geocon, May 8, 2012).


Groundwater Monitoring Report - June 2013, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, (Geocon, June 27, 2013).
Groundwater Monitoring Report - September 2013, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, (Geocon, October 24, 2013).


Groundwater Monitoring Report - September 2014, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, (Geocon, October 30, 2014).

**Stormwater Monitoring**

Addendum to Surface Water Sampling and Analysis Plan, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, (Geocon, February 20, 2013).

Surface Water Sampling Report, Caltrans Modesto Soil Stockpiles, Stanislaus County, California, (Geocon, June 27, 2013).

**Supplemental Site Investigation**

Response to DTSC 09-12-12 Comments on Draft Supplemental Site Investigation Workplan, Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, (Geocon September 18, 2012).

Supplemental Site Investigation Workplan, Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, (Geocon, September 18, 2012).

Supplemental Site Investigation, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Stanislaus County, California, (Geocon, revised March 1, 2013).

**Human Health Risk Assessment**

Human Health Risk Assessment Update, Caltrans Modesto Soil Stockpiles, State Routes 99 and 132, Stanislaus County, California, (Geocon, revised March 1, 2013).
Appendix H - Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles

Kleinfelder

Final Geotechnical Design Report, Modesto Soil Stockpiles, State Routes 99 and 132, Modesto, California, (Kleinfelder, September 6, 2012).

Department of Toxic Substances Control (DTSC)

Caltrans Modesto Soil Stockpile (State Route 99/132 Project), Caltrans/Department of Toxic Substances Control Interagency Agreement Task Order No. 10-43A0142-03; Department of Toxic Substances Control No. 03-T2641, (DTSC, April 8, 2005).

Human Risk Assessment, Caltrans Modesto Soil Stockpiles (State Route 99/132 Project), Caltrans/Department of Toxic Substances Control Interagency Agreement No. 43A0184, DTSC NO. 06-T105, Task Order No. 3, (DTSC, August 20, 2007).

Caltrans Modesto Soil Stockpiles (State Route 132/99 Interchange Project), Modesto, Stanislaus County, (DTSC, December 17, 2009).

State Route 132 West Expressway/Freeway (Caltrans Soil Stockpiles), Modesto, California, (DTSC, March 1, 2012).


Supplemental Site Characterization Workplan, Modesto Soil Stockpiles, State Route 132 and 99, Stanislaus County, California, (DTSC, September 12, 2012).

Groundwater Monitoring Reports, California Department of Transportation, Modesto Soil Stockpiles - State Route 99 and 132, May, June, and July 2012, Modesto California, (DTSC, November 29 2012).


Revised Supplemental Site Investigation and Human Health Risk Assessment, Caltrans Modesto Soil Stockpiles, State Route 132/99, Stanislaus County, California, (DTSC, April 4, 2013).

Draft Final Feasibility Study, Caltrans Modesto Soil Stockpiles, State Route 132, West Freeway/Expressway Project, Stanislaus County, California (DTSC, February 11, 2014)
Final Feasibility Study, Caltrans Modesto Soil Stockpiles, State Route 132, West Freeway/Expressway Project, Stanislaus County, California (DTSC, June 30, 2014).

Draft Remedial Action Plan, Caltrans Modesto Soil Stockpiles, State Route 132, West Freeway/Expressway Project, Stanislaus County, California, (DTSC, April 8, 2014).

Draft Final Remedial Action Plan, Caltrans Modesto Soil Stockpiles, State Route 132, West Freeway/Expressway Project, Stanislaus County, California, (DTSC, September 2014).

Public Participation Plan, The California Department of Transportation (Caltrans) State Route 132 West Expressway Site also known as the Caltrans Modesto Stockpiles Site Near State Highway 99 Modesto, California 95351 (DTSC, November, 2014).

Administrative Record, Statement of Reasons, and Preliminary Nonbinding Allocation of Responsibility, Caltrans Modesto Soil Stockpiles, State Route 132, West Freeway/Expressway Project, Stanislaus County, California, (DTSC, May 18, 2015).
APPENDIX C

STATEMENT OF REASONS FOR CALTRANS MODESTO SOIL STOCKPILES, STATE ROUTE 132, WEST FREeways/EXPRESSWAY PROJECT STANISLAUS COUNTY, CALIFORNIA DRAFT FINAL REMEDIAL ACTION PLAN

Pursuant to California Health and Safety Code (HSC), section 25356.1(d), the California Environmental Protection Agency (Cal/EPA), Department of Toxic Substances Control (DTSC) has prepared this “Statement of Reasons” as part of the “Draft Final Remedial Action Plan, (RAP), Caltrans Modesto Stockpiles, State Route 132, West Freeway/Expressway Project, Stanislaus County, California”.

In addition to identifying the applicable or relevant and appropriate requirements to implement the remedial alternative recommended in the Final Feasibility Study (FS) for the Caltrans Modesto Soil Stockpiles (Site1), the Draft Final RAP presents a summary of remedial investigations that address primary contaminants of potential concern (COPCs) in the stockpile soil: barium, strontium, and lead. Additional tests were conducted for other COPCs, including: antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc. The soil was also tested for polycyclic aromatic hydrocarbons and other COPCs: nitrate, sulfate, and sulfide. Underlying groundwater was tested for the same COPCs as the stockpile soil.

The stockpile soil and groundwater results were used to quantify toxicological risk to human health for each individual stockpile and all stockpiles collectively. Exposure routes consist of ingestion, inhalation, and dermal contact as applicable to current offsite residents and trespassers; future construction workers; future offsite residents; and hypothetical future shallow groundwater users. Results of the Human Health Risk Assessment (Shaw Environmental Inc. June 2007) and the Human Health Risk Assessment Update (Geocon Consultants Inc., March 2013) are summarized in the Draft Final RAP2

1 Final Feasibility Study, Caltrans Modesto Soil Stockpiles, State Route 132 West Freeway/Expressway Project, Stanislaus County, California (Geocon Consultants, Inc., June 2014)
2 An Ecological Screening Evaluation was also completed and included in the Preliminary Endangerment Assessment, Caltrans Modesto Soil Stockpiles, State Route 132/99 Interchange, Stanislaus County, California (Shaw Environmental, June 30, 2009)
Based on stockpiles soil testing, the 2007 Risk Assessment and the 2013 Risk Assessment Update addressed exposure to COPCs, including: arsenic, barium, beryllium, chromium (III & IV), cobalt, copper, lead, mercury, molybdenum, nickel, and zinc. Polycyclic aromatic compounds did not qualify for risk assessment due to limited detection. Both the 2007 Risk Assessment and 2013 Risk Assessment Update determined that the stockpiles, and collectively, as currently managed, do not present an unacceptable risk to human health. Groundwater analysis resulted in the same conclusion.

The toxicological assessment was also included in the Final FS, which evaluated the most appropriate remedial actions for the stockpiles. The remedial action alternatives were then screened against qualifying criteria and methodology established by federal regulation. Based on the findings, the Final FS and Draft Final RAP recommends Alternative # 4 which consists of remediation of approximately 160,000 cubic yards of the stockpile soil by containment of stockpile soil beneath the roadway pavement, behind retaining walls, and behind bridge abutments. Groundwater monitoring and surface water monitoring will be included as part of the Operation and Maintenance plan (OMP) as referenced in the Remedial Design and Implementation Plan (RDIP) prepared by Caltrans. Review and concurrence of the RDIP and OMP by DTSC and the Central Valley Regional Water Quality Control Board will be completed prior to implementation of the recommended remedial action for the Site.

DTSC believes that the Draft Final RAP complies with section 25356.1. Section 25356.1(e) requires that RAPs "shall include a statement of reasons setting forth the basis for the removal and remedial actions selected". The statement of reasons "shall also include an evaluation of the consistency of the selected remedial action with the requirements of the federal regulations and factors specified in subdivision (d)". Section 25356.1(e) specifies six factors against which the remedial alternatives in the RAP must be evaluated. The recommended remedial alternative is consistent with the National Oil and Hazardous Substances Pollution Contingency Plan, also referred to as the National Contingency Plan (NCP), and the federal Superfund regulations. The Draft Final RAP has addressed all of these factors in detail. A brief summary of each of the six factors follows. The Statement of Reasons also includes the Preliminary Nonbinding Allocation of Responsibility (Appendix D) as required by HSC section 25356.1(e).

**NCP Factors Addressed in the Draft Final RAP**

1. **Health and Safety Risks - Section 25356.1(d)(1)**

The Draft Final RAP has been prepared to address contaminants and other general mineral constituents in the stockpiles soil and underlying shallow groundwater. The risk characterization consisting of a Human Health Risk Assessment and Human Health Risk Assessment Update evaluated potential exposure pathways to: 1) current offsite residents and trespassers; 2) future construction workers; 3) future offsite residents; and 4) hypothetical future shallow groundwater users. Based on the completed human health risk assessments and existing management practices by Caltrans including:
fences to prohibit public access; limiting access to Caltrans employees; maintaining a vegetative cover; and maintaining groundwater monitoring, the Site does not present an unacceptable risk to current residents, trespassers, and Caltrans workers and its contractors. According to the City of Modesto and a Department of Water Resources survey, there is no reported municipal or domestic use of shallow groundwater within one mile of the soil stockpiles. Groundwater under the stockpiles does not contain COPCs that exceed primary maximum contaminant levels for drinking water.

2. **Beneficial Uses of the Site Resources - Section 25356.1(d)(2)**

The soil stockpiles consist of excess native soil and pond tailings that were generated in the early 1960s when Caltrans acquired property from Food Machinery and Chemical Corporation (FMC) to construct a segment of State Route 99 along its current alignment located north of Kansas Avenue. Since the early 1960's, the intended and current planned use of the Site containing the stockpiles, located south of Kansas Avenue and east and west of Emerald Avenue, has been for construction of State Route 132 Freeway/Expressway Project. The incorporation of stockpile soil into the construction of State Route 132 at the Site is consistent with the Final FS and Draft Final RAP and is protective of human health and the environment, including groundwater. A land use covenant will be recorded to preclude the use of the property for residences, schools, daycare centers, and hospitals.

3. **Effect of the Remedial Actions on Groundwater Resources - Section 25356.1(d)(3)**

The recommended remedial alternative is protective of groundwater and surface water quality. Construction of State Route 132 Freeway/Expressway Project segment between Carpenter Avenue and North Franklin Street incorporates all stockpile soil beneath paved roadways; behind retaining walls; behind bridge abutments; or a clean vegetated soil cap that will be engineered to minimize infiltration of water and convey surface water away from the stockpile areas. An Operation and Maintenance Agreement, including an Operation and Maintenance Plan will require maintenance, annual inspections, and reporting for all surfaces overlying the stockpiles. To evaluate the effectiveness of the covered surfaces to prevent infiltration and mobilization of COPCs, groundwater and surface water monitoring will be required. The monitoring frequencies and reporting requirements will be established in the RDIP.

4. **Site-Specific Characteristics - Section 25356.1(d)(4)**

COPCs in the stockpiles and groundwater under the stockpiles have been extensively characterized, including barium concentrations at varying depths and locations within the stockpiles. Groundwater COPCs, including barium are below regulatory primary maximum contaminant threshold values for drinking water.
5. **Cost-Effectiveness of Alternative Remedial Action Measures - Section 25356.1(d)(5)**

The recommended remedial alternative is containment by construction of the State Route 132 Freeway/Expressway Project at the Site. Based on comparisons to the evaluation criteria, this remedial alternative was recommended for the Site. This recommended remedy is based primarily on achievement of remediation goals, implementability, effectiveness, consistency with future land use, and cost effectiveness. The cost implementation for this remedial alternative, which includes purchase of clean replacement soil, is approximately 20 times less than the cost to excavate and transport excavated soil stockpile material for offsite disposal.

6. **Potential Environmental Impacts of Remedial Actions – Section 25356.1(d)(6)**

All potential remedial action impacts will be mitigated under the recommend remedial alternative. In accordance with the California Environmental Quality Act, Caltrans is preparing a Draft Environmental Impact Report which references the Draft Final RAP for the Site. DTSC and Central Valley Regional Water Quality Control Board are reviewing agencies with respect to the Draft Environmental Impact Report and other potential human health and environmental impacts associated with the SR 132 West Freeway/Expressway Project at the Site.

7. **Preliminary Non-Binding Allocation or Responsibility (NBAR), HSC Section 25356.1(e)**

The current preliminary NBAR for the site, as issued by DTSC, is presented as Appendix D of the Draft Final RAP.
APPENDIX D

PRELIMINARY NONBINDING ALLOCATION OF RESPONSIBILITY, CALTRANS MODESTO SOIL STOCKPILES, STATE ROUTE 132, WEST FREEWAY/EXPRESSWAY PROJECT, STANISLAUS COUNTY, CALIFORNIA

Health and Safety Code (HSC) section 25356.1(e) requires the Department of Toxic Substances Control (DTSC) to prepare a preliminary non-binding allocation of responsibility (NBAR) among all identifiable potentially responsible parties (PRPs). The intention of the NBAR requirement in section 25356.1 was to establish which PRPs will have an aggregate allocation in excess of 50% and therefore convene arbitration if they so choose, even though the NBAR is otherwise not binding on anyone, including PRPs, DTSC, or the arbitration panel.

However, the arbitration provisions of Chapter 6.8 of Division 20 of the California Health and Safety Code (California Health and Safety Code Sections 25356.2 through 25356.10) were repealed by Senate Bill 1018 (Stats 2012, Chap 39), effective June 27, 2012. Accordingly, all statutory provisions and procedures associated with the arbitration proceeding were repealed. Since the arbitration provisions no longer exist, the only remaining purpose of an NBAR is to promote settlement and reduce transaction costs. Under EPA's "Interim Guidelines for Preparing Nonbinding Preliminary Allocation of Responsibility", there are situations where an NBAR should probably not be prepared. Specifically where the number of PRPs is relatively small and where the costs for remediation and future operation and maintenance are paid by the current property owner, Caltrans, that an NBAR would not expedite settlement. Under the circumstances of this case, the preparation of an NBAR with a specific allocation of percentages of liability to the various PRPs would not promote settlement by the parties or reduce transaction costs. Therefore, DTSC sets forth the following preliminary nonbinding allocation of responsibility for the Caltrans Modesto Stockpiles, State Route 132, West Freeway/Expressway Project¹, Stanislaus County, California:

¹ Includes operation and maintenance for the recommended remedial alternative, "containment" and the associated monitoring programs administered to evaluate the effectiveness of the remedial alternative.
Caltrans assumes full responsibility associated with the remediation and operation and maintenance costs for the Caltrans Modesto Soil Stockpiles, State Route 132, West Freeway/Expressway Project, Stanislaus County, California.
Appendix I  Agency Coordination
Appendix I • Agency Coordination

Alternative 5 Screening Memorandum

Memorandum

Date: July 22, 2011

To: Gail Miller, Caltrans
    Scott Smith, Caltrans

From: Dorney Burgdorf, Lauran Abom

CC: Christina Hibbard, Caltrans
    Anton Kismellan, Caltrans
    Kris Belaci
    Trin Campos

Subject: State Route (SR) 132 West Expressway Project, EA 10-403500, #ID# 1000000424
Consideration of Alternative 5 - Widening Existing SR 132 (Maze Boulevard)

This memorandum serves to document the Project Development Team (PDT) concurrence to eliminate Alternative 5 – Widening existing Maze Boulevard between SR 99 to Dakota Avenue from being further studied as an Alternative for the SR 132 West Expressway project’s environmental analysis.

ALTERNATIVES CONSIDERED BUT ELIMINATED FROM FURTHER DISCUSSION

During the initial scoping phase of PA&ED for this project, the Project Development Team developed various preliminary alternatives for consideration and requested community input at the Public Scoping Meeting held on January 25, 2010. One of the preliminary alternatives considered during project scoping was Alternative 5, which proposed widening along the existing SR 132 alignment to build a multi-lane conventional highway facility to meet the project need. However, this alternative was ultimately rejected by the PDT due to long range transportation planning conflicts and significant impacts to existing community. This analysis is described in further detail below.

Alternative 5 - Widening existing SR 132 (Maze Boulevard)

Widening SR 132 (Maze Boulevard) from a two-lane conventional roadway to a multi-lane conventional highway along its existing alignment was identified as an alternative during the initial scoping for the project. This alternative would entail major widening to allow for construction of a four to six-lane roadway, a raised median, modification or elimination to mid-block property access, left-turn & right-turn lanes, and at-grade signalized intersections at all major local roads. The constraints identified during close evaluation of this alternative include:

1. Significant relocation impacts to existing properties and local community;
2. Lack of system connectivity improvement between SR132 and SR99; and

3. Inconsistency with transportation planning and currently programmed transportation projects.

1. Impacts to Existing Properties and Local Community

Widening existing SR 132 to a multi-lane conventional highway would impact an estimated 134 adjacent parcels, including 69 residential parcels and would require a significant number of existing homes and businesses to be relocated. The relocation impacts to existing development and the elimination of direct access to many existing schools, churches, residents, and businesses along existing SR 132 (Maze Boulevard) would make this alternative very disruptive to the community. This would impact approximately 100 more properties than under any of the proposed Alternatives 1-4, including at least twice as many residential relocations. This community also consists of many low-income households that could be affected by these relocations, which would be considered an environmental justice concern. Therefore, relocations for these low income households must be avoided whenever possible.

2. Lack of System Connectivity

In addition to constructing a multi-lane freeway/expressway facility, this project proposes to improve system connectivity from SR 132 west to SR 99 by constructing freeway to freeway direct connectors to and from southbound SR 99. These direct connectors are needed to serve high traffic volume demands. The existing ramp connections from SR 132 (Maze Boulevard / L Street) to SR 99 do not provide the capacity needed for the future four to six-lane facilities. Constructing freeway to freeway connectors at the current SR 132 (Maze Boulevard) connection to SR 99 in downtown Modesto is not considered feasible due to the significant right of way impacts to downtown developments and the conflict with existing SR 99 ramps.

3. Inconsistency with transportation planning documents and Programmed Transportation Projects

Widening SR 132 along its existing alignment is not consistent with State, Regional, or Local system planning for SR 132. The System Planning Statement, dated July 6, 2011, for the State Route 132 Western Expressway (STA 132 PM 11.3/R14.7; STA 99 PM 16.12/16.82), classifies the SR 132 Concept Facility as 4-lane expressway and the Ultimate Facility as a 4-lane freeway. Widening existing SR 132 would only allow for a conventional highway, which is not consistent with

---

1 According to the July 2011 CIA for the project, a total of 28 residential and eight business relocations would occur under Alternative 2 which would be the largest number of relocations that could result from Alternatives 1-4.
the current System Planning Statement. The 2003 Caltrans Transportation Concept Report for SR. 132 also identifies the proposed SR132 multi-lane freeway/expressway project for construction on a new alignment. Planned construction of the future multi-lane facility on the new alignment is included in the StanCOG RTP, the Stanislaus County General Plan, and the City of Modesto General Plan. Realignment of SR132 West has been planned since the Freeway Route Adoption in 1956 and much of the needed right of way along the adopted corridor has already been acquired by the State.

Summary

Widening SR132 (Maze Boulevard) to a multi-lane conventional highway along the existing alignment would create significant relocation and socioeconomic impacts on the local community, would not provide for improved connectivity between SR 132 west and SR 99, and is not consistent with State or Regional approved transportation plans. After evaluating these impacts and considerations, Alternative 5 was not considered feasible and was dropped from further study.
Appendix I • Agency Coordination

Page Intentionally Left Blank
March 16, 2015

Jeanne Day Binning, Ph.D., Chief
Central California Cultural Resources Branch
Caltrans District 6
855 M Street
Fresno, CA 93721

Re: Determinations of Eligibility for the Proposed State Route 132 West Expressway Project, Stanislaus County, CA

Dear Dr. Binning:

You are consulting with me about the subject undertaking in accordance with the January 2014 First Amended Programmatic Agreement Among the Federal Highway Administration, the Advisory Council on Historic Preservation, the California State Historic Preservation Officer, and the California Department of Transportation Regarding Compliance with Section 106 of the National Historic Preservation Act, as it Pertains to the Administration of the Federal-Aid Highway Program in California (PA).

Caltrans has determined that the following properties are not eligible for the National Register of Historic Places (NRHP) either individually or as part of a potential historic district:

- 1600 Elm Avenue, Modesto, CA
- 630 Elm Avenue, Modesto, CA
- 412 Laurel Avenue, Modesto, CA
- 404 Laurel Avenue, Modesto, CA

Based on my review of the submitted documentation, I concur with the foregoing determinations.

I look forward to consulting with the Caltrans in the future as your archeological survey effort is completed.

Thank you for considering historic properties during project planning. If you have any questions, please contact Natalie Lindquist of my staff at (916) 445-7014 or email at natalie.lindquist@parks.ca.gov.

Sincerely,

Carol Roland-Nawi, Ph.D.
State Historic Preservation Officer
Appendix I • Agency Coordination

May 16, 2012

Jeanne Day Binning, Ph.D.
Branch Chief, Central California Cultural Resources Branch
Caltrans District 06
855 M Street, Suite 200
Fresno, CA 93721

Re: Determinations of Eligibility for the Proposed State Route 132 West Expressway Project, Stanislaus County, CA

Dear Ms. Binning:

Thank you for consulting with me about the subject undertaking in accordance with the Programmatic Agreement Among the Federal Highway Administration, the Advisory Council on Historic Preservation, the California State Historic Preservation Officer, and the California Department of Transportation Regarding Compliance with Section 106 of the National Historic Preservation Act, as it Pertains to the Administration of the Federal-Aid Highway Program in California (PA).

Caltrans has determined that the properties listed on pages 2-4 of your letter of March 23, 2012 are not eligible for the National Register of Historic Places (NRHP). Based on review of the submitted documentation, I concur.

Caltrans has also found the following properties are eligible for the NRHP.

- 3530 Maze Boulevard – The residence is eligible for the NRHP under Criterion C as an excellent example of the vernacular Craftsman style at the local level of significance. I concur.
- 416/418 I Street – The Dania Hall located at 416/418 I Street, is eligible for the NRHP under Criterion A at the local level of significance for its association with the Danish community’s role in the development of Modesto. I concur.

I also understand that the identification effort for this project is not yet complete. I look forward to further consultation in the future regarding this project.

Thank you for considering historic properties during project planning. If you have any questions, please contact Natalie Lindquist of my staff at (916) 445-7014 or email at nlindquist@parks.ca.gov.

Sincerely,

Milford Wayne Donaldson, FAIA
State Historic Preservation Officer
### Federal Endangered Species Act (FESA) Determination Summary

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Status</th>
<th>Possible in Which Habitat Type</th>
<th>Ac. Habitat Impacts Perm/Temp</th>
<th>Species Impacts Expected</th>
<th>FESA Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuctoria greenei</td>
<td>Greene's tuctoria</td>
<td>FE</td>
<td>Vernal pools. Elevation range: 98 to 3,510 ft. Blooming Period: May-July (September).</td>
<td>0/0</td>
<td>No suitable vernal pool habitat present in the BSA. Not observed during botanical surveys.</td>
<td><strong>No Effect</strong></td>
</tr>
<tr>
<td>Coccyzus americanus occidentalis</td>
<td>Western yellow-billed cuckoo</td>
<td>FT/SE</td>
<td>Riparian forest nester, along the broad, lower flood-bottoms of larger river systems</td>
<td>0/0</td>
<td>No suitable riparian habitat present in the BSA.</td>
<td><strong>No Effect</strong></td>
</tr>
<tr>
<td>Vireo bellii pusillus</td>
<td>Least Bell's vireo</td>
<td>FE</td>
<td>Summer resident of southern California in low riparian in vicinity of water or in dry river bottoms; below 2000 ft.</td>
<td>0/0</td>
<td>No suitable riparian habitat present in the BSA.</td>
<td><strong>No Effect</strong></td>
</tr>
<tr>
<td>Ambystoma californiense</td>
<td>California tiger salamander</td>
<td>FT/ST</td>
<td>Needs underground refuges, especially ground squirrel burrows and vernal pools or other seasonal water sources for breeding.</td>
<td>0/0</td>
<td>No suitable habitat present in the BSA.</td>
<td><strong>No Effect</strong></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Status(1)</td>
<td>Possible in Which Habitat Type</td>
<td>Ac. Habitat Impacts Perm/Temp</td>
<td>Species Impacts Expected</td>
<td>FESA Determination</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td><em>Rana draytonii</em></td>
<td>California red-legged frog</td>
<td>FT/SC</td>
<td>Lowlands and foothills in or near permanent sources of deep water with dense, shrubby, or emergent riparian vegetation</td>
<td>0/0</td>
<td>No suitable breeding or upland habitat present in the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Thamnophis gigas</em></td>
<td>Giant garter snake</td>
<td>FT/ST</td>
<td>Prefers freshwater marsh and low gradient streams. Has adapted to drainage canals and irrigation ditches.</td>
<td>0/0</td>
<td>No suitable habitat present in the BSA. There is no suitable upland habitat. The one canal in the BSA is concreted-lined and the closest reported occurrence is located 20 miles north of the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Branchinecta conservatio</em></td>
<td>Conservancy fairy shrimp</td>
<td>FE</td>
<td>Endemic to the grasslands of the northern two-thirds of the Central Valley; found in large, turbid pools.</td>
<td>0/0</td>
<td>No suitable vernal pool habitat present in the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Branchinecta lynchii</em></td>
<td>Vernal pool fairy shrimp</td>
<td>FT</td>
<td>Endemic to the grasslands of the central valley, central coast mountains, and south coast mountains, in astatic rain-filled pools.</td>
<td>0/0</td>
<td>No suitable vernal pool habitat present in the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Desmocerus californicus dimorphus</em></td>
<td>Valley elderberry longhorn beetle</td>
<td>FT</td>
<td>Occurs only in the Central Valley of California, in association with blue elderberry (<em>Sambucus mexicana</em>).</td>
<td>0/0</td>
<td>No suitable habitat present in the BSA. Blue elderberry is not present in the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Status(1)</td>
<td>Possible in Which Habitat Type</td>
<td>Ac. Habitat Impacts Perm/Temp</td>
<td>Species Impacts Expected</td>
<td>FESA Determination</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------------</td>
<td>-----------</td>
<td>-----------------------------------------------------------------------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td><em>Lepidurus packardi</em></td>
<td>Vernal pool tadpole shrimp</td>
<td>FE</td>
<td>Inhabits vernal pools and swales in the Sacramento Valley containing clear to highly turbid water.</td>
<td>0/0</td>
<td>No suitable vernal pool habitat present in the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Neotoma fuscipes riparia</em></td>
<td>Riparian (=San Joaquin Valley) woodrat</td>
<td>FE/SC</td>
<td>Riparian areas along the San Joaquin, Stanislaus, and Tuolumne rivers</td>
<td>0/0</td>
<td>No suitable riparian habitat present in the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Sylvilagus bachmani riparius</em></td>
<td>Riparian brush rabbit</td>
<td>FE/SE</td>
<td>Riparian areas along the San Joaquin River in northern Stanislaus county</td>
<td>0/0</td>
<td>No suitable riparian habitat present in the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Vulpes macrocis mutica</em></td>
<td>San Joaquin kit fox</td>
<td>FE/ST</td>
<td>Annual grasslands or grassy open stages with scattered shrubby vegetation</td>
<td>0/0</td>
<td>No suitable habitat in the BSA. BSA is outside of the known range of species (pers. comm., Kleinfelter).</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Hypomesus transpacificus</em></td>
<td>Delta smelt &amp; critical habitat</td>
<td>FT/SE</td>
<td>Sacramento-San Joaquin Delta. Occurs seasonally in Suisun Bay, Carquinez Strait, and San Pablo Bay.</td>
<td>0/0</td>
<td>No suitable riverine habitat present in the BSA.</td>
<td>No Effect</td>
</tr>
<tr>
<td><em>Oncorhynchus mykiss</em></td>
<td>Central Valley steelhead &amp; critical habitat</td>
<td>FT</td>
<td>Populations occur in the Sacramento and San Joaquin rivers and their tributaries.</td>
<td>0/0</td>
<td>No suitable riverine habitat present in the BSA.</td>
<td>No Effect</td>
</tr>
</tbody>
</table>

(1) **Status Codes:**

**Federal Status**
- FE – Federally listed as endangered
- FT – Federally listed as threatened
- FC – Federal candidate for listing

**State Status**
- SE – State listed as endangered
- ST – State listed as threatened
- SR – State listed as rare
- SC – State species of Concern
Appendix I • Agency Coordination

U.S. Fish and Wildlife Service Species List

United States Department of the Interior
FISH AND WILDLIFE SERVICE
Sacramento Fish and Wildlife Office
FEDERAL BUILDING, 800 COTTAGE WAY, ROOM W-2605
SACRAMENTO, CA 95814
PHONE: (916)414-8660 FAX: (916)414-8713

Consultation Code: 08ESMF00-2016-SL1-1698
Event Code: 08ESMF00-2016-E-03698
Project Name: SR 132 West Freeway/Expressway Project

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, under the jurisdiction of the U.S. Fish and Wildlife Service (Service) that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the Service under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

Please follow the link below to see if your proposed project has the potential to affect other species or their habitats under the jurisdiction of the National Marine Fisheries Service:


New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPEc website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPEc system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2)
of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GILOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at:

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment
Official Species List

Provided by:
Sacramento Fish and Wildlife Office
FEDERAL BUILDING
2800 COTTAGE WAY, ROOM W-2605
SACRAMENTO, CA 95825
(916) 414-6690

Consultation Code: 08ESMF00-2016-SL1-1698
Event Code: 08ESMF00-2016-E-03693

Project Type: TRANSPORTATION

Project Name: SR 132 West Freeway/Expressway Project
Project Description: The California Department of Transportation (Caltrans), in cooperation with the Stanislaus Council of Governments, the City of Modesto, and the California Department of Toxic Substances Control, proposes to construct a four-lane freeway/expressway on a new alignment south of Kansas Avenue from Dakota Avenue (post mile [PM] 11.0) to east of State Route 99 at the Needham Street Bridge Overcrossing (PM 15.0). The total length of the Project would be approximately 4 miles.

Please Note: The FWS office may have modified the Project Name and/or Project Description, so it may be different from what was submitted in your previous request. If the Consultation Code matches, the FWS considers this to be the same project. Contact the office in the 'Provided by' section of your previous Official Species list if you have any questions or concerns.
Appendix I • Agency Coordination

United States Department of Interior
Fish and Wildlife Service

Project name: SR 132 West Freeway/Expressway Project

Project Location Map:

Project Coordinates: The coordinates are too numerous to display here.

Project Counties: Stanislaus, CA
**Endangered Species Act Species List**

There are a total of 8 threatened or endangered species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. Critical habitats listed under the Has Critical Habitat column may or may not lie within your project area. See the Critical habitats within your project area section further below for critical habitat that lies within your project. Please contact the designated FWS office if you have questions.

<table>
<thead>
<tr>
<th>Amphibians</th>
<th>Status</th>
<th>Has Critical Habitat</th>
<th>Condition(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>California red-legged frog</td>
<td>Threatened</td>
<td>Final designated</td>
<td></td>
</tr>
<tr>
<td><em>(Rana draytonii)</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population: Entire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California tiger Salamander</td>
<td>Threatened</td>
<td>Final designated</td>
<td></td>
</tr>
<tr>
<td><em>(Ambystoma californiense)</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population: U.S.A. (Central CA. DVS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crustaceans</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernal Pool fairy shrimp</td>
<td>Threatened</td>
<td>Final designated</td>
<td></td>
</tr>
<tr>
<td><em>(Branchinecta lynchii)</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population: Entire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pool tadpole shrimp</td>
<td>Endangered</td>
<td>Final designated</td>
<td></td>
</tr>
<tr>
<td><em>(Lepidurus packardi)</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population: Entire</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fishes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta smelt <em>(Hyemenus transpacificus)</em></td>
<td>Threatened</td>
<td>Final designated</td>
<td></td>
</tr>
<tr>
<td>Population: Entire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steelhead <em>(Oncorhyncus (=salmo)</em></td>
<td>Threatened</td>
<td>Final designated</td>
<td></td>
</tr>
</tbody>
</table>
### Appendix I • Agency Coordination

**United States Department of Interior**  
Fish and Wildlife Service  

**Project name:** SR 132 West Freeway/Expressway Project

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valley Elderberry Longhorn beetle (Desmocerus californicus dimorphus)</td>
<td>Threatened</td>
<td>Final designated</td>
</tr>
<tr>
<td>Population: Entire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant Garter snake (Thamnophis gigas)</td>
<td>Threatened</td>
<td></td>
</tr>
<tr>
<td>Population: Entire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Critical habitats that lie within your project area

There are no critical habitats within your project area.
Appendix I  •  Agency Coordination

Summary Table Report  
California Department of Fish and Wildlife  
California Natural Diversity Database  

<table>
<thead>
<tr>
<th>Name (Scientific/Common)</th>
<th>CBOID ranks</th>
<th>Listing Status (Fed/State)</th>
<th>Other Lists</th>
<th>Range(s)</th>
<th>Element Curr. Names</th>
<th>Population Status</th>
<th>Impaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apluvius tuberculatus</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys eisenbergi</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys maniculatus</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys inermis</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys oreganus</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys robustus</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys scottii</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys flavifrons</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys longipilis</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctomys montanus</td>
<td>2(2)</td>
<td>Threatened</td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report prepared by Dale Boush  
Information Expires 12/31/2016  

State Route 132 West Freeway/Expressway Draft EIR/EA
## Appendix I • Agency Coordination

### Summary Table Report

<table>
<thead>
<tr>
<th>Name</th>
<th>Scientific/Common Name</th>
<th>CRDDB Ranks</th>
<th>EIR/EA</th>
<th>Other Lists</th>
<th>Population Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### California Department of Fish and Wildlife

<table>
<thead>
<tr>
<th>Name</th>
<th>Scientific/Common Name</th>
<th>CRDDB Ranks</th>
<th>EIR/EA</th>
<th>Other Lists</th>
<th>Population Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Appendix

<table>
<thead>
<tr>
<th>Name</th>
<th>Scientific/Common Name</th>
<th>CRDDB Ranks</th>
<th>EIR/EA</th>
<th>Other Lists</th>
<th>Population Status</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State Route 132 West Freeway/Expressway Draft EIR/EA
## Plant List

13 matches found. Click on scientific name for details.

### Search Criteria
- Rare Plant Rank is one of [1A, 1B, 2A, 2B, 3, 4]
- FESA is one of [Endangered, Threatened, Species of Concern, Not Listed]
- CESA is one of [Endangered, Threatened, Rare, Not Listed]. Found in 9 Quads around 37121F1

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Family</th>
<th>Lifeform</th>
<th>Rare Plant Rank</th>
<th>State Rank</th>
<th>Global Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Appendix condylata var.</em></td>
<td>heartscale</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>92</td>
<td>G3T2</td>
</tr>
<tr>
<td><em>Condylurus ecourtiae</em></td>
<td>crowrncale</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>93</td>
<td>G4T3</td>
</tr>
<tr>
<td><em>Arctotis mirescula</em></td>
<td>lesser esulae</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>92</td>
<td>G2</td>
</tr>
<tr>
<td><em>Arctotis subtilis</em></td>
<td>subtl oreche</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>91</td>
<td>G1</td>
</tr>
<tr>
<td><em>Phacelia lamprose</em></td>
<td>big triplant</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>92</td>
<td>G2</td>
</tr>
<tr>
<td><em>California mexholitil</em></td>
<td>round-leaved fllrs</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>93</td>
<td>G3T3</td>
</tr>
<tr>
<td><em>Cupressus pery arnica</em></td>
<td>Pary's rough triplant</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>93</td>
<td>G3T3</td>
</tr>
<tr>
<td><em>Erythronium rexum</em></td>
<td>Delta button-selley</td>
<td>Aplasia</td>
<td>annual / perennial herb</td>
<td>1B.1</td>
<td>91</td>
<td>G1Q</td>
</tr>
<tr>
<td><em>Eschscholtzia rhodoletras</em></td>
<td>diamond-petaled Calimonia poppy</td>
<td>Papaveracea</td>
<td>annual herb</td>
<td>1B.1</td>
<td>91</td>
<td>G1</td>
</tr>
<tr>
<td><em>Leganemos lisora</em></td>
<td>legenas</td>
<td>Campanulacea</td>
<td>annual herb</td>
<td>1B.1</td>
<td>92</td>
<td>G2</td>
</tr>
<tr>
<td><em>Puccinellia striata</em></td>
<td>California salti grass</td>
<td>Poaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>92</td>
<td>G3</td>
</tr>
<tr>
<td><em>Scleranthus obtusus</em></td>
<td>prairies wedge grass</td>
<td>Poaceae</td>
<td>perennial herb</td>
<td>2B.2</td>
<td>92</td>
<td>G5</td>
</tr>
<tr>
<td><em>Tulipa greenei</em></td>
<td>Greeno's tuckoris</td>
<td>Poaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>91</td>
<td>G1</td>
</tr>
</tbody>
</table>

### Suggested Citation
Appendix I • Agency Coordination

Air Quality Conformance Correspondence

Isael Ojeda - RE: StanCOG IAC Memo for PM10 and PM2.5 Hot Spot Conformity Assessment-CTIPS I.D. 11400000022 State Route 132 West Freeway/Expressway Project

From: Isael Ojeda
Subject: RE: StanCOG IAC Memo for PM10 and PM2.5 Hot Spot Conformity Assessment-CTIPS I.D. 11400000022 State Route 132 West Freeway/Expressway Project

>>> "O'Connor, Karina" <O'Connor.Karina@epa.gov> 4/25/2016 4:16 PM >>>
EPA concurs that this is not a project of air quality concern.

Thanks, Karina

Karina O'Connor
EPA, Region 9
Air Planning Office (AIR-2)
(775) 434-8176
oconnor.karina@epa.gov

From: Isael Ojeda [mailto:ojeda@stancon.org]
Sent: Friday, April 01, 2016 2:23 PM
Subject: StanCOG IAC Memo for PM10 and PM2.5 Hot Spot Conformity Assessment-CTIPS I.D. 11400000022 State Route 132 West Freeway/Expressway Project

Good Afternoon Interagency Consultation Partners:

StanCOG is providing the attached PM2.5 and PM10 Hot Spot Conformity Assessment memo for the State Route 132 West Freeway/Expressway Project, CTIPS I.D. 11400000022 for Interagency Consultation. As part of the environmental review, it is requested that the Interagency Consultation Partners concur that this project is not a Project of Air Quality Concern (PDAQC) and will not result in new violations of Federal PM2.5 and PM10 air quality standards.

Please reply to all with concurrence and/or comments by 5:00 p.m. on April 15, 2016. An interagency conference call will be held upon request. FHWA and EPA concurrence is requested.

Should you have any questions regarding this e-mail or the attached memo, please feel free to contact Elisabeth Hahn by phone at (530) 575-4693 or via email at Elhahn@stancon.org.

about:blank

4/27/2016
Isael Ojeda - RE: StanCOG IAC Memo for PM10 and PM2.5 Hot Spot Conformity Assessment-CTIPS I.D. 11400000022 State Route 132 West Freeway/Expressway Project

From: Isael Ojeda
Subject: RE: StanCOG IAC Memo for PM10 and PM2.5 Hot Spot Conformity Assessment-CTIPS I.D. 11400000022 State Route 132 West Freeway/Expressway Project

>>> <joseph.vaughn@dot.gov> 4/26/2016 4:34 PM >>>
FHWA concurs that this is not a project of air quality concern.

From: Isael Ojeda (ojeda@stanccog.org)
Sent: Friday, April 01, 2016 2:21 PM
Subject: StanCOG IAC Memo for PM10 and PM2.5 Hot Spot Conformity Assessment-CTIPS I.D. 11400000022 State Route 132 West Freeway/Expressway Project

Good Afternoon Interagency Consultation Partners:

StanCOG is providing the attached PM2.5 and PM10 Hot Spot Conformity Assessment memo for the State Route 132 West Freeway/Expressway Project. CTIPS# 11400000022 for Interagency Consultation. As part of the environmental review, it is requested that the Interagency Consultation Partners concir that this project is not a Project of Air Quality Concern (POAQC) and will not result in new violations of Federal PM2.5 and PM10 air quality standards.

Please reply to all with concurrence and/or comments by 5:00 p.m. on April 15, 2016. An interagency conference call will be held upon request. FHWA and EPA concurrence is requested.

Should you have any questions regarding this e mail or the attached memo, please feel free to contact Elisebeth Hahn by phone at (209) 525-4683 or via email at ehahn@stanccog.org <redir.aspx?REF=bx:HUm3g-4Q7Fw0cJi0TgeXKULBBbU6aQHV2D-X7Nn8kmJ6-Km7TCAFyWfsdG862WbhaG5Ac3RbhmNz2yz5vcmc.>

about:blank 4/27/2016
### Natural Resources Conservation Service Form NRCS-CPA-106

**Appendix I • Agency Coordination**

**U.S. DEPARTMENT OF AGRICULTURE**
Natural Resources Conservation Service

**FARMLAND CONVERSION IMPACT RATING FOR CORRIDOR TYPE PROJECTS**

**PART I** (To be completed by Federal Agency)

<table>
<thead>
<tr>
<th>Name of Project:</th>
<th>State Route 132 West Freeway/Expressway Draft EIR/EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Agency:</td>
<td>FHWA</td>
</tr>
</tbody>
</table>

**Transportation**

| County and State: | Stanislaus County, California                        |

**PART II** (To be completed by NRCS)

| Project No.: | 5/714                                      |

**Map Crop(s):**

| Almonds, Walnuts, Silage | Acres: 301.195 | % 36.7 |

| Farmable Land in Government Jurisdiction | Acres: 305,678 | % 41.4 |

| Name of Local Site Assessment System: | None |

**PART III** (To be completed by Federal Agency)

<table>
<thead>
<tr>
<th>Alternative Corridor For Segment</th>
<th>Corridor A</th>
<th>Corridor B</th>
<th>Corridor C</th>
<th>Corridor D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Acres To Be Converted Directly</td>
<td>177.58</td>
<td>176.64</td>
<td>63.77</td>
<td></td>
</tr>
<tr>
<td>Total Acres To Be Converted Indirectly Or To Receive Services</td>
<td>177.58</td>
<td>176.64</td>
<td>63.77</td>
<td></td>
</tr>
</tbody>
</table>

**PART IV** (To be completed by NRCS Land Evaluation Information)

| Total Acres Prime And Unique Farmland | 64.8       |
| Total Acres Satoshi And Local Important Farmland | 0          |
| Total Acres Of Farmland In County Or Local Govt Unit To Be Converted | 0          |
| Percentage Of Farmland in County Or Local Govt Unit To Be Converted | 0.0164% |

**PART V** (To be completed by Federal Agency) Corridor Assessment Criteria (These criteria are explained in 7 CFR 658.5(c))

| Area in Nonurban Use | 15 | 2 | 2 | 10 |
| Perimeter in Nonurban Use | 10 | 2 | 2 | 6 |
| Percent Of Corridor Being Farmed | 20 | 5 | 5 | 12 |
| Protection Provided By State And Local Government | 20 | 20 | 20 | 20 |
| Size Of Present Farm Unit Compared To Average | 10 | 10 | 10 | 10 |
| Creation Of Nonfarmable Farmland | 20 | 6 | 6 | 3 |
| Availability Of Farm Support Services | 5 | 5 | 5 | 5 |
| On-Farm Investments | 20 | 20 | 20 | 18 |
| Effects Of Conversion On Farm Support Services | 20 | 0 | 0 | 0 |
| Compatibility With Existing Agriculture Use | 10 | 1 | 1 | 1 |

**TOTAL CORRIDOR ASSESSMENT POINTS**

| 160 | 71 | 71 | 85 |

**PART VI** (To be completed by Federal Agency)

| Relative Value Of Farmland (From Part IV) | 89 |
| *Total Corridor Assessment (From Part VI above or a local site assessment) | 160 | 71 | 71 | 85 |

**TOTAL POINTS** (Total of above 2 lines)

| 160 | 160 | 160 | 174 |

**1. Corridor Selected:**

**2. Total Acres Of Farmland to be Converted by Project:**

**3. Date Of Selection:**

**4. Was A Local Site Assessment Used?**

**5. Reason For Selection:**

Signature of Person Completing This Part: ___________________________  DATE: ___________________________

**NOTE:** Complete a form for each segment with more than one Alternate Corridor
CORRIDOR - TYPE SITE ASSESSMENT CRITERIA

The following criteria are to be used for projects that have a linear or corridor-type site configuration connecting two distinct points, and crossing several different tracts of land. These include utility lines, highways, railroads, stream improvements, and flood control systems. Federal agencies are to assess the suitability of each corridor-type site or design alternative for protection of farmland along with the land evaluation information.

1. How much land is in nonurban use within a radius of 1.0 mile from where the project is located?
   - More than 90 percent - 15 points
   - 90 to 20 percent - 14 to 1 point(s)
   - Less than 20 percent - 0 points

2. How much of the perimeter of the site borders on land in nonurban use?
   - More than 90 percent - 10 points
   - 90 to 20 percent - 9 to 1 point(s)
   - Less than 20 percent - 0 points

3. How much of the site has been farmed (managed for a scheduled harvest or timber activity) more than five of the last 10 years?
   - More than 90 percent - 20 points
   - 90 to 20 percent - 19 to 1 point(s)
   - Less than 20 percent - 0 points

4. Is the site subject to state or local government policies or programs to protect farmland or covered by private programs to protect farmland?
   - Site is protected - 20 points
   - Site is not protected - 0 points

5. Is the farm unit(s) containing the site (before the project) as large as the average farm size farming unit in the County?
   - (Average farm size in each county are available from the NRCS field offices in each state. Data are from the latest available Census of Agriculture, Acreage of Farm Units or Operation with $1,000 or more in sales.)
   - As large or larger - 10 points
   - Below average - deduct 1 point for each 5 percent below the average, down to 0 points if 50 percent or more below average - 9 to 0 points

6. If the site is chosen for the project, how much of the remaining land on the farm will become non-farmable because of interference with land patterns?
   - Acreage equal to more than 25 percent of acres directly converted by the project - 25 points
   - Acreage equal to between 25 and 5 percent of the acres directly converted by the project - 1 to 24 point(s)
   - Acreage equal to less than 5 percent of the acres directly converted by the project - 0 points

7. Does the site have available adequate supply of farm support services and markets, i.e., farm supplies, equipment dealers, processing and storage facilities and farmers' markets?
   - All required services are available - 5 points
   - Some required services are available - 4 to 1 point(s)
   - No required services are available - 0 points

8. Does the site have substantial and well-maintained on-farm investments such as barns, other storage buildings, fruit trees and vines, field terraces, irrigation, waterways, or other soil and water conservation measures?
   - High amount of on-farm investment - 20 points
   - Moderate amount of on-farm investment - 10 to 1 point(s)
   - No on-farm investment - 0 points

9. Would the project at this site, by converting farmland to non-agricultural use, reduce the demand for farm support services so as to jeopardize the continued existence of these support services and thus, the viability of the farms remaining in the area?
   - Substantial reduction in demand for support services if the site is converted - 25 points
   - Some reduction in demand for support services if the site is converted - 1 to 24 point(s)
   - No significant reduction in demand for support services if the site is converted - 0 points

10. Is the kind and intensity of the proposed use of the site sufficiently incompatible with agriculture that it is likely to contribute to the eventual conversion of surrounding farmland to non-agricultural use?
    - Proposed project is incompatible to existing agricultural use of surrounding farmland - 10 points
    - Proposed project is tolerable to existing agricultural use of surrounding farmland - 0 to 1 point(s)
    - Proposed project is fully compatible with existing agricultural use of surrounding farmland - 0 points
State Route 132 West Freeway/Expressway Draft EIR/EA

May 28, 2015

Regulatory Division (SPK-2010-01481)

State of California
Department of Transportation, District 6
Attr: Ms. Jaimee Cornwell
2015 East Shields Avenue, Suite A-100
Fresno, California 93726-5428

Dear Mr. Parker:

We are responding to your, December 22, 2010, request for an approved jurisdictional determination for the State Route 132 West Freeway project. The approximately 274-acre site is located near the intersection of Highway 99 and Kansas Avenue, in Section 29, Township 3 South, Range 9 East, Mount Diablo Meridian, Latitude 37.64329', Longitude -121.011131', near the City of Modesto, Stanislaus County, California.

Based on available information, we concur with the estimate of waters of the United States, as depicted on the May 3, 2011 Appendix C. Wetland and Water Features Identified in the Biological Study Area drawing, prepared by Misha Seguin and Phill Peters, as amended by Misha Seguin on June 9, 2014. Approximately 0.09 acre of waters of the United States is present within the survey area. These waters are regulated under Section 404 of the Clean Water Act, since they are tributary to the San Joaquin River, which is a traditionally navigable water.

The 0.17-acre wetland and 0.48-acre wetland, identified on the above drawing as "1X" and "2X", respectively, are intrastate isolated waters with no apparent interstate or foreign commerce connection. As such, these waters are not currently regulated by the Corps of Engineers. This disclaimer of jurisdiction is only for Section 404 of the Federal Clean Water Act. Other Federal, State, and local laws may apply to your activities. In particular, you may need authorization from the California State Water Resources Control Board and/or the U.S. Fish and Wildlife Service.

This verification is valid for five years from the date of this letter, unless new information warrants revision of the determination before the expiration date. This letter contains an approved jurisdictional determination for your subject site. If you object to this determination, you may request an administrative appeal under Corps regulations at 33 CFR Part 331.

A Notification of Appeal Process (NAP) and Request for Appeal (RFA) form is enclosed. If you request to appeal this determination you must submit a completed RFA form to the South Pacific Division Office at the following address: Administrative Appeal Review Officer, Army Corps of Engineers, South Pacific Division, CESP-D-PDS-O, 1465 Market Street, San Francisco, California 94103-1399, Telephone: 415-503-6574, FAX: 415-503-6646.
Appendix I • Agency Coordination

-2-

In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 CFR Part 331.5, and that it has been received by the Division Office within 60 days of the NAP. Should you decide to submit an RFA form, it must be received at the above address by 60 days from the date of this letter. It is not necessary to submit an RFA form to the Division Office if you do not object to the determination in this letter.

You should provide a copy of this letter and notice to all other affected parties, including any individual who has an identifiable and substantial legal interest in the property.

This determination has been conducted to identify the limits of Corps of Engineers’ Clean Water Act jurisdiction for the particular site identified in this request. This determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service prior to starting work.

We appreciate your feedback. At your earliest convenience, please tell us how we are doing by completing the customer survey on our website under Customer Service Survey.

Please refer to identification number SPK-2010-01481 in any correspondence concerning this project. If you have any questions, please contact Mr. Jason Deters at our California South Branch Office, 650 Capitol Mall, Suite 5-200, Sacramento, California 95814, email Jason.Deters@usace.army.mil, or telephone 916-557-7152. For more information regarding our program, please visit our website at http://www.spk.usace.army.mil/Missions/Regulatory.aspx.

Sincerely,

[Signature]

Michael G. Nepstad
Deputy Chief, Regulatory Division

Enclosures

cc: (w/o encls)

Mr. Thomas Leeman, United States Fish and Wildlife Service, Endangered Species Division, thomas_leeman@fws.gov
Ms. Leana Rosetti, Wetlands Office, Environmental Protection Agency, Region 9, rosetti.leana@epa.gov
Ms. Elizabeth Lee, California Regional Water Quality Control Board, Central Valley Region, Fresno Branch Office, emlee@waterboards.ca.gov
Appendix J • List of Technical Studies

Page Intentionally Left Blank
Appendix J • List of Technical Studies

Volume 1

Draft Relocation Impact Report (September 2014)
Air Quality Study Report (May 2016)
Air Quality Conformity Analysis (May 2016)
Noise Study Report (January 2016)
Noise Abatement Decision Report (May 2016)
Water Quality Assessment Report (April 2016)
Revised Natural Environment Study (October 2016)
Preliminary Drainage Report (September 2014)
Floodplain Study (October 2015)

Cultural Resources Reports

• Archaeological Survey Report (October 2011)
• Supplemental Archaeological Survey Report (October 2014)
• Historic Property Survey Report (December 2011)
• Supplemental Historic Property Survey Report (October 2014)
• Historic Resource Evaluation Report (December 2011)
• Supplemental Historic Resource Evaluation Report (October 2014)

Visual Impact Assessment (November 2015)

Paleontological Evaluation Report and Preliminary Paleontological Mitigation Plan (October 2015)

Final Traffic Operations Analysis Report (July 2012)
Final Traffic Analysis Addendum (March 2014)
Design Year 2048-Southbound State Route 99/I Street Off-Ramp Relocation Operations Analysis (August 2015)
Community Impact Assessment (July 2016)

Geotechnical/Geologic Summary Report (October 2010)

Draft Geotechnical Design Report Basin Infiltration Rates for State Route 132 West Expressway (March 2012)
Volume 2

Hazardous Waste Reports

- Initial Site Assessment (October 2010 and October 2015)
- Limited Phase II Assessment (April 2012)
- Aerially Deposited Lead Assessments (December 2012 and October 2015)
- Asbestos-Containing Material/Lead-Containing Paint Hazardous Material Survey Reports (May 2015)
- Phase II Environmental Site Assessment (October 2015)

Available Online

Modesto Soil Stockpile Reports

The Modesto Stockpile Reports are located at http://www.dot.ca.gov/dist10/environmental/projects/sr132west/index.html

- Heavy Metal Contamination Preliminary Site Investigation Report (June 2004)
- Remedial Action Options Report (July 2004)
- Characterization of Soil Stockpiles (January 2006)
- Groundwater Assessment Report (June 2015)
- Human Health Risk Assessment (HHRA) (May 2007)
- Particulate Matter Test Report (June 2007)
- Final Preliminary Endangerment Assessment (June 2009)
- Additional Well Installation and Groundwater Monitoring Report (November 2012)
- Stockpile 3 Excavation Summary Report (March 2013)
- Human Health Risk Assessment (HHRA) Update (March 2013)
- Surface Water Sampling Reports (June 2006 and June 2013)
- Soils Stockpiles Feasibility Study (June 2014)
- Draft Final Remedial Action Plan (October 2014)